#### Search for the Standard Model Higgs at LHC (Part II)

Guillelmo Gómez-Ceballos

(MIT)

September 2009

**Taller de Altas Energías** 

# **Experimental Analyses**

#### **Final States**

 $\Rightarrow H \rightarrow WW$ :  $\Rightarrow H \rightarrow WW \rightarrow \ell v \ell v$  $\Rightarrow qqH, H \rightarrow WW \rightarrow \ell \nu \ell \nu / qq' \ell \nu$  $\Leftrightarrow$  WH  $\rightarrow$  WWW  $\rightarrow$  3 $\ell$ 3v  $\Rightarrow H \rightarrow ZZ$ :  $\Rightarrow H \rightarrow ZZ \rightarrow 4\ell$  $(qq)H \rightarrow ZZ \rightarrow 2q2\ell$  $\Rightarrow$  qqH,  $H \rightarrow ZZ \rightarrow 2\ell 2\nu$  $\Rightarrow H \rightarrow \gamma \gamma$ :  $gg \to H$ G agH  $\ll W/Z/t\bar{t}H$  $\Leftrightarrow H \rightarrow \tau \tau$ :  $\Rightarrow$  qqH,  $H \rightarrow \tau \tau \rightarrow \ell h \nu' s$  $\Rightarrow$  qqH,  $H \rightarrow \tau \tau \rightarrow \ell \ell \nu' s$  $\Rightarrow H \rightarrow bb:$ *⊲* tī*H* W/ZH

## **Key Points**

- Trigger
- - $righ p_T$  isolated objects
- Jet reconstruction:
  - reject backgrounds
     select WBF events
- *b*-tagging:
  - reject backgrounds, apply anti b-tagging
  - select b-jets
- $\Rightarrow E_{T}^{miss}$ :
  - select events with neutrinos in the final state
  - reject backgrounds
- Systematics, data-driven methods

#### Backgrounds

- WW
- *WZ*
- ZZ
- tī
- $W(\rightarrow \ell v) + jets$
- $Z(\rightarrow \ell \ell)(+jets)$
- Single top: Wt, t-channel, s-channel
- Generic QCD

# Object Identifi cation & Trigger Selection

#### **Particle Detection**



Keep in mind: specific identification results depend on detector, performance, cuts, analysis...

#### Isolation



Solution: sum  $p_T$  of objects around the lepton
Solution:  $Iso^{\mu}_{Total} = Iso^{\mu}_{Track} + Iso^{\mu}_{ECAL} + Iso^{\mu}_{HCAL}$ Solution: Solution (mainly for illustration purposes)

#### Muon Effi ciency



Typical total efficiency ~90%

 $\sim$  Lower efficiency at low  $p_T$  due to tighter isolation requirements

#### **Electron Effi ciency**



Typical total efficiency ~80%

 $\sim$  Lower efficiency at low  $p_T$  due to tighter isolation requirements

#### $\tau \rightarrow h X$ Effi ciency



- Heavily analysis dependent
- Detector performance very important

#### $\gamma$ Effi ciency

CMS results...



 ${\ensuremath{\sc se rel}}$  Gap in  $|\eta|$   ${\ensuremath{\sc rel}}$  1.5 due to an ECAL gap between Barrel and End-Cap

#### Jet Effi ciency

 $\varepsilon^{jet}$  > 95% for  $p_{T}^{jet}$  > 30 GeV Dependence on jet algorithm



#### **WBF** Jets



13

### b-tagging Effi ciency

Observables to discriminate heavy and light flavor quark jets:

- rightarrow soft-lepton tagging: leptons from  $B \rightarrow \ell X$  decays
- track-counting: tracks with large impact parameter
- secondary vertex mass: group of tracks with relatively large mass



Combined b-tag



#### E<sup>miss</sup> Reconstruction



- CaloMET: reconstructed by the vector sum of ECAL and HCAL towers energy and subtracting the muons energy
- TCMET: precise measurement of charged particles is exploited to correct the calorimeter-based measurement
- PFMET: full Particle Flow algorithm is exploited

## Triggers

#### Not going to enter in detail here... Single muon trigger Single Electron trigger Efficiency Efficiency 0.9 0.9 0.8 0.8 0.7 0.7E 0.6 0.6 • L1 • L1 0.5 0.5 0.4 • L2 • L2 0.4 0.3 0.3 ▲ EF ▲ EF 0.2 0.2E **ATLAS ATLAS** 0.1 0.1 20 30 40 50 30 40 50 60 20 60 p<sub>T</sub> [GeV] E\_[GeV]

The second states less problematic than  $\tau/\gamma/jet$  final states final states of fline requirements should be tighter than trigger requiments

# **Systematics**

#### The Name of the Game

- Very important to establish data-driven methods to understand backgrounds and efficiencies
- Should rely in Monte Carlo simulation as less as possible
- Critical component for analyses with no mass peak

| Source                                | Normalization | Shape (per background type) |
|---------------------------------------|---------------|-----------------------------|
| Luminosity                            | yes           | no                          |
| $\ell/\gamma$ & trigger effi ciencies | yes           | small                       |
| $\ell/\gamma$ isolation               | yes           | small                       |
| Miscalibration and misalignment       | yes           | small                       |
| Jet reconstruction                    | yes           | yes                         |
| E <sup>miss</sup> modeling            | yes           | yes                         |
| b-tagging                             | yes           | small                       |
| PDF uncertainties                     | yes           | yes                         |
| Background normalizations             | yes           | no                          |
| Conversion finding efficiency         | yes           | no                          |
| Fake objects                          | yes           | no                          |
| MC statistics                         | yes           | no                          |

#### Tag & Probe Method (I)



- Select one good identified lepton (tag)
- Solution Soluti Solution Solution Solution Solution Solution Solution Sol

#### Tag & Probe Method (II)



- Agreement between generation level information and the method is an important sanity check
- Can estimate lepton and trigger efficiencies with this method

#### Isolation Studies (I)

- Isolation requirements are important to reject fake leptons
- Random isolation cone for systematic studies:
  - selecting  $Z \rightarrow \ell \ell$
  - look at random isolation cones removing both lepton legs
- Making sure MC reproduces data:
  - check underlying-event
  - check pile-up
  - check detector effects
- Comparing  $Z \rightarrow \mu \mu$  MC with  $Z \rightarrow ee$  MC for now

#### Isolation Studies (II)



Studies in data should include dependences in  $\eta$  and  $\phi$ 

### E<sup>miss</sup> Modeling (I)

- Jet energy scale gives the larger error contribution
- rightarrow Studies using  $Z \rightarrow \ell \ell$  data events vs.  $W \rightarrow \ell v$  MC events:
  - $rightarrow want to check the behavior of MC events with real <math>E_{T}^{miss}$
  - rightarrow compare  $W \rightarrow \ell v$  MC events with real data  $Z \rightarrow \ell \ell$  events
  - one lepton is substracted (as if it was a neutrino)
  - small considerations:
    - rightarrow need to rescale MC energies by  $m_Z/m_W$  ratio
    - need to impose same kinematical requirements to the neutrino in MC as the (substracted) muon in data
- rightarrow Studies  $t\bar{t} \rightarrow 2/2v2b$ :
  - Selecting  $t\bar{t}$  → 2/2v2b events with -no-  $E_T^{miss}$  requirements making use of b-tagging and tighter Z veto requirement
  - $\approx$  able to study  $E_{T}^{miss}$  on a clean data sample
- rightarrow Studies to check  $E_T^{miss}$  resolution:

 $rightarrow QCD, \gamma + jets and Z \rightarrow \ell \ell$  events

### *E*<sub>T</sub><sup>miss</sup> Modeling (II)

#### $E_{\rm T}^{\rm miss}$ on $t\bar{t} \rightarrow 2\mu 2\nu 2b$ & $t\bar{t} \rightarrow e\mu 2\nu 2b$ events



#### Lepton Fake Rate Method

- In an orthogonal fake dominated sample, measure probability that a loose lepton-like denominator object passes tight lepton cuts
- Some For 2 ℓ final states: apply probability as a function of  $p_T$ , η in events with 1 lepton + any number of denominators to obtain the prediction for 1ℓ+fake events



#### Jet Angular Distributions for $t\bar{t} \rightarrow 2/2v2b$ Events



Etc...