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OutlineOutline
● Track fitting

– Basic ideas & concepts
– Basic formulae
– Pattern recognition
– Track fitting with χ2 and Kalman filter techniques
– Multiple Coulomb Scattering

● Alignment
– Basic ideas  & concepts
– Basic formulae
– Alignment strategy 
– Alignment systematics

Disclaimer: the geometry description is an important issue that is not treated in this lecture 
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Particles and detectorsParticles and detectors

We are 
interested 
in this part
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IntroductionIntroduction
● A nice performance  of the Track Fitting is a key ingredient of the 

success of the physics program of the HEP experiments
– An accurate determination of the charged particles properties is necessary 

● Invariant masses had to be determined with optimal precision and well  
estimated errors

● Secondary vertices must be fully reconstructed: evaluate short lifetimes
● Kink reconstruction 

● Challenges for the tracking systems of the LHC detectors
– High multiplicity of charged particles (up to 100 for ℒ ∽ 1034cm-1s-1)
– Momenta of particles in the final state ranging from MeV to TeV
– Large background from secondary activities of the particles
– Multiple Coulomb Scattering in detector frames, supports, cables, pipes...
– Complex modular tracking systems combining different detecting 

techniques, different resolutions
– Resolutions that vary as a function of the momentum (p), azimuthal angle 

(ϕ), polar angle (θ) or pseudorapidity (η)
– Very high event rates leading to large amount of data 

● with demanding requirements CPU and storage



5Track ftting and alignment10/09/09

Basic ingredientsBasic ingredients
● Basic ingredients of the tracking system

– Charged particles (+ve or -ve)
● |q| = 1, 2
● e,μ,π,k,p,α,...

– Ionization detector
● Continuous (e.g.: gas detectors)
● Discrete (e.g.: silicon planar detectors)

– Magnetic field (no strictly necessary)
● Necessary if momentum determination is required

– Some times experiments runs with magnets switched off
● Lorentz force

● Example: Nice Java applet 
– http://www.lon-capa.org/~mmp/kap21/cd533capp.htm

F=q Ev×B
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Track parametersTrack parameters
● The track can be parametrized by 5 parameters at the track perigee 

– d0, z0, φ0, θ0, p, (q)
– d0, z0, φ0, cotθ0, pT, (q)

● The track extrapolation to detector surfaces or elements usually  
requires a different parametrization

– xi, yi, φi, θi, pT, (q)
● At intersection

– Track extrapolation
● From point to point
● Active volumes
● Passive volumes
● Heavily used in 

– Tracking code
– Alignment code

– Error matrix propagation !
● Optimization

– Track parameters given in the local reference frame
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Basic track formulBasic track formulææ
● Consider axial (along Z) and uniform B field 

– From a solenoid field as in most of the HEP experiments trackers.
– Charged particles follow a helicoidal path

● Describe circles in the XY (transverse plane) due to Lorentz force
● Move uniformly along Z

F=qv×B
pT GeV /c =0.3q B T m
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Basic track formulaeBasic track formulae
● Helix trajectory of charged particles

– Parametrization of the helix: (x,y,z) of a trajectory point as a function of a 
single path parameter

x T =−qsin 0−qT d 0qsin 0

y T =qcos 0−qT −d 0qcos0

z T =z0
t

2
= z0cot 0T

=
pT

0.3 B
pT= p sin 0

cot 0=
p

0.3B
cos0

See example at: http://www-jlc.kek.jp/2003oct/subg/of/lib/docs/helix_manip/node3.html

x0=d 0 sin 0

y0=−d 0 cos0
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Pattern recognitionPattern recognition
● The main goal of the pattern recognition is to associate hits to tracks

– Efficient: all hits
– Robust: no noise and no hits from other tracks

● Pattern recognition is a field of applied mathematics
– It makes use of statistics, cluster analysis, combinatorial optimization, etc
– The choice of the algorithm depends heavily in the type of measurements

● 2D vs 3D points
– And in the track model

● Detector shape and B field
– Hough space transform, template matching,

minimum spanning tree, local pattern
recognition

● Hit-to-track association
– Defined by pattern recognition
– Later altered by tracking

● Removing bad hits & outliers
– Noisy channels tend to be the “party spoilers”

● In summary: pattern recognition is an art on its own
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Track ftting with Track ftting with ΧΧ22 minimization  minimization 
● Use well known technique of residual minimization for track 

parameters determination via Χ2 function
– Usual Χ2 definition

● Residuals (r) and their errors (σ)
– Χ2 minimization w.r.t. track parameters (π)

● Rewrite the Χ2 using the matrix algebra:

– Apply the Χ2 minimization w.r.t. track parameters (π)

X 2=∑
i=1

N R  ri
 r i 

2
d X 2

d
=0  ∑

i=1

N R r i
 r i 

2

dri
d 

=0

r= r1

⋮
r N R

 V=2 r1  0
⋮ ⋱ ⋮
0  2 rN R

  X 2=rTV −1 r

d X 2

d
=0   dr

d 
T

V −1r=0

1) V may contain correlations terms as well. 
Therefore V is not necessarily diagonal
2) The residuals errors are taken as the intrinsic 
errors of the detector elements. Each hit may 
come from a diferent tracking device and has 
its own error

= 1

⋮
N T

=
d0

z0

0

0

p
 dr

d
= dr1/d1  dr1/dN T

⋮ ⋱ ⋮
drN /d1  drN /dN T



r=m−e
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Track ftting with Track ftting with ΧΧ22 minimization  minimization 
● Taylor's expansion up to first order derivatives:

– Computed at initial track parameter (π0) estimation
– Neglect second and higher order derivatives:

● The minimum condition equation becomes:

● Solving the above matrix equation requires to invert a NT x NT matrix

● Pros & cons:
– pros:

● The inverse of the track derivatives matrix is the correlation matrix of the track 
parameters. So track parameters errors are computed for free :)

● If the problem is linear then the solution is exact
– Cons:

● The derivatives of the residuals wrt track parameters may be hard to compute
● If the problem is not linear then one needs to iterate

r=r 0∣ d rd∣0



d 2 r
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d
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d 

T

V−1 dr
d  ][ dr
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T

V−1 r ]=0

=−[ dr
d 

T

V−1 dr
d  ]

−1

[ dr
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T
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Track ftting with Track ftting with ΧΧ22 minimization  minimization 
● The calculation of the derivatives of residuals w.r.t track parameters

● Intersection of the track with the detector:
– Changes with changing track parameters

● Analytic calculations make assumptions:
– On track model and detector conditions 

● e.g.uniform B & material description
– Fast and reliable

● Numerical calculations
– Time consuming, reliable & heavy use of the track extrapolation package
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Track ftting with Track ftting with ΧΧ22 minimization  minimization 
● Track fit with constrained track parameters

– Beam spot, secondary vertices, invariant masses, …

● Goodness of the fit: evaluate the pull quantities
– When fit is correct: pulls follow a Normal distribution (μ=0,σ=1)
– Three conditions must be fulfilled

1) The track model must be correct
2) The covariance matrix of the measurement errors must be correct
3) The reconstruction software must work properly

R=d 0− d 0

⋮
p− p  W=2 d 0  0

⋮ ⋱ ⋮
0  2 p  X 2=rT V−1 rRTW−1 R
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Treatment of the MCSTreatment of the MCS
● The Multiple Coulomb Scattering must be included in the track fitting

– Particle traversing material undergoes successive deflections
● In main tracking algorithms the assumption is that the MCS angles follow a 

Gaussian distribution. It is know that the tails are larger than the Gaussian tails

● Practical implementation in the algorithm: two equivalent ways
– As non symmetric correlation matrix

– As extra track parameters that are fitted 

MCS=rms=
13.6MeV

c p
z  x

X 0 [10.038ln  x
X 0

]

V=V hitV MCS= 2 r1  corr r1, rN R


⋮ ⋱ ⋮
corr r1, r N R

  2r N R
 

r= 1

⋮
Nscat

 =i

 j
 X 2=rTV−1 rrV MCS
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Treatment of the MCSTreatment of the MCS
● The amount of material affects the track reconstruction

● Practical determination of the MCS and detector intrinsic resolution

ATLAS: 2004 CTB unpublished

Material in the ATLAS Inner Detector
expressed in units of radiation length
and given as a function of the 
pseudorapidity
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Track ftting with Kalman flterTrack ftting with Kalman flter
● The Kalman filter was developed by R.E. Kalman during the 1950's

– To solve differential matrix equations without matrix inversions
– It is a method of estimating the states of dynamic systems

● Soon applied to the NASA rocket trajectory control for the Apollo program
● Military applications: compute plane trajectory by radar tracking

● Assumption: 
– The trajectory of a particle between two adjacent surfaces is described by 

a deterministic function plus random disturbances (material effects, etc)
– The system equation: propagates the                                                       

estate in one surface to the next

– The measurement equation: mapping the                                                
track in the surface and considers                                                         
some measurement error

k=F k k−1Pk k 〈k 〉=0 Cov k=Qk

mk=H k k k 〈k 〉=0 Cov k =V k
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Track ftting with Kalman flterTrack ftting with Kalman flter
● The aim is to estimate the track parameters from the observations

– From j observations and a kth measurement: obtain a new k estimate 

– Prediction 
● and its covariance matrix (error):

– Filtering, based on πk|k-1 and mk:
● It consists in minimizing the following: 

● The solution should be well known by now:

● And its covariance matrix (error):

– The residual is thus:

● Which allows to compute a χ2 in order to test the goodness of the fit                         
                                                                                                                                 
that needs some smoothing.       

{{m1, ,m j} ,  j }  mk  k

k∣k−1=F k k−1P kk
C k∣k−1=F kC k−1∣k−1 F k

TP kQk P k
T

L k =mk−H kk 
TV k

−1 mk−H k kk∣k−1−k 
TC k∣k−1k∣k−1−k 

k∣k=k∣k−1[H k
T V−1 H k C k∣k−1 ]−1 [H k

TV−1 mk−H k k ]

C k∣k=[H k
TV −1 H k C k∣k−1 ]−1

rk∣k=mk−H k k∣k

k∣k
2 =r k

T V k
−1 r k 2=∑

k

k
2
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Track ftting with Kalman flterTrack ftting with Kalman flter
● Estimate of the track parameters and state at the detector surfaces 

– Filtering from estimate k-1 to k 
● Outer points estimates have more information than inner points

– Smoothing: from estimate k to k-1 (sort of backward filter) 
● All points estimates have the same information
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Track ftting summaryTrack ftting summary
● From detector hits to particle trajectories

Pattern recognition

Detector
hits

Geometry
description

Track elementsError model Track model

Magnetic
Field B

Track Fitting

Success ?
Reject track & reuse hits

Store
track
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Basic ideas & concepts for alignmentBasic ideas & concepts for alignment
● The aim of the detector alignment is to provide an accurate 

description of the detector geometry
– In straight words: to know where the modules are

● The point is: the limited knowledge of the alignment constants should 
not lead to a significant degradation of the track parameters, beyond 
that of the intrinsic tracker resolution

– In ATLAS and for the “initial physics analysis” the requirement is that the 
degradation should be kept below the 20%

pixels SCT

barrel barrel

7 7 12 12

20 100 50 200

endcap endcap

rΦ(μm)

z (μm)

TRTSilicon
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Basic ideas & concepts for alignmentBasic ideas & concepts for alignment
● High accuracy is required for precision measurements 

– A W-mass measurement accuracy of 15-20 MeV/c2 requires 1μm 
alignment precision (S. Haywood, ATL-INDET-2000-2005)

– Higgs mass: if 180 < m
h
 < 400 GeV/c2. H→ZZ→ 4l

– B-tagging: impact parameter & mass
● Example: Z→μ+μ− analysis  

– random misalignment
– Day-1: expected alignment accuracy for Day-1 from cosmic data
– Day-100: estimate of situation after 100 days of collision data 
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Basic ideas & concepts for alignmentBasic ideas & concepts for alignment
● Basic visualization of the alignment problem

– Modules are at “unknown” positions. Real hit coordinates are generated 
by particles that crosses the detector at their “true” location

– Reconstruction without knowing the real module location. Hits are located 
at “apparent” positions. Track reconstructions is not accurate

– After alignment it is possible to have a “residual” misalignment. It will affect 
the hit positions and the track reconstruction. Hopefully the effect is 
small
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Alignment by Alignment by χχ22 minimization minimization
● Need to determine 6 alignment parameters per module

● Define an alignment χ2 function built from all tracks and hits

– Require the minimum condition w.r.t. the alignment parameters 

rt= rt 1

⋮
rt N R

 V=2r1  0
⋮ ⋱ ⋮
0  2rN R

  2=∑
∀ t

rt
TV −1 rt

d 2

d a
=0  ∑

∀ t
 d r td a 

T

V−1 r t=0

a= a1

⋮
aN A

=
Tx1

⋮
Rz1

⋮
TxN M

⋮
RzN M



d r
d a

= dr1/d a1  dr1/daN A
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drN /d a1  drN /daN A
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Alignment by Alignment by χχ22 minimization minimization
● Now... the residuals derivative contain a nested dependence

– Residuals depend on track parameters and alignment parameters
– And track parameters depend on their turn on alignment parameters

– Mathematically this means:

● Actually this is equivalent to a track refit when alignment parameters change 

– Again, the derivatives can be computed analytically or numerically
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∂
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Alignment by Alignment by χχ22 minimization minimization
● Now... use the first order Taylor expansion

– Neglect second order derivatives
– Compute track parameters, residuals and derivatives with an initial set of 

alignment constants a0

● The alignment solution:
 

● The alignment matrix can be huge !
– Size is NA x NA 

● ATLAS silicon tracker (pixel + microstrips) 36K x 36K → 4.5 GB
● CMS tracker: ~100K x 100K (size grows a NA

2)
– Inversion time: 

● Tests in ALINEATOR (4-core, 32 GB, parallel) @ IFIC-Valencia 
– Full & dense matrix > 1 day (time grows as ~NA

3)
– Correlation matrix of a available

● In a commercial PC: 
– Fast inversion of sparse matrix ~1 min 
– No correlation matrix available 

 

r=r a0∣∂ r∂ a∣a0a

a=−[ d rd a 
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Alignment by Alignment by χχ22 minimization minimization
● Solving the alignment. Two approaches: Globalχ2 vs Localχ2

– Globalχ2 :module correlation is taken into account by dπ/da 
● Alignment matrix becomes dense

– Localχ2: dπ/da = 0 module correlation is not considered
● Alignment matrix becomes block diagonal
● Alignment matrix inversion is not an issue
● More iterations are needed

● Adding constraints. The alignment χ2 accepts constraint terms
– Track parameters: beam spot, invariant masses, E/p for electrons ?
– Alignment parameters: Assembly survey, online laser survey, soft mode 

cuts,...
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Alignment strategyAlignment strategy
● Alignment algorithm is run in an iterative procedure

– Until convergence is reached
– Each iteration may take several hours (up to 1 day)
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Alignment strategyAlignment strategy
● The alignment procedure mimics the detector assembly structures

– From large structures 
● PIX, SCT, 
● Barrel, End caps 
● Layers, disks
● Staves, rings

– To individual modules
● The size of corrections

– Large structures
● mm and mrad

– Staves
● 100s microns

– Modules
● 10s microns

● Statistics needed:
– Large structures: O(1000)
– Staves: O(10,000)
– Modules: O(1,000,000)

Level 1: 4 struct. → 24 Dofs
PIX: complete detector
SCT: 1 barrel + 2 end caps

Level 1.8: 14 struct. → 84 Dofs
PIX: (B) 3x2 half layers + 2 EC
SCT: (B) 4 layers + 2 EC

Level 2: 31 struct. → 186 Dofs
PIX: (B) 3 layers + 2x3 EC disks
SCT: (B) 4 layers + 2x9 EC disks

Level 2.7: 292 struct → 1752 Dofs
PIX: (B) 112 staves + 2 EC
SCT: (B)  176 staves + 2 EC

Level 3: 5832 struct → 34992 Dofs
PIX: (B) 1456 + (EC) 2x144
SCT: (B) 2112 + (EC) 2x988 
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Alignment systematicsAlignment systematics
● Weak modes: these are solutions of the alignment that do not 

correspond with real movements, but that preserve the helicoidal 
path of the tracks, leaving the track χ2 almost unchanged 

● Examples of weak modes:

● Material effects: 
– In order to achieve a resolution of the alignment corrections down to 1 

micron one needs to consider closely the material effects in the track 
reconstruction. 

– The material description must be accurate and all operational conditions 
under control

– Detector deformation: out of plane twisting and bending (planar silicon 
devices), wire sag (gas systems)
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Alignment summaryAlignment summary
● The goal of the ID alignment is to determine the position of the 

tracking modules with enough precision for the physics analysis
– This requires precision below 10 microns (ultimate goal 1 micron)
– Determination of almost 40K ATLAS & 100K CMS degrees of freedom 

● 6 per module (Tx, Ty, Tz, Rx, Ry, and Rz)

● Track based alignment algorithms can reach good precision
– Combination almost mandatory with survey constraints
– Track parameters constraints

● Study of random and systematic deformations is difficult to tackle

● ATLAS & CMS alignment of tracking systems ready                         
for first LHC collisions

Thanks to: Carlos Escobar, Vicente Lacuesta and Regina Moles  
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