Exercises 1 \& 2

1. Show that a particle of charge $q=z e$ and velocity v subject to a uniform magnetic field B has a momentum $p[\mathrm{GeV}]=0.3 z r[\mathrm{~m}] \mathrm{B}[T] \quad$ If \vec{v} perpendicular to \vec{B}
Show that the resolution in the momentum is

$$
\left.\begin{array}{l}
\frac{\delta p}{p}=\frac{\delta s}{s} \\
p_{0}=\frac{L^{2} q B}{8 \delta s}
\end{array}\right] \frac{\delta p}{p}=\frac{p}{p_{o}}
$$

2. Calculate the center of mass energy of the collision of two protons travelling in opposite directions at an Energy of 7 TeV

See appendix of the talk for some hints

Exercise 3

1. Show that pseudorapidity can be written in terms of the momentum as
$\eta=\frac{1}{2} \ln \left(\frac{|\vec{p}|+p_{L}}{|\vec{p}|-p_{L}}\right) \quad \vec{p}_{L}$
Particle momentum along the beam axis

- Note: Pseudorapidity is defined as

$$
\eta=-\ln \left[\tan \left(\frac{\theta}{2}\right)\right]
$$

- Where θ is the angle between the particle momentum \vec{p} and the beam axis

1. Show also that in the relativistic limit $v \rightarrow c$ (speed of the particle is close to speed of light)

$$
\eta=\frac{1}{2} \ln \left(\frac{E+p_{L}}{E-p_{L}}\right)
$$

