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Quantization of a One-Particle System
Operators

A particle whose dynamics is described by a conservative Hamiltonian
(∂tH = 0): H(q, p).

The quantum theory for this system is constructing by promoting position q
and momentum p into operators:

q −→ q̂

p −→ p̂

with the commutation relation:

[q̂, p̂] = i~

The Hamiltonian operator (with some ordering prescription) is

bH = H(q̂, p̂)



Quantization of a One-Particle System
Hilbert Space

Operators act on states of a Hilbert space.

A basis {|q〉} made of eigenstates of the position operator:

q̂|q〉 = q|q〉

〈q′|q〉 = δ(q − q′)Z
dq |q〉〈q| = 1



Quantization of a One-Particle System
Hamiltonian Eigenstates

Another basis {|n〉} can be made out of eigenstates of the Hamiltonian (the
energy states): bH|n〉 = En|n〉

〈n′|n〉 = δnn′X
n

|n〉〈n| = 1

The ground state |0〉 is the state with the smallest energy E0:

bH|0〉 = E0|0〉



Quantization of a One-Particle System
Time Evolution

Schrödinger Picture
Time-independent operators:

bA
Time-dependent states:

|ψ(t)〉 = e−
i
~ t bH |ψ〉

Heisenberg Picture
Time-dependent operators:

bA(t) = e
i
~ t bH bA e−

i
~ t bH

Time-independent states:

|ψ〉

The expectation value of bA in the state |ψ〉 after some time t in the two
pictures:

〈ψ(t)|bA|ψ(t)〉 = 〈ψ|bA(t)|ψ〉



Position Expectation Values

A particle at time ta is at position qa:

|qa〉

At time tb the particle will be at the state (~ = 1):

e−i(tb−ta)bH |qa〉

The amplitude for finding the particle at qb at tb is:

〈qb|e−i(tb−ta)bH |qa〉

By dividing (tb − ta) in N slices of size δt = (tb − ta)/N and, at times tk = k δt ,
inserting Z

dqk |qk 〉〈qk |

it is possible to show ...
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Position Expectation Values
Path Integral

... that the amplitude is

〈qb|e−i(tb−ta)bH |qa〉 =

= lim
δt→0
N→∞

N δt=tb−ta

 
N−1Y
i=1

Z
dqi

! 
NY

j=1

Z
dpi

2π

!
exp

"
i δt

NX
k=1

h
pk

pk+1 − pk

δt
− Hk

i#

≡
Z

q(ta)=qa
q(tb)=qb

Dq(t)
Z
Dp(t) exp

"
i
Z tb

ta

ˆ
p(t)q̇(t)− H(q, p)

˜
dt

#

where
Hk = H

“qk + qk−1

2
, pk

”
This expression defines the path integral for this problem.



Path Integral
Important Simple Example (1/2)

Let us consider a system described by the Hamiltonian

H(q, p) =
p2

2m
+ V (q)

Then

Hk =
p2

k

2m
+ Vk

with
Vk = V

“qk + qk−1

2
)



Path Integral
Important Simple Example (2/2)

We can perform the integral over the momentum:

〈qb|e−i(tb−ta)bH |qa〉 =

= lim
δt→0
N→∞

N δt=tb−ta

„
m

i 2π δt

«N/2
 

N−1Y
i=1

Z
dqi

!
exp

"
i δt

NX
k=1

hm
2

“qk − qk−1

δt

”2
− Vk

i#

= lim
δt→0
N→∞

N δt=tb−ta

„
m

i 2π δt

«N/2
 

N−1Y
i=1

Z
dqi

!
exp

"
i δt

NX
k=1

Lk

#

≡
Z

q(ta)=qa
q(tb)=qb

Dq(t) exp

"
i
Z tb

ta
L(q, q̇)dt

#
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Note the non-trivial constant: (m/i 2π δt)N/2.



Path Integral
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Actually, one rarely has to compute a path integral.



Path Integral
Important Simple Example (2/2)
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To perform the complete calculation of a path integral, one would start from
〈qb|e−i(tb−ta)bH |qa〉.



Path Integral
Important Simple Example (2/2)
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One may use the Lagrangian form of the path integral; if L is not the actual
Lagrangian, then one must use the Hamiltonian form.



Path Integral
Important Notation

From now on we will write

〈qb|e−i(tb−ta)bH |qa〉 =

Z
q(ta)=qa
q(tb)=qb

Dq(t) exp

"
i
Z tb

ta
L(q, q̇) dt

#

without going into the details of the actual computation.



Path Integral
Two Complete Results

F The free particle (V (q) = 0) is one of the few cases where we can find out

an analytic expression for the amplitude 〈qb|e−i(tb−ta)bH |qa〉. The result is:

〈qb|e−
i
~ (tb−ta)bH |qa〉 =

»
m

i 2π~ (tb − ta)

–1/2

exp

"
i m (qb − qa)2

2~ (tb − ta)

#

F For the harmonic oscillator:

L =
1
2

m q̇2(t)− 1
2

mω2 q2(t)

〈qb|e−
i
~ (tb−ta)bH |qa〉 =

=

»
mω

i 2π~ sin[ω(tb − ta)]

–1/2

exp

"
i mω

ˆ
(q2

a + q2
b) cos[ω(tb − ta)]− 2qaqb

˜
2~ sin[ω(tb − ta)]

#

In the ω → 0 limit, we recover result for a the free particle.



Ground-State Expectation Values
(1/2)

Most of the time we are interested in computing ground-state expectation
values such as

〈0|e−i(tb−ta)bH |0〉

By inserting a complete set {|n〉} of eigenstates of bH in 〈qb|e−i(tb−ta)bH |qa〉:

〈qb|e−i(tb−ta)bH |qa〉 =
X

n

〈qb|e−i(tb−ta)bH |n〉〈n|qa〉

=
X

n

〈qb|n〉〈n|qa〉 e−i(tb−ta)En

Making ta = −T and tb = T , in the T →∞(1− iε) limit the dominant term is
the one with the smallest En (the ground state). Therefore ...



Ground-State Expectation Values
(2/2)

...

lim
T→∞(1−iε)

〈qb|e−i(2T )bH |qa〉 = 〈qb|0〉〈0|qa〉 lim
T→∞(1−iε)

e−i (2T ) E0

= 〈qb|0〉〈0|qa〉 lim
T→∞(1−iε)

〈0|e−i(2T )bH |0〉
and we conclude that

lim
T→∞(1−iε)

〈0|e−i(2T )bH |0〉 =
1

〈qb|0〉〈0|qa〉
lim

T→∞(1−iε)

Z
q(ta)=qa
q(tb)=qb

Dq(t) exp

"
i
Z T

−T
L(q, q̇) dt

#

Since the left-hand side is independent of the initial al final positions, the
dependence of the path integral on qa and qb must be cancel by the
denominator. Therefore, no matter which qa and qb are used to perform the
calculation, the result is the same.



Expectation Values of Time-Ordered Operators
(1/6)

The average position of a particle in the state |ψ〉 is 〈ψ|q̂|ψ〉.

For a particle whose position is qa at some initial time ta and qb at a later time
tb, what is the average position at a time tr such that tb > tr > ta? The answer:

〈qb|e−i(tb−tr )bH q̂ e−i(tr−ta)bH |qa〉

Since (in the Heisenberg picture)

q̂(t1) = ei tr bH q̂ e−i tr bH
we can write

〈qb|e−i tb bH q̂(tr ) ei ta bH |qa〉

By inserting Z
dqr |qr 〉〈qr |

at tr , with q̂|qr 〉 = qr |qr 〉, we have ...



Expectation Values of Time-Ordered Operators
(2/6)

... we have

〈qb|e−i(tb−tr )bH q̂ e−i(tr−ta)bH |qa〉 = 〈qb|e−i tb bH q̂(tr ) ei ta bH |qa〉 =

= lim
δt→0
N→∞

N δt=tb−ta

„
m

i 2π δt

«N/2
 

N−1Y
i=1

Z
dqi

!
qr exp

"
i δt

NX
k=1

hm
2

“qk − qk−1

δt

”2
−Vk

i#

= lim
δt→0
N→∞

N δt=tb−ta

„
m

i 2π δt

«N/2
 

N−1Y
i=1

Z
dqi

!
qr exp

"
i δt

NX
k=1

Lk

#

≡
Z

q(ta)=qa
q(tb)=qb

Dq(t) q(tr ) exp

"
i
Z tb

ta
L(q, q̇) dt

#



Expectation Values of Time-Ordered Operators
(3/6)

On the other hand, by inserting two complete sets of eigenstates of bH, setting
ta = −T and tb = T , and taking T →∞(1− iε):

lim
T→∞(1−iε)

〈qb|e−i T bH q̂(tr ) e−i T bH |qa〉 = 〈0|q̂(tr )|0〉〈qb|0〉〈0|qa〉 lim
T→∞(1−iε)

e−i (2T ) E0

Since

lim
T→∞(1−iε)

〈qb|e−i(2T )bH |qa〉 = 〈qb|0〉〈0|qa〉 lim
T→∞(1−iε)

e−i (2T ) E0

Dividing both expressions, we get

〈0|q̂(tr )|0〉 =

lim
T→∞(1−iε)

〈qb|e−i T bH q̂(tr ) e−i T bH |qa〉

lim
T→∞(1−iε)

〈qb|e−i(2T )bH |qa〉

=

lim
T→∞(1−iε)

Z
q(ta)=qa
q(tb)=qb

Dq(t) q(tr ) exp

"
i
Z T

−T
L(q, q̇) dt

#

lim
T→∞(1−iε)

Z
q(ta)=qa
q(tb)=qb

Dq(t) exp

"
i
Z T

−T
L(q, q̇) dt

#



Expectation Values of Time-Ordered Operators
(4/6)

This result does not depend on the choice of qa and qb. This is a quite
general feature, and it is therefore convenient to introduce a shorter notation
for path integrals where qa, qb, and the T →∞(1− iε) limit are not shown
explicitly:Z

Dq(t) · · · exp

"
i
Z

L(q, q̇) dt

#
≡

lim
T→∞(1−iε)

Z
q(−T )=qa
q(T )=qb

Dq(t) · · · exp

"
i
Z T

−T
L(q, q̇) dt

#

Also, we define the constant N

N−1 ≡
Z
Dq(t) exp

"
i
Z

L(q, q̇) dt

#
so that we can write:

〈0|q̂(tr )|0〉 = N
Z
Dq(t) q(tr ) exp

"
i
Z

L(q, q̇) dt

#



Expectation Values of Time-Ordered Operators
(5/6)

Similarly, we can compute 〈0|q̂(ts)q̂(tr )|0〉 with tb > ts > tr > ta to get:

〈0|q̂(ts)q̂(tr )|0〉 = N
Z
Dq(t) q(ts) q(tr ) exp

"
i
Z

L(q, q̇) dt

#

Now, if we compute 〈0|q̂(tr )q̂(ts)|0〉 tb > tr > ts > ta, the result turns out to be
the same:

〈0|q̂(tr )q̂(ts)|0〉 = N
Z
Dq(t) q(ts) q(tr ) exp

"
i
Z

L(q, q̇) dt

#

These two results can be summarized as

N
Z
Dq(t) q(ts) q(tr ) exp

"
i
Z

L(q, q̇) dt

#
=

(
〈0|q̂(ts)q̂(tr )|0〉 for ts > tr
〈0|q̂(tr )q̂(ts)|0〉 for ts < tr



Expectation Values of Time-Ordered Operators
(6/6)

F It is conventional to define the time ordering operator T such that:

T
˘

q̂(ts)q̂(tr )
¯
≡

(
q̂(ts)q̂(tr ) for ts > tr
q̂(tr )q̂(ts) for ts < tr

= θ(ts − tr ) q̂(ts)q̂(tr ) + θ(tr − ts) q̂(tr )q̂(ts)

Then, we can write:

〈0|T
˘

q̂(ts)q̂(tr )
¯
|0〉 = N

Z
Dq(t) q(ts) q(tr ) exp

"
i
Z

L(q, q̇) dt

#

F Similarly, for the product of n position operators:

〈0|T
˘

q̂(t1) · · · q̂(tn)
¯
|0〉 = N

Z
Dq(t) q(t1) · · · q(tn) exp

"
i
Z

L(q, q̇) dt

#

F In general:

〈0|T
˘

Â
¯
|0〉 = N

Z
Dq(t) A exp

"
i
Z

L(q, q̇) dt

#



Quantization of an N-Particle System
(1/2)

The Lagrangian of a system with N particles is

L =
NX

a=1

1
2

maq̇2
a − V (q1, . . . , qN)

If we repeat our analysis, we will find expressions similar to those we
obtained for one particle. For instance:

N−1 =

Z
Dq(t) exp

"
i
Z

L(q, q̇) dt

#

= lim
T→∞(1−iε)

Z
q1(−T )=qI

1,··· ,qN (−T )=qI
N

q1(T )=qF
1 ,··· ,qN (T )=qF

N

Dq(t) exp

"
i
Z T

−T
L(q, q̇) dt

#

also ...



Quantization of an N-Particle System
(2/2)

... also

Z
q1(−T )=qI

a,··· ,qN (−T )=qI
N

q1(T )=qF
a ,··· ,qN (T )=qF

N

Dq(t) exp

"
i
Z T

−T
L(q, q̇) dt

#
= 〈qF

1 · · · qF
N |e−i(2T )bH |qI

1 · · · qI
N〉

= lim
δt→0

Na→∞
Na δt=2T

NY
a=1

„
m

i 2π δt

«Na/2
 

Na−1Y
i=1

Z
d(qa)i

!

exp

"
i δt

NX
a=1

NaX
k=1

hm
2

“ (qa)k − (qa)k−1

δt

”2
− Vk

i#

The lesson is that our results for one particle can be used for any number of
particles as far as the path integral is interpreted correctly.
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Canonical (Second) Quantization
(1/4)

F We consider conservative systems (the Hamiltonian is independent of t)
and take ~ = c = 1.

F Let us consider a relativistic field theory for a field ϕ(x) = ϕ(t , ~x)
described by the Lagrangian density

L(ϕ, ∂tϕ) =
1
2

(∂µϕ)(∂µϕ)− 1
2

m2ϕ2 − V (ϕ)

=
1
2
ϕ̇2 − 1

2
(~∇ϕ)2 − 1

2
m2ϕ2 − V (ϕ)

where I used ϕ̇ ≡ ∂tϕ = ∂ tϕ. Although the actual Lagrangian is the volume
integral of the Lagrangian density:

L =

Z
d3x L

it is very usual to say that L is the Lagrangian.



Canonical (Second) Quantization
(2/4)

F The canonical conjugate field is:

π(x) =
∂L

∂(∂tϕ)
=
∂L
∂ϕ̇

= ∂ tϕ = ϕ̇

The Hamiltonian density is:

H(ϕ, π) = π(x) ∂tϕ(x)− L

=
1
2
π2 +

1
2

(~∇ϕ)2 +
1
2

m2ϕ2 + V (ϕ)

and the Hamiltonian is:
H =

Z
d3x H



Canonical (Second) Quantization
(3/4)

F The canonical quantization procedure, fields which are ordinary functions
become operators:

ϕ(t , ~x)→ bϕ(t , ~x)

The role of the momentum operator is played by

π(t , ~x)→ bπ(t , ~x)

and bϕ and bπ satisfy the commutation relations:ˆbϕ(t , ~x), bπ(t , ~x ′)
˜

= i δ(~x − ~x ′)ˆbϕ(t , ~x), bϕ(t , ~x ′)
˜

= 0ˆbπ(t , ~x), bπ(t , ~x ′)
˜

= 0

Note that since bϕ(t , ~x) depends on t , it is a Heisenberg operator:

bϕ(t , ~x) = eit bH bϕ(~x) e−it bH
where bH =

Z
d3x H(bϕ, bπ)



Canonical (Second) Quantization
(4/4)

F In our example:

bH =

Z
d3x

»
1
2
bπ2 +

1
2

(~∇bϕ)2 +
1
2

m2 bϕ2 + V (bϕ)

–

F We can check out that:

bπ =
d
dt
bϕ = i

ˆbH, bϕ˜



Second Quantization of the Schrödinger Equation
(1/7)

F The Lagrangian

L =
i
2

(ϕ∗ ∂tϕ− ϕ∂tϕ
∗)− 1

2
(∂xϕ

∗)(∂xϕ)− V (x)ϕ∗ϕ

describes a non-relativistic field theory in one dimension with two fields (ϕ
and ϕ∗) whose Euler-Lagrange equations give the Schrödinger equation for
the wave function of a particle in a one dimensional potential V (x):

i ∂tϕ(t , x) =

»
− 1

2
∂2

x + V (x)

–
ϕ(t , x)

The conjugate field is

π(t , x) =
∂L

∂(∂tϕ)
= i ϕ∗(t , x)



Second Quantization of the Schrödinger Equation
(2/7)

F By second quantizing the Lagrangian, one obtains the (second
quantization) Hamiltonian

bH =

Z
dx bϕ†(t , x)

»
− 1

2
∂2

x + V (x)

– bϕ(t , x)

The commutation relations with bπ = i bϕ† areˆbϕ(t , ~x), bϕ†(t , ~x ′)˜ = δ(~x − ~x ′)ˆbϕ(t , ~x), bϕ(t , ~x ′)
˜

= 0ˆbϕ†(t , ~x), bϕ†(t , ~x ′)˜ = 0

The equation
∂ bϕ
∂t

= i
ˆbH, bϕ˜

says that bϕ is a solution of the Schrödinger equation:

i ∂t bϕ(t , x) =

»
− 1

2
∂2

x + V (x)

–bϕ(t , x)



Second Quantization of the Schrödinger Equation
(3/7)

F Note that bh ≡ −1
2
∂2

x + V (x)

is the first quantization Hamiltonian whose eigenfunctions ψn(t , x) and
eigenvalues en are computed by using Quantum Mechanics methods:

bhψn(x) = en ψn(x)

Since the eigenfunctions of bh are a basis of the Hilbert space:Z
ψ∗n (x)ψn(x) dx = δnmX

n

ψ∗n (x)ψn(x ′) = δ(x − x ′)

then any solution of the Schrödinger equation can be written as a linear
combinations of {ψn}.



Second Quantization of the Schrödinger Equation
(4/7)

F Since bϕ is a solution of the Schrödinger equation,

bϕ(t , x) =
X

n

ban(t)ψn(x)

In this expression the expansion coefficients have to be operators because bϕ
is an operator.

The completeness relation for {ψn(x)} and the commutations relations for bϕ
and bϕ† give ˆban(t),ba†m(t)

˜
= δnmˆban(t),bam(t)
˜

= 0ˆba†n(t),ba†m(t)
˜

= 0



Second Quantization of the Schrödinger Equation
(5/7)

F Now we can write the (second quantization) Hamiltonian bH in terms ofban(t) and ba†n(t) as bH =
X

n

en ba†n(t)ban(t)

For n fixed, the operators ban(t) and ba†n(t) are identical to the raising and
lowering operators of the harmonic oscillator. The Hamiltonian is nothing but
the sum of an infinite number of harmonic oscillator Hamiltonians. Following
the discussion on the harmonic oscillator, we can develop a particle
interpretation.



Second Quantization of the Schrödinger Equation
(6/7)

F The lowest energy state of bH, the ground state or bare vacuum, is the one
that is empty. The destruction operator ban for any n finds no excitations
(particles) to annihilate in the empty vacuum |0〉, so the result is the null
vector: ban |0〉 = 0

F ba†n|0〉 is a state of energy en. It contains 1 particle of energy en created byba†n.

F ba†nba†m|0〉 is a state of energy en + em. It is a 2-particle state created by ba†n
and ba†m.

F The collection of all of the states spanned by the states formed by
operating on |0〉 with any number of creation operators for any mode n is
called a Fock space.



Second Quantization of the Schrödinger Equation
(7/7)

F We have states and a particle interpretation for them: ba†n(t)|0〉 is a state at
time t with 1 particle of energy en.

F Since bϕ(t , x) is expanded in terms of ban only and bϕ†(t , x) is expanded in
terms of ba†n only, bϕ(t , x) is a destruction operator and bϕ†(t , x) is a creation
operator: bϕ†(t , x)|0〉

is a 1-particle state where the particle is located at position x at time t .

F The quantization of the Schrödinger equation is special in some respects.
It describes a non-relativistic theory and, therefore, the number of particles is
fixed; actually, it can be shown that the Schrödinger equation for any fixed
number of particles can be deduced from the quantum field theory.



Path Integrals for Quantum Field Theories
(1/4)

F Let us consider a theory in one dimension for a field ϕ(t , x) whose
canonical conjugate field is π(t , x) described by the Hamiltonian:

H =

Z L

0
dx
»

1
2
π2 +

1
2

(∂xϕ)2 +
1
2

m2ϕ2 + V (ϕ)

–

F We assume a space region of length L that is a “lattice” of N points which
are separated with each other by a distance l (eventually, we will take l → 0
and N →∞ with L fixed).

F Let us label each point by the letter a so that the values of fields ϕ and π at
the point a are ϕa and πa respectively. The Hamiltonian is, therefore,

H =
NX

a=1

1
2
π2

a +
N−1X
a=1

1
2

„
ϕa+1 − ϕa

l

«2

+
NX

a=1

1
2

m2ϕ2
a +

NX
a=1

V (ϕa)

which can be written as ...



Path Integrals for Quantum Field Theories
(2/4)

... which can be written as

H =
NX

a=1

1
2
π2

a +
NX

a,b=1

habϕaϕb +
NX

a=1

V (ϕa)

This Hamiltonian describes a system of N particles which can be quantized
using canonical quantization:

ϕa → bϕa

πa → bπa

with the canonical commutation relations:ˆbϕa, bπb
˜

= i δabˆbϕa, bϕb
˜

= 0ˆbπa, bπb
˜

= 0



Path Integrals for Quantum Field Theories
(3/4)

F The quantum Hamiltonian is:

bH =
NX

a=1

1
2
bπ2

a +
NX

a,b=1

hab bϕa bϕb +
NX

a=1

V (bϕa)

Working out the path integral (as we did in QM), we can define:

N−1(L) ≡
Z
Dϕ

Z
Dπ exp

"
i
Z ˆ

πa ϕ̇a − H(ϕ, π)
˜

dt

#

Taking the limit l → 0 and N →∞ with L fixed and performing the integration
over π:

N−1 =

Z
Dϕ exp

"
i
Z
L(ϕ) dx dt

#

The precise definition of the path integral is obtained by working out the
expressions as in QM.



Path Integrals for Quantum Field Theories
(4/4)

This result can be generalized to any number of dimensions (again, the
details about the path integral have to be worked out as in QM). In particular
for a relativistic field theory:

N−1 ≡
Z
Dϕ exp

"
i
Z
L(ϕ) d4x

#

F The vacuum expectation value of a general time-ordered operator is given
by the expression:

〈0|T
˘bA¯|0〉 = N

Z
DϕA exp

"
i
Z
L(ϕ)

#

F The amplitudes for cross sections and decay rates are related to the
correlation functions of the field:

〈0|T
˘bϕ(x1) · · · bϕ(xn)

¯
|0〉 = N

Z
Dϕ ϕ(x1) · · ·ϕ(xn) exp

"
i
Z
L(ϕ)

#



Cross Sections and Decay Rates
F Golden rule for differential cross sections. For a process

A + B → 1 + 2 + · · ·

the differential cross section is

dσ =
˛̨
M
˛̨2 Sp

(pA · pB)2 − (mA mB)2

„Y
i

d3pi

(2π)32Ei

«
(2π)4 δ

“
pA +pB−

X
i

pi

”
F Golden rule for differential decays. For a process

A→ 1 + 2 + · · ·

the decay rate is

dΓ =
˛̨
M
˛̨2 S

2mA

„Y
i

d3pi

(2π)32Ei

«
(2π)4 δ

“
pA −

X
i

pi

”
F In both expressions, if there are nr identical particles of type r in the final
state, the statistical factor S is

S =
Y

r

1
nr !



Cross Sections and Decay Rates

F The amplitudeM is obtained by using the Feynman rules with

iM = The sum of all connected, amputated diagrams.

and on-shell external momenta: p2
a = m2

a for all a = 1, 2, . . . , n where n is the
total number of particles involved in the process (incoming and outgoing
particles). More precisely,

iM =
Z n/2 G(n)(p1, . . . , pn)

G(2)(p1,−p1) · · ·G(2)(pn,−pn)

˛̨̨̨
˛
p2

a=m2
a

where
G(n)(x1, . . . , xn) = 〈0|T

˘bϕ(x1) · · · bϕ(xn)
¯
|0〉conn

and Z is the field renormalization constant which we will find later. At this
point, we do not worry about Z because, as we will see, we can give an
expression for iM without explicitly mention Z .



Cross Sections and Decay Rates

F In the previous result, connected means fully connected, that is, with no
vacuum bubbles and all the external legs connected to each other.

Amputated means that the full propagator is removed from the external legs.
This is accomplished by the propagators (G(2)) in the denominator of the
expression for iM.



Green’s Functions
(1/3)

F Let us define a functional

Z[J] ≡ N
Z
Dϕ exp

"
i
Z
L(ϕ) + J(x)ϕ(x)

#

that depends on a function J(x) called the source. By taking functional
derivatives of Z with respect to J(x), we get

1
in

δnZ[J]

δJ(x1) · · · δJ(xn)
= N

Z
Dϕϕ(x1) · · ·ϕ(xn) exp

"
i
Z
L(ϕ) + J(x)ϕ(x)

#

If now we make J = 0, we obtain:

1
in

δnZ[J]

δJ(x1) · · · δJ(xn)

˛̨̨̨
˛
J=0

= N
Z
Dϕϕ(x1) · · ·ϕ(xn) exp

"
i
Z
L(ϕ)

#
= 〈0|T

˘bϕ(x1) · · · bϕ(xn)
¯
|0〉

= G(n)(x1, . . . , xn)

where G(n)(x1, . . . , xn) is a Green’s function.



Green’s Functions
(2/3)

F Note that Z[J] is the generating functional of the Green’s functions
G(n)(x1, . . . , xn):

Z[J] =
∞X

n=0

in

n!

Z
x1

· · ·
Z

xn

G(n)(x1, . . . , xn) J(x1) · · · J(xn)

F Green’s functions in momentum space are defined by

eG(n)(p1, . . . , pn) (2π)4δ(p1 + · · ·+ pn) =

=

Z
x1

· · ·
Z

xn

G(n)(x1, . . . , xn) ei(p1·x1+···+pn·xn)



Green’s Functions
(3/3)

F By the definition of Z[J], Z[0] = 1.

F Also, note that since Z[0] = 〈0|0〉 = 1 which is consistent with a vacuum
state that is normalized to one.

F It is convenient to define
Z[J] ≡ 〈0|0〉J

as the vacuum-vacuum amplitude in presence of a source J(x).

F Similarly,

1
in

δnZ[J]

δJ(x1) · · · δJ(xn)
= N

Z
Dϕϕ(x1) · · ·ϕ(xn) exp

"
i
Z
L(ϕ) + J ϕ

#
≡ 〈0|T

˘bϕ(x1) · · · bϕ(xn)
¯
|0〉J

is the correlation function in the presence of a source J(x).



Connected Green’s Functions

F It is convenient to introduce a new functional:

i W [J] = logZ[J]

which is the generating functional of the connected Green’s functions, G(n):

i W [J] =
∞X

n=1

in

n!

Z
x1

· · ·
Z

xn

G(n)(x1, . . . , xn) J(x1) · · · J(xn)

G(n)(x1, . . . , xn) =
1
in

δn(i W [J])

δJ(x1) · · · δJ(xn)

˛̨̨̨
˛
J=0

F In momentum space:

eG(n)(p1, . . . , pn) (2π)4δ(p1+· · ·+pn) =

Z
x1

· · ·
Z

xn

G(n)(x1, . . . , xn) ei(p1·x1+···+pn·xn)

F It is convenient to introduce the notation:

G(n)(x1, . . . , xn) = 〈0|T {bϕ(x1) · · · bϕ(xn)}|0〉conn

F Note that W [J = 0] = 0 because Z[0] = 1.



Free Field Theory

F The Lagrangian for a free particle of mass m is

L =
1
2

(∂µϕ)(∂µϕ)− 1
2

m2ϕ2

The generating functional Z[J] is

Z[J] = N
Z
Dϕ exp

"
i
Z

1
2

(∂µϕ)(∂µϕ)− 1
2

m2ϕ2 + J ϕ

#

F The integrand is oscillatory. To solve this problem we introduce a factor
e−

R 1
2 ε ϕ

2
. Eventually we will take ε→ 0. The generating functional Z[J] is

Z[J] = N
Z
Dϕ exp

"
i
Z

x

1
2

(∂µϕ)(∂µϕ)− 1
2

(m2 − i ε)ϕ2 + J ϕ

#



Free Field Theory

F Introducing the Fourier transforms for ϕ and J, we can write

Z[J] = N
Z
Dφ exp

"
i
2

Z
k

eφ(k)(k2−m2+iε)2eφ(−k)

#
exp

"
− i

2

Z
k

eJ(k)eJ(−k)

k2 −m2 + iε

#

where we have defined

eφ(k) ≡ eϕ(k) +
eJ(k)

k2 −m2 + iε

F The condition Z[J = 0] = 1 gives

N−1 =

Z
Dφ exp

"
i
2

Z
k

eφ(k)(k2 −m2 + iε)2eφ(−k)

#

and

Z[J] = exp

"
− i

2

Z
k

eJ(k)eJ(−k)

k2 −m2 + iε

#



Free Field Theory

Trading eJ for J, we get

Z[J] = exp

"
− i

2

Z
x

Z
x′

J(x) D(x − x ′) J(x ′)

#

where

D(x − x ′) ≡
Z

k

e−ik(x−x′)

k2 −m2 + iε

F Note that the iε prescription is essential; otherwise the k integral would hit
a pole.



Free Field Theory

F The 2-point Green function is

G(2)(x1, x2) = 〈0|T
˘bϕ(x1)bϕ(x2)

¯
|0〉

=
1
i2

δ2Z[J]

δJ(x1)δJ(x2)

˛̨̨̨
˛
J=0

= i D(x1 − x2)

F We define the Feynman propagator as

DF (x1 − x2) ≡ i D(x1 − x2) =

Z
k

i e−ik(x1−x2)

k2 −m2 + iε

so that
G(2)(x1, x2) = 〈0|T

˘bϕ(x1)bϕ(x2)
¯
|0〉 = DF (x1 − x2)

F Physically, DF (x1 − x2) describes the amplitude for a disturbance in the
field to propagate from x1 to x2 (or from x2 to x1 depending on the time order).

G(2)(x1, x2) = x1 x2 = DF (x1 − x2)

1



Free Field Theory

F The 3-point Green function vanishes:

G(3)(x1, x2, x3) =
1
i3

δ3Z[J]

δJ(x1)δJ(x2)δJ(x3)

˛̨̨̨
˛
J=0

= 0

F The 4-point Green function is

G(4)(x1, x2, x3, x4) =
1
i4

δ4Z[J]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

˛̨̨̨
˛
J=0

=

DF (x1− x2) DF (x3− x4) + DF (x1− x3) DF (x2− x4) + DF (x1− x4) DF (x2− x3)

Diagrammatically:

G(4)(x1, x2, x3, x4) =

x3

x1

x4

x2

+

x2

x1

x4

x3

+

x2

x1

x3

x4

1



Free Field Theory
F Comments:

I Other functions can be computed in a similar way. However, it is more
convenient to use diagrams like the ones we have just seen. These
diagrams are called Feynman diagrams and with a set of simple rules
can be used to compute any Green function: 1) draw n-points, 2) join
them with lines (at most, one line per point) in all possible ways (each
one gives a diagram), 3) if one point is left alone, the diagram vanishes,
otherwise assign a Feynman propagator DF to each line that joins pairs
of points, and 4) summ all the possible diagrams.

I In general, for this theory, Green functions with an odd number of points
(particles) vanish. The technical reason has to do with Z[J] being a
function with 2 powers of J:

Z[J] = exp

"
− i

2

Z
x

Z
x′

J(x) D(x − x ′) J(x ′)

#
Then, only by taking an even number of derivatives of Z we get terms
independent of J which do not vanish at J = 0.

I We also observe that Green’s functions only depend on the coordinates
difference. This reflects the fact that the theory is invariant under
space-time translations.

I It is also interesting to note that Green’s functions G(n) with n > 2 are
disconnected.



Free Field Theory

F In momentum space,

eDF (k) =
i

k2 −m2 + iε

One can also easily find out that

eG(2)(p1, p2) (2π)4δ(p1 + p2) = eDF (p1) (2π)4δ(p1 + p2)

Since for the 2-point Green function always p1 = −p2, we can write

eG(2)(p,−p) = eDF (p)

Physically, eDF (p) describes the amplitude for a particle of mass m to
propagate with momentum p. Diagrammatically,

G̃(2)(p,−p) =
p

= D̃F (p)

1



Free Field Theory
F The generating functional of the connected Green’s functions is

i W [J] = logZ[J] = − i
2

Z
x

Z
x′

J(x) D(x − x ′) J(x ′)

It is then clear that the connected Green functions are:

G(2)(x1, x2) = DF (x1 − x2)

G(n)(x1, . . . , xn) = 0 for n > 2

Note that there is only one non-vanishing Green function and it is connected:

G(2)(x1, x2) = x1 x2 = DF (x1 − x2)

1

In momentum space eG(2)(p,−p) = eDF (p)

Diagrammatically

G̃(2)(p,−p) =
p

= D̃F (p)

1



Perturbation Theory

F Let us write the Lagrangian L(ϕ) for a field theory as

L(ϕ) = L0(ϕ) + Lint(ϕ)

where L0(ϕ) is the Lagrangian of the free theory and Lint(ϕ) describes the
interaction. Then,

Z[J] = N
Z
Dϕ exp

"
i
Z
L(ϕ) + J(x)ϕ(x)

#

= N exp

"
i
Z
Lint

„
1
i
δ

δJ

«#Z
Dϕ exp

"
i
Z
L0(ϕ) + J(x)ϕ(x)

#

= N ′ exp

"
i
Z
Lint

„
1
i
δ

δJ

«#
Z0[J]

where Z0[J] is the generating functional of the free theory and

N ′ = N/N0

where N0 is the normalization constant of the free theory generating
functional.



The ϕ4 Theory

F We will study a field theory described by the Lagrangian

L(ϕ) = L0(ϕ) + Lint(ϕ)

where L0(ϕ) is the Lagrangian of the free theory:

L0 =
1
2

(∂µϕ)(∂µϕ)− 1
2

m2ϕ2

and Lint(ϕ) describes the ϕ4 interaction:

Lint = − λ
4!
ϕ4

We know that for the free theory:

Z0[J] = exp

"
− i

2

Z
x

Z
x′

J(x) D(x − x ′) J(x ′)

#

Therefore ...



The ϕ4 Theory

... Therefore,

Z[J] = N ′ exp

"
i
Z
Lint

„
1
i
δ

δJ

«#
exp

"
− i

2

Z
x

Z
x′

J(x) D(x − x ′) J(x ′)

#

F At order λ:

Z[J] = N ′ exp

"
i
Z
Lint

„
1
i
δ

δJ

«#
Z0[J]

= N ′
(
Z0[J]− i λ

4!

Z
x

δ4Z0[J]

δJ(x)4 +O(λ2)

)

By computing the functional derivatives, ...



The ϕ4 Theory

..., we get

Z[J] = N ′ Z0[J]

(
1− i λ

4!

Z
x

»
3 (iD0)2 − 6 iD0 iDx1 iDx2 J1 J2 +

+ iDx1 iDx2 iDx3 iDx4 J1 J2 J3 J4

–
+O(λ2)

)

where

Jx = J(x)

Dxy = D(x − y)

D0 = D(0) = D(x − x)

and repeated indices indicates integration over the corresponding variables.



The ϕ4 Theory

F We determine the constant N ′ by imposing Z[J = 0] = 1. We get,

N ′ = 1 +
i λ
4!

Z
x

3 (iD0)2 +O(λ2)

Then

Z[J] = Z0[J]

(
1− i λ

4!

Z
x

»
− 6 iD0 iDx1 iDx2 J1 J2 +

+ iDx1 iDx2 iDx3 iDx4 J1 J2 J3 J4

–
+O(λ2)

)



The ϕ4 Theory

F The 2-point Green function is

G(2)(x1, x2) = 〈0|T
˘bϕ(x1)bϕ(x2)

¯
|0〉 =

1
i2

δ2Z[J]

δJ(x1)δJ(x2)

˛̨̨̨
˛
J=0

= DF (x1 − x2)− i λ
2

Z
x

DF (x1 − x) DF (x − x) DF (x − x2) +O(λ2)

Now we can use diagrams to represent this result.

A propagator,

x1 x2 DF (x1 − x2)

x −i λ

∫
d4x

1



The ϕ4 Theory

A “vertex”

x1 x2 DF (x1 − x2)

x −i λ

∫
d4x

1

Then we have

G(2)(x1, x2) = x1 x2 +
1

2
x1 x2

x
+ O(λ2)

1



The ϕ4 Theory
F The 4-point Green function is

G(4)(x1, x2, x3, x4) =
1
i4

δ4Z[J]

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

˛̨̨̨
˛
J=0

= 〈0|T
˘bϕ(x1)bϕ(x2)

¯
|0〉

can be computed in a similar way. With diagrams:

G(4)(x1, x2, x3, x4) =

=

x3

x1

x4

x2

+
1

2

x3

x1

x4

x2

+
1

2

x3

x1

x4

x2

+ (2↔ 3) + (2↔ 4) +

x3

x1

x4

x2

+ O(λ2)

1



The ϕ4 Theory

For instance,

x3

x1

x4

x2

= DF (x1−x2) (−iλ)

∫
d4x DF (x3−x) DF (x−x) DF (x−x4)

1

and

x3

x1

x4

x2

= (−iλ)

∫
d4x DF (x1−x) DF (x2−x) DF (x3−x) DF (x4−x)

1



The ϕ4 Theory
F The generating functional of the connected Green’s functions is

i W [J] = logZ[J]

Since,

Z[J] = Z0[J]

(
1− i λ

4!

Z
x

»
· · ·
–

+O(λ2)

)
and

Z0[J] = exp
»
− 1

2
iD12 J1 J2

–
we have,

i W [J] = −1
2

iD12 J1 J2 + log

(
1− i λ

4!

Z
x

»
· · ·
–

+O(λ2)

)
Using

log(1 + x) = x − x2

2
+

x3

3
+ · · ·

we get

i W [J] = −1
2

iD12 J1 J2

− i λ
4!

Z
x

»
− 6 iD0 iDx1 iDx2 J1 J2 + iDx1 iDx2 iDx3 iDx4 J1 J2 J3 J4

–
+O(λ2)



The ϕ4 Theory

and

i W [J] = −1
2

»
iD12 +

1
2

(−i λ)

Z
x

iD0 iDx1 iDx2 +O(λ2)

–
J1 J2

+
1
4!

»
(−i λ)

Z
x

iDx1 iDx2 iDx3 iDx4 +O(λ2)

–
J1 J2 J3 J4 +O(λ2)

Therefore,

G(2)(x1, x2) = DF (x1 − x2) +

+
1
2

(−iλ)

Z
x

DF (x1 − x) DF (x − x) DF (x1 − x2) +O(λ2)

and

G(4)(x1, x2, x3, x4) = (−iλ)

Z
x

DF (x1−x) DF (x2−x) DF (x3−x) DF (x4−x)+O(λ2)



The ϕ4 Theory

Diagrammatically,

G(2)(x1, x2) = x1 x2 +
1

2
x1 x2

x
+ O(λ2)

1

and

G(4)(x1, x2, x3, x4) =

x3

x1

x4

x2

+ O(λ2)

1



The ϕ4 Theory

F Comments.
I We observe that i W [J] only generates connected Green functions.
I Any other Green function can be computed in a similar way. For

instance,

x3

x2

x1

x6

x5

x4

=
1

2
(−iλ)3

∫

x

∫

y

∫

z

DF (x1 − y) DF (x2 − y) DF (x3 − y)

DF (y − x) DF (x− x) DF (x− z)

DF (z−x4) DF (z−x5) DF (z−x6)

1

I The symmetry factor is in general the number of ways of interchanging
components without changing the diagram. One rarely has to compute a
symmetry factor larger that 2.



The ϕ4 Theory
F In momentum space, it is not difficult to find out

eG(2)(p,−p) = eDF (p) + (−i λ)
1
2
eDF (p) eDF (p)

Z
k

eDF (k) +O(λ2)

which diagrammatically can be expressed as

G̃(2)(p,−p) =
p

+
pp

k

+ O(λ2)

1

This result tell us how to write the propagator of the full theory (with
interaction) in terms of the free theory propagator.

Notation for the full propagator the full theory propagator:

eD(p) ≡ eG(2)(p,−p)

We can similarly define the full propagator in position space:

D(x1 − x2) ≡ G(2)(x1, x2)



The ϕ4 Theory
F We can deduce the following Feynman rules:

1. Draw all possible diagrams.
2. Label each line with a momentum.
3. Momentum is conserved at each vertex.
4. Momenta associated with internal lines are to be integrated over with the

measure Z
d4p

(2π)4 .

5. Find out the symmetry factor.
6. Propagator:

p i

p2 −m2 + i ε

−i λ

1

7. Vertex:

p−→ i

p2 −m2 + i ε

−i λ

1



The ϕ4 Theory

F Now we can use diagrams to compute other Green functions. For
instance, the 4-particle connected Green function at order λ is

G̃(4)(p1, p2, p3, p4) =

p1

p2

p3

p4

+ O(λ2)

1

which gives

eG(4)(p1, p2, p3, p4) = (−i λ)
i

p2
1 −m2 + i ε

i
p2

2 −m2 + i ε
i

p2
3 −m2 + i ε

i
p2

4 −m2 + i ε

with p1 + p2 + p3 + p4 = 0.



The ϕ4 Theory

F Another example. The following diagram contributes to eG(2)(p,−p) at
order λ2:

p

k

q

rp

1

Note that r = p + k + q. We obtain,

1
6

(−i λ)2
„

i
p2 −m2 + iε

«2

Z
k

Z
q

i
k2 −m2 + i ε

i
q2 −m2 + i ε

i
(p + k + q)2 −m2 + i ε



The ϕ4 Theory

F Diagrams without loops such as

1

are called tree diagrams. Calculations which are performed by considering
only tree diagrams are tree-order calculations.

These calculations are important because it can be shown (by carefully
inserting the factors of ~) that a diagram with L loops is of order ~L. Therfore,
a tree-order calculation is a calculation where the quantum corrections are
ignored.



The ϕ4 Theory

F Notation Comments.
I From now on, we drop the tilde-symbole for Green functions (and

propagators) in momentum space. Usually it is clear from the context
which kind of Green function we are referring to.

I Also, we will use an alternative notation for the free (Feynman)
propagator DF by defining

∆(p) ≡ DF (p) =
i

p2 −m2 + iε



1PI Diagrams and The Full Propagator

F The diagrams that cannot be disconnected by cutting an internal line are
called One Particle Irreducible (1PI) diagrams. These diagrams are special
because any other diagram (connected or disconnected) can be constructed
out of 1PI diagrams. This is a rather intuitive observation, but can be
formulated in more precise terms.

F Let us denote by Γ
(2)
1PI the sum of all 1PI Feynman diagrams with 2 external

lines. Then, the full propagator can written as

D = ∆ + ∆ Γ
(2)
1PI + ∆ Γ

(2)
1PI ∆ Γ

(2)
1PI + · · ·

=
∆

1− Γ
(2)
1PI ∆

Therefore,
D−1 = ∆−1 − Γ

(2)
1PI

This expression shows how to write the full propagator in terms of 1PI
diagrams.



1PI Diagrams and The Full Propagator

F For the ϕ4 theory, we can write diagrammatically

D−1(p) = −i (p2 −m2)−
pp

1PI

1

where the blob represents the sum of all 1PI Feynman diagrams with 2
external lines.

F By construction, 1PI diagrams do not have propagators on the external
lines.



1PI Diagrams and The Full Propagator

These are 1PI diagrams:

1

But this diagram is not 1PI:

1

because it can be disconnected by cutting an internal line.
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Divergences
F Let us study the following diagram for the ϕ4 theory:

k

p1 + p2 − k
p1

p2

p3

p4

1

contributes to G(4) at order λ2. Applying the Feynman rules we obtain:

f (P2) =
1
2

(−iλ)2
Z

d4k
(2π)4

i
k2 −m2 + iε

i
(P + k)2 −m2 + iε

where P = p1 + p2. For large k , it goes like

f ∼
Z ∞ k3dk

k4 ∼
Z ∞ dk

k

which diverges logarithmically.



Divergences

F It is pretty common to find out divergent Feynman diagrams. For instance,
these diagrams are quadratically divergent:

1

For the first diagram we have 1 integration and 1 internal line which givesZ ∞ k3dk
k2 ∼

Z ∞
k dk

For the second diagram we have 2 integrals an 3 internal lines which giveZ ∞ k7dk
(k2)3 ∼

Z ∞
k dk



Divergences

F In general, the (superficial) degree of divergence D is

D = 4 L− 2 I

where L is the number of integrals (loops) and I is the number of propagators
(internal lines). For the ϕ4 theory

4 V = E + 2 I

where E is the number of external lines.

F A general (not only for ϕ4) relation between the number of loops, internal
lines, and vertices:

L = I − V + 1



Divergences

F Using these expressions, the superficial degree of divergence:

D = 4− E

For the ϕ4 theory the superficial degree of divergence only depends on the
number of external lines.

The 2-point diagrams are quadratically divergent (D = 2) and the 4-point
diagrams are logarithmically divergent (D = 0). Diagrams with D < 0 are
(superficially) convergent.

F For obvious reasons, diagrams that diverge at large momentum (short
distance) are called ultraviolet divergent diagrams.



Regularization

F Ultraviolet divergences, apart from being a technical annoyance, have a
profound physical meaning. When we compute a Feynman integral in the
large momentum limit, we are assuming that our theory describes the short
distance physics correctly.

Let us consider QED, the quantum theory of electromagnetism. We know
that QED describes the physics of the atom so it is valid at distances of the
order of atomic size; when we take the large momentum limit in Feynman
integral we are saying that it also describes the interactions of charged
particles at arbitrary small distances. However, we know that at short
distance (roughly ∼ 1/MW ) the weak interaction becomes important, even
stronger than QED, and at even smaller distances, gravitation overpowers all
the other interactions.



Regularization

F The modern point of view is that quantum field theory is an effective low
energy theory of a theory we do not yet know (string theory?) which should
be valid up to some energy (momentum) scale Λ. Any physically sensible
theory should have an implicit Λ.

Then, Feynman integrals with Z
d4p

(2π)4

should be integrated only up to Λ, which is known as the cutoff. Then, we say
that the integral has been “regularized”.

F Other regulators: Dimensional regularization, etc.



The Essence of Renormalization

F Let us compute the 2-particle scattering amplitude of the ϕ4 theory up to
order λ2. Two particles with momentum p1 an p2 collide producing two
particles with momentum p3 an p4.

F The tree order contribution is:

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

1

which simply gives (−iλ).



The Essence of Renormalization

The one-loop diagrams:
p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

1

are identical except for the external momenta and are given by

f (P2) =
1
2

(−iλ)2
Z

d4k
(2π)4

i
k2 −m2 + iε

i
(P + k)2 −m2 + iε

with P = p1 + p2, P = p1 − p3, and P = p1 − p4, respectively. Using an
ultraviolet cutoff, we can show that

f (P2) = i λ2 1
32π2 log

Λ2

P2



The Essence of Renormalization

F It is convenient to define the kinematic (Mandelstam) variables:

s = (p1 + p2)2

t = (p1 − p3)2

u = (p1 − p4)2

These variables satisfy the relation:

s + t + u = 4 m2

Writing out the pi ’s in the center-of-mass frame, we can see that s, t , and u
are related to “rather mundane quantities” such as the center-of-mass energy
E and scattering angle θ:

s = 4 E2

t = −2 |~k |2 (1− cos θ)

t = −2 |~k |2 (1 + cos θ)

where |~k | is the center-of-mass momenta of the incident and scattered
particles: E2 = |~k |2 + m2.



The Essence of Renormalization

F In terms of the Mandelstam variables, the scattering amplitudeM of 2
particles for the ϕ4 theory up to order λ2 is

iM = −i λ+ f (s) + f (t) + f (u) +O(λ3)

= −i λ+ i λ2 1
32π2

„
log

Λ2

s
+ log

Λ2

t
+ log

Λ2

u

«
+O(λ3)

This expression tells us the scattering amplitude in terms of the scattering
parameters s, t , and u.

F In an experiment we can measure s, t , u, andM but, what is the coupling
constant λ? Actually, λ cannot be measure, it is a parameter of the
Lagrangian. Also, what about the cutoff Λ? What is the use of this formula if
we cannot measure either λ or Λ?



The Essence of Renormalization

F We have to think more carefully. Imagine that that we have performed an
experiment and found out that at some known values s0, t0, u0, the scattering
amplitudeM has a value that (for the sake of the explanation) we will denote
as −λR . If we now put these values in our formula, we obtain

−i λR = −i λ+ i λ2 1
32π2

„
log

Λ2

s0
+ log

Λ2

t0
+ log

Λ2

u0

«
+O(λ3)

Now, we can use this equation to eliminate λ in favor of λR (the experimental
valueM at s0, t0, and u0):

λ = λR + λ2
R

1
32π2

„
log

Λ2

s0
+ log

Λ2

t0
+ log

Λ2

u0

«
+O(λ3

R)

and the amplitude is

iM = −i λR − i λ2
R

1
32π2

„
log

Λ2

s0
+ log

Λ2

t0
+ log

Λ2

u0

«
+ i λ2

R
1

32π2

„
log

Λ2

s
+ log

Λ2

t
+ log

Λ2

u

«
+O(λ3

R)

which can be simplified to get ...



The Essence of Renormalization

...

iM = −i λR + i λ2
R

1
32π2

„
log

s0

s
+ log

t0
t

+ log
u0

u

«
+O(λ3

R)

Lo and behold!. The cutoff vanishes!! This expression gives the scattering
amplitude at any values of the scattering parameters (s, t , and u) in terms of
physical quantities s0, t0, u0, and λR . Note that the experimental valueM at
s0, t0, and u0, namely λR , plays the role of the coupling constant.



The Essence of Renormalization

F λR is called the renormalized coupling constant. Actually, λR is not
constant. If we measure the scattering amplitude at some other values s′0, t ′0,
and u′0, we would get a different value; let us call this value −λ′R .

iM = −i λ′R + i λ′2R
1

32π2

„
log

s′0
s

+ log
t ′0
t

+ log
u′0
u

«
+O(λ′3R )

The same formula with different values for the coupling constant and the
scattering parameters used to measure it, but it gives the sameM.



The Essence of Renormalization

F The physical coupling constant λR is a function of s0, t0, and u0. For
theoretical purposes it is much less cumbersome to set s0, t0, and u0 equal to
µ2 an thus use, the simpler definition

−i λR(µ) = −i λ+ i λ2 3
32π2 log

Λ2

µ2 +O(λ3)

This is purely for theoretical convenience. In fact, since s0, t0, and u0 have to
satisfy s0 + t0 + u0 = 4m2, the kinematic point s0 = t0 = u0 = µ2 cannot be
reached experimentally. Then, the scattering amplitude can be written as

iM = −i λR(µ) + i λ2
R(µ)

1
32π2

„
log

µ2

s
+ log

µ2

t
+ log

µ2

u

«
+O(λ3

R(µ))



Counterterms and Renormalized Perturbation Theory

F The inverse full ϕ propagator is

D−1(p) = −i (p2 −m2)− Γ
(2)
1PI

The two diagrams that contribute to Γ
(2)
1PI up to order λ2 are

1



Counterterms and Renormalized Perturbation Theory

F The first diagram:

pp

k

1

gives

I1 =
1
2

(−i λ)

Z
k

i
k2 −m2 + i ε

We see that I1 is independent of p and it depends quadratically on the cutoff
Λ:

I1 ∼
Z Λ d4k

k2 ∼ Λ2



Counterterms and Renormalized Perturbation Theory

F The second diagram:

p

k

q

rp

1

with r = p + k + q, gives

I2 =
1
6

(−i λ)2
Z

k

Z
q

i
k2 −m2 + i ε

i
q2 −m2 + i ε

i
(p + k + q)2 −m2 + i ε



Counterterms and Renormalized Perturbation Theory
F By Lorentz invariance I2 is a function of p2 that can be expand in powers of
p2:

I2 = D + E p2 + F p4 + · · ·

F D is obtained by taking p = 0 and we can see that it depends quadratically
on the cutoff Λ:

D ∼
Z Λ d8K

K 6 ∼ Λ2

F E is obtained by differentiating I2 with respect to p twice and setting p = 0.
Each derivative decreases a power of k and q in the integrand and so E
depends logarithmically on the cutoff Λ:

E ∼
Z Λ d8K

K 8 ∼ log Λ

F F is obtained similarly by differentiating I2 with respect to p four times and
setting p = 0. The integral

F ∼
Z Λ d8K

K 10 ∼
1

Λ2

is convergent (we can safely take Λ→∞) and therefore cutoff independent.
Similarly the rest of the terms (+ · · · ) are cutoff independent and we do not
have to worry about them.



Counterterms and Renormalized Perturbation Theory

F Then summing I1 and I2, the inverse propagator up to order k2 has the
form:

D−1(p) = −i (p2 −m2 + a + b p2)

where is a is quadratically divergent and b is logarithmically divergent. The
full propagator (up to an iε term)

D(p) =
i

(1 + b) p2 − (m2 − a)
=

i 1
1+b

p2 − m2−a
1+b

has the pole in p2 shifted to

m2
R ≡

m2 − a
1 + b

which we identify as the renormalized (“physical”) mass. Quantum
fluctuations have shifted the mass.



Counterterms and Renormalized Perturbation Theory

F The pole (up to a factor i) in the full propagator is no longer 1 but

Z ≡ 1
1 + b

To understand this shift in the residue, recall that the coefficient of p2 in the
propagator is 1 because (for no better choice) we took the coefficient of
1
2 (∂ϕ)2 in the Lagrangian equal to 1. However, we have seen that quantum
fluctuations have shifted this “normalization” of the field to 1/(1 + b). For
historical reasons this is known as “wave function renormalization” although
there is no wave function anywhere; the modern term is field renormalization.



Counterterms and Renormalized Perturbation Theory

F What we have been doing so far is known as bare perturbation theory. We
may have put the subscript 0 on what we have been calling ϕ, m, and λ. The
field ϕ0 is known as the bare field, and m0 and λ0 are known as the bare
mass and bare coupling respectively. Then, the Lagrangian of th ϕ4 theory
should have been written as

L =
1
2

(∂ϕ0)2 − 1
2

m2
0 ϕ

2
0 −

λ0

4!
ϕ4

0



Counterterms and Renormalized Perturbation Theory
F In the light of our discussion it seems a little awkward to work with bare
quantities all the time in order for at the end of the day exchange them for
renormalized ones. Wouldnt it be better to write the theory in terms of
renormalized quantities?

F If we define the renormalized field ϕR , using the field renormalization
constant Z , as

ϕ0 ≡ Z 1/2 ϕR

we get a Lagrangian for ϕR :

L =
1
2

Z (∂ϕR)2 − 1
2

m2
0 Z ϕ2

R −
λ0

4!
Z 2 ϕ4

R

F If we now repeat the previous calculation for the full ϕR propagator we
would get

i
p2 − (m2

0 − a)Z

whose residue is 1. In terms of m2
R = (m2

0 − a)Z instead of m0, the full
propagator (in the approximation we used) is

i
p2 −m2

R

and ...



Counterterms and Renormalized Perturbation Theory
... L becomes

L =
1
2

Z (∂ϕR)2 − 1
2

m2
R ϕ

2
R −

λ0

4!
Z 2 ϕ4

R −

− 1
2
δm ϕ

2
R

with δm ≡ aZ . Note that the “trick” that makes up the mass term is nothing
but writing

m2
0 Z = m2

R + δm

If we do the same for the coupling term by writing

λ0 Z 2 = λR + δλ

the Lagrangian becomes

L =
1
2

Z (∂ϕR)2 − 1
2

m2
R ϕ

2
R −

λR

4!
ϕ4

R −

− 1
2
δm ϕ

2
R −

δλ
4!
ϕ4

R

and if we now define
Z = 1 + δZ

we get ...



Counterterms and Renormalized Perturbation Theory

...

L =
1
2

(∂ϕ)2 − 1
2

m2 ϕ2 − λ

4!
ϕ4 +

+
1
2
δZ (∂ϕ)2 − 1

2
δm ϕ

2 − δλ
4!
ϕ4

where I have drop the subscript R from the renormalized quantities.

F Note that now the Lagrangian is written in terms of renormalized quantities
at the price of having three additional terms called counterterms that have to
be determined iteratively in order to renormalize the theory.



Counterterms and Renormalized Perturbation Theory

The Feynman rules for ϕ4 in renormalized perturbation theory are:
I Propagator:

p i

p2 −m2 + i ε

−i λ

1

I Vertex:

p−→ i

p2 −m2 + i ε

−i λ

1

I Counterterms:

p i

p2 −m2 + i ε

−i λ

pp ⊗
i (p2 δZ − δm)

⊗ −i δλ

1

p i

p2 −m2 + i ε

−i λ

pp ⊗
i (p2 δZ − δm)

⊗ −i δλ

1



Counterterms and Renormalized Perturbation Theory

F Sometimes it is convenient to use other renormalization constants different
from the counterterms.

F The expression that relates the bare field with the renormalized field,
ϕ0 = Z 1/2ϕ, gives a relation for the Green functions of ϕ0 and ϕ. For
instance,

G(n)
0 = Z n/2 G(n)

F The amplitude is

iM =
G(n)(p1, . . . , pn)

G(2)(p1,−p1) · · ·G(2)(pn,−pn)

˛̨̨̨
˛
p2

a=m2
a

in terms of the renormalized Green functions (the field renormalization
constant Z has disappeared). Therefore, we conclude that the amplitude is
given by the sum of all connected, amputated diagrams for the renormalized
field with on-shell external momenta.



The Renormalization Group Equation
F We found the scattering amplitude of two particles in the ϕ4 theory

iM = −i λ(µ) + i
1

32π2 λ
2(µ)

„
log

µ2

s
+ log

µ2

t
+ log

µ2

u

«
+O(λ3(µ))

in terms of an energy scale and the renormalized coupling at such scale.

F What is the physical meaning of λ(µ)?

λ(µ) is particularly convenient for studying the physics in the regime in which
the kinematic parameters s, t , and u are all of order µ2. Then the scattering
amplitude is given by −iλ(µ) plus small logarithmic corrections.

In contrast, if we use the coupling constant λ(µ′) while exploring the physics
in the regime with s, t , and u of order µ2, with µ vastly different from µ′, then
we will have a scattering amplitude

iM = −i λ(µ′) + i
1

32π2 λ
2(µ′)

„
log

µ′2

s
+ log

µ′2

t
+ log

µ′2

u

«
+O(λ3(µ′))

in which the second term (with log(µ′2/µ2) large) can be comparable to or
larger than the first term. Thus, for each energy scale µ there is an
appropriate coupling constant λ(µ).



The Renormalization Group Equation
F Subtracting these two expressions we can easily relate λ(µ) and λ(µ′) for
µ ∼ µ′:

λ(µ′) = λ(µ) +
3

32π2 λ
2(µ) log

µ′2

µ2 +O(λ3(µ)) (1)

We can express this as a differential “flow equation”

µ
d
dµ

λ(µ) =
3

16π2 λ
2(µ) +O(λ3(µ))

The description of how λ(µ) changes with µ is known as the renormalization
group.

Note that since the constant in front of λ2 is positive, then the coupling λ(µ)
increases as µ increases (λ flows away from the origin) . If the constant in
front of λ2 had been negative, then the coupling λ(µ) would have decreased
as µ increases.

F In general, in a quantum field theory with a coupling constant g, we have
the renormalization group flow equation

µ
dg
dµ

= β(g) (2)
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Lorentz Invariance: Fermions and Vectors

F Lorentz invariance guarantees that laws of physics are the same
in all inertial frames. This the (special) relativity principle.

So, we are interested in Lorentz invariant field theories. The
Lagrangian is a scalar (no “free” Lorentz indices).



Lorentz Invariance: Fermions and Vectors

F Fields can be classified according to the way they transform under Lorentz
transformations. There are two kinds of Lorentz transformations: rotations
and boosts. Spin has to do with rotations.

Classification:

(0, 0)→ scalar

(1/2, 0)→ Weyl spinor (left, conventional)

(0, 1/2)→ Weyl spinor (right, conventional)

(1/2, 0)⊕ (0, 1/2)→ Dirac spinor

(1/2, 0)⊗ (0, 1/2) = (1/2, 1/2)→ Vector field

(0, 1)⊕ (1, 0)→ Fµν

F Under a Lorentz transformation:

scalar (spin 0): ϕ→ ϕ

vector (spin 1): Vµ → Λµν V ν

spinor (spin 1/2): ψ → Sψ with SγµS−1 = Λµνγ
ν



Fermions: Quantization

F A free spin 1/2 fermion of mass is described by the Lagrangian

L = ψ̄ (i γµ∂µ −m)ψ

A few comments:
I ψ is a 4-component spinor.
I γµ’s are 4× 4 matrices (known as Dirac’s gamma matrices) that satisfy

{γµ, γν} = 2 ηνν

where ηµν is the Minkowski metric.
I ψ̄ = ψ†γ0. The reason for using ψ̄ instead of ψ† is that, for instance, ψ̄ψ

is a Lorentz scalar, but ψ†ψ is not.
I Feynman “slash” notation: /a ≡ γµaµ.



Fermions: Quantization

F Quantization. The generating functional of the Green functions for a free
fermion of spin 1/2 and mass m:

Z [η, η̄] =

Z
DψDψ̄ exp

» Z
x
ψ̄ (i /∂ −m)ψ + η̄ψ + ψ̄η

–

I Here ψ and ψ̄ (and also the sources η and η̄) are Grassmann functions.

Two Grassmann numbers do not commute with each other, instead:

ηξ = −ξη

This property gives rise to “curious” expressions. For instance, η2 = 0
and the Taylor expansion of a function of a Grassmann variable is simply
f (η) = a + b η.



Fermions: Quantization

I The reason why we have to use Grassmann functions instead of
ordinary commuting functions in the path integral for fermions can be
traced back to the spin-statistics connection.

As we know, the Pauli exclusion principle says that bosons obey
Bose-Einstein statistics and fermions obey Fermi-Dirac statistics. In
short, when canonically quantizing a system (bosons or fermions), the
spin-statistics connection makes the creation and destruction operators
to commute or anticommute for bosons or fermions respectively.



Fermions: Quantization
F Integrating out over ψ and ψ̄, we get

Z[η, η̄] = exp

"
− i

Z
x

Z
x′
η̄(x) S(x − x ′) η(x)

#
The Feynman propagator is

SF (x − x ′) = i S(x − x ′) =

Z
k

i e−ik(x−x′)

/k −m + iε

In momentum space:

SF (k) =
i

/k −m + iε
The Feynman rule for the propagator is:

p−→ i

/p−m + i ε
=

i (/p + m)

p2 −m2 + i ε

p←− i

−/p−m + i ε
=
−i (/p−m)

p2 −m2 + i ε

1

p−→ i

/p−m + i ε
=

i (/p + m)

p2 −m2 + i ε

p←− i

−/p−m + i ε
=
−i (/p−m)

p2 −m2 + i ε

1

Note that the sign of p changes with the direction of the arrow.



Fermions: Quantization

F Let us consider a simple theory with a spin 0 boson ϕ of mass Mu and a
fermion ψ of mass m with Yukawa coupling g ϕ ψ̄ψ:

L =
1
2

(∂µϕ)(∂µϕ)− 1
2

M2ϕ2 + ψ̄ (i /∂ −m)ψ + g ϕ ψ̄ψ

In addition to the usual Feynman rules for the propagators, we also have a
Feynman rule for the vertex:

i g

1



Fermions: Quantization
For example we can compute the lowest order correction to the propagator
(also known a self-energy) given by the diagram:

p−→

k

p+k−−→

p−→

1

which gives

(ig)2
Z

k

i
k2 −M2 + iε

i(/p + /k + m)

(p + k)2 −m2 + iε

Note that this quantity is a matrix, so it cant be an amplitude. What’s missing?

We need a row vector on the left and a column vector on the right. So we
have to introduce a new Feynman rules that says that for an incoming
fermion we write a factor us(p) and for an outgoing fermion ūs(p):

ūs(p)

»
(ig)2

Z
k

i
k2 −M2 + iε

i(/p + /k + m)

(p + k)2 −m2 + iε

–
us(p)

is the contribution to the amplitude.



Fermions: Quantization

F us(p) and ūs(p) = [us(p)]†γ0 are Dirac spinors with 4 components. For
antifermions we need two spinors: v s(p) and v̄ s(p). Here p is the momentum
of the particle and s a label for the z-component of spin. For spin 1/2
particles, s = +,− or s = 1, 2.

These spinor satisfy the following relations:

(/p −m) us(p) = 0 ūs(p) (/p −m) = 0

(/p + m) v s(p) = 0 v̄ s(p) (/p + m) = 0

Also, with a conventional spinor normalization:

ūr (p) us(p) = 2m δrs

v̄ r (p) v s(p) = −2m δrsX
s

us(p) ūs(p) = /p + mX
s

v s(p) v̄ s(p) = /p −m



Quantum Electrodynamics (QED)

F Maxwell’s equation can be deduced (using the Euler-Lagrange equations)
from

LEM = −1
4

FµνFµν

where
Fµν = ∂µAν − ∂νAµ

and Aµ(x) is the vector potential.
Note that the field Aµ associated with the photon is a massless vector. There
is no mass-term in the Lagrangian. This is consistent with experiment but
from the mathematical point of view this also leads to unnecessary
complications (at this stage).

So, to derive a Feynman rule for the photon we adopt a pragmatic
attitude by letting the photon have a finite (however small) mass mγ

an setting mγ = 0 at the end of the day.

We then add a photon mass term to the Lagrangian:

L′EM = −1
4

FµνFµν +
1
2

m2
γ AµAµ



Quantum Electrodynamics (QED)
F The generating functional is

Z[J] =

Z
DAµ exp

"
i
Z

x
L′EM + AµJµ

#
with the source Jµ(x) a vector. Performing the functional integral,

Z[J] = exp

"
i
2

Z
x

Z ′
x

Jµ(x) Dµν(x − x ′) Jν(x ′)

#
where

Dµν(x − x ′) =

Z
k

Dµν(k) eik(x−x′)

with

Dµν(k) =
kµkν/m2

γ − ηµν
k2 −m2

γ + iε
The Feynman propagator is

DF
µν(k) = i Dµν(k) =

i(kµkν/m2
γ − ηµν)

k2 −m2
γ + iε

whose Feynman rule is

k
µ ν

i(kµkν/m
2
γ − ηµν)

k2 −m2
γ + iε

1



Quantum Electrodynamics (QED)

F Now let’s couple the photon to an electron with a term e Aµ ψ̄γµψ, where e
is the coupling constant. The Lagrangian

L′QED = ψ̄
h
i γµ(∂µ − i e Aµ)−m

i
ψ − 1

4
FµνFµν +

1
2

m2
γ AµAµ

describes (modulo the photon mass term) the quantum theory of
electromagnetism (QED).

The Feynman rule for the vertex is

β α

µ

i e (γµ)αβ

1

where we have explicitly showed the γ-matrix elements.



Quantum Electrodynamics (QED)

It can be showed that in actual amplitude calculations, the photon
mass part in the photon propagator (kµkν/m2

γ) goes away and we
can set mγ = 0.

Then, the propagator can be written as −iηµν/(k2 + iε).

But, since we can discard the kµkν/m2
γ term, we can also add in a kµkν/k2

term with an arbitrary coefficient. Thus, for the photon propagator we can use

p
µ ν

i

p2 + iε

[
(1− ξ)

pµpν

p2
− ηµν

]

1

where we can choose the number ξ to simplify our calculation as much as
possible.

The choice of ξ amounts to a choice of gauge for the electromagnetic field.
The choice ξ = 1 is known as the Feynman gauge, and the choice ξ = 0 is
the Landau gauge. The end result must not depend on ξ.



Quantum Electrodynamics (QED)

The pµpν term in the propagator can be obtained by adding a term

Lgf = − 1
2ξ

(∂µAµ)2

in the Lagrangian which is known as the gauge fixing term.

F Summary. The QED Lagrangian:

LQED = ψ̄
h
i γµ(∂µ − i e Aµ)−m

i
ψ − 1

4
FµνFµν − 1

2ξ
(∂µAµ)2

External lines are amputated. For an incoming fermion line write us(p) and
for an outgoing fermion line write ūs(p). For antifermions we need v s(p) and
v̄ s(p).

A factor (−1) has to be associated with each closed fermion line.



Quantum Electrodynamics (QED)
Photon Propagator:

p
µ ν

i

p2 + iε

[
(1− ξ)

pµpν

p2
− ηµν

]

1

Electron Propagator:

p−→ i

/p−m + i ε
=

i (/p + m)

p2 −m2 + i ε

p←− i

−/p−m + i ε
=
−i (/p−m)

p2 −m2 + i ε

1

Electron Vertex:

β α

µ

i e (γµ)αβ

1



Gauge Symmetry
The QED Lagrangian can be written (dropping the gauge fixing term)

LQED = ψ̄ (i /D −m)ψ − 1
4

FµνFµν

where we have introduced the covariant derivative

Dµ ≡ ∂µ − i e Aµ

This theory is invariant under the following transformations:

ψ(x)→ ei α(x) ψ(x) (local phase transformation)

Aµ(x)→ Aµ(x)− 1
e
∂µα(x)

This is a gauge transformation of the fields.

F The transformation law for Aµ can be obtained by requiring the covariant
derivative of ψ to transform in exactly the same way as ψ under local phase
transformations.

Even more, starting from ψ̄ (i γµ∂µ −m)ψ we can see that LQED is the only
way of constructing a Lagrangian invariant under local phase transformations
of ψ.



Gauge Symmetry
F Let’s pose the same question for a collection of fermions: What is the field
theory made out of a collection of fermions ψi (each with 4 components) that
is invariant under local phase transformations of the fields? The answer goes
as follows. Let’s denote the collection of fields in a column vector as

ψ =

0B@ψ1

ψ2
...

1CA
Then, it is possible to construct an invariant Lagrangian which has the form

L = ψ̄ (i /D −m)ψ − 1
4

F a
µνFµνa

There is an implicit sum over index a. Note that this Lagrangian looks a lot
like LQED, but

Dµ = ∂µ + i g Aa
µ(x) ta

F a
µν = ∂µAa

ν − ∂µAa
ν + g f abc Ab

µAc
ν

with some fields Aa
µ(x) analogous to QED’s Aµ, a constant g analogous to e

(the different sign is conventional), some matrices ta, and some constants
f abc .



Gauge Symmetry

There is a relation between the ta’s and the f abc ’s:

[ta, tb] = i f abc

This equation tells us that the ta’s are the generators of a Lie algebra.

Therefore, a runs from 1 to the number of generators of the algebra. A Lie
group can be constructed from the Lie algebra (the elements of the group
have the form eiα(x)a ta

).

The ta’s are realized in different representations with different dimensions; in
general, the ta’s are matrices of dimension equal to the dimension of the
representation. Since the ta’s act on the ψ fields; the number of components
of these equals the dimension of the representation. We say that that the
field is in such or such representation.



Gauge Symmetry

F The Lagrangian

L = ψ̄ (i /D −m)ψ − 1
4

F a
µνFµνa

is a non-Abelian gauge theory that describes a fermion of mass m in some
representation of the Lie algebra (group) whose interaction is mediated by a
gauge field Aµ ≡ Aa

µta.

F QED is an Abelian gauge theory. The generator is just 1.

F As in QED we have to add a gauge fixing term.



Quantum Chromodynamics (QCD)

F Quantum Chromodynamics (QCD) is the field theory that describes the
strong interaction.

F The gauge group is SU(3); there are 32 − 1 = 8 generators and, therefore,
a = 1, . . . , 8.

F Quarks are in the fundamental representation (3); then, i = 1, 2, 3 (which
correspond with “colors”: red, green, and blue respectively, for example).
Antiquarks are the 3̄ representation.

F There are 6 flavors (u, d), (c, s), (t , b).

F The Lagrangian of QCD:

LQCD = −1
4

F a
µνFµνa +

6X
f =1

ψ̄f (i /D −mf )ψf



Quantum Chromodynamics (QCD)
Gluon propagator:

p
b, ν a, µ

iδab

p2 + iε

[
(1− ξ)

pµpν

p2
− ηµν

]

1

Quark propagator:

p−→
β, j α, i

iδij(/p + m)αβ

p2 −m2 + iε

1

Quark-Gluon-Quark vertex:

β, j α, i

µ, a

i g (γµ)αβ (ta)ij

1



Quantum Chromodynamics (QCD)

3-Gluon vertex:

↓ k
p−→ q←−

µ, a

ν, b ρ, c

gfabc
[
ηµν(k−p)ρ+ηνρ(p−q)µ+ηρµ(q−k)ν

]

1

4-Gluon vertex:

µ, a ν, b

ρ, c σ, d

−ig2[fabef cde(ηµρηνσ − ηµσηνρ)
+facef bde(ηµνηρσ − ηµσηνρ)
+fadef bce(ηµνηρσ − ηµρηνσ)]

1



Quantum Chromodynamics (QCD)

Ghost Propagator:

p−→
b a

−iδab

p2 + iε

1

Ghost-Gluon-Ghost Vertex:

p−→

µ, b

c a

−g fabc pµ

1



Outline

Introduction

Quantization in Quantum Mechanics

Scalar Field Theory

Renormalization

Fermions and Gauge Theories

Spontaneous Symmetry Breaking and The Higgs Mechanism



Spontaneous Symmetry Breaking

F Weak interaction is mediated by massive vector (spin 1) bosons.

A mass term for a gauge field breaks gauge symmetry:

Aa
µAµa → Aa

µAµa +
2
g

(∂µαa) Aµa +
1
g2 (∂µαa) (∂µαa)

6= Aa
µAµa

How can we construct a gauge theory with a massive gauge field?

We will answer this question for gauge theories with a scalar that
spontaneously breaks gauge symmetry.

But for the moment, let’s just study a few non-gauge scalar theories.



Spontaneous Symmetry Breaking

F A “baby” model:

L(ϕ) =
1
2

(∂µϕ)(∂µϕ) +
1
2
µ2 ϕ2 − λ

4
ϕ4

This Lagrangian is symmetric under the ϕ→ −ϕ transformation.

This example shows the basic idea behind generating mass terms by
spontaneously breaking a symmetry.

If µ2 < 0 or the sign in front the ϕ2-term was “−” instead of “+”, this
Lagrangian would describe a scalar particle of mass µ. But with “+” and
µ2 > 0, the ϕ2-term isn’t a mass term anymore.



Spontaneous Symmetry Breaking
The Lagrangian describes a system with potential:

V (ϕ) = −1
2
µ2 ϕ2 +

λ

4
ϕ4

Chapter 5

The Standard Model

5.1 Spontaneous Symmetry Breaking

! The weak interaction is mediated by massive vector (spin 1) bosons. However, a
mass term for a gauge field breaks gauge symmetry (I write the exact result, it is not
an approximation for small α):

Aa
µA

µ
a → Aa

µA
µ
a +

2

g
(∂µαa) Aµ

a +
1

g2
(∂µαa) (∂µαa)

"= Aa
µA

µ
a

How can we construct a gauge theory with a massive gauge field? We will answer this
question for gauge theories with a scalar that spontaneously breaks gauge symmetry.
But for the moment, let’s just study a few non-gauge scalar theories.

! Let’s start with a “baby” model:

L(ϕ) =
1

2
(∂µϕ)(∂µϕ) +

1

2
µ2 ϕ2 − λ

4
ϕ4

This Lagrangian is symmetric under the ϕ → −ϕ transformation. This is a rather
simple discrete symmetry but this example shows the basic idea behind generating
mass terms by spontaneously breaking a symmetry.

If µ2 < 0 or the sign in front the ϕ2-term was “−” instead of “+”, this Lagrangian
would describe a scalar particle of mass µ. But with “+” and µ2 > 0, the ϕ2-term
isn’t a mass term anymore. The Lagrangian describes some kind of a system with
potential:

V (ϕ) = −1

2
µ2 ϕ2 +

λ

4
ϕ4

5-1

! v " v
#

V!#"

This potential has two minima at ϕ = ±v with v =
√

µ2/λ and a maximum at
ϕ = 0.

We start seeing what originated the problem with L(ϕ). The field ϕ represents
fluctuations around ϕ = 0, but this point is an unstable point. Perturbation theory
around this point wouldn’t converge. To do things right, the Lagrangian has to
be written in terms of a field that represents fluctuations around the vacuum (a
minimum); in our case, we need the Lagrangian in terms of a field that represents
fluctuations around ϕ = v (or altenatively ϕ = −v, it doesn’t matter). To do so, let’s
write

ϕ(x) = v + η(x)

Here η(x) represents the quantum fluctuations around the minumum at ϕ = v. Now,
we substitute in L(ϕ) and arrive at

L(η) =
1

2
(∂µη)(∂µη)− µ2 η2 − λ v η3 − λ

4
η4 + const.

where “const.” represents irrelevant constant terms (they may depend on λ and µ,
but not on η). We see that the η2-term now has the correct sign “−” for a mass
term and we can say that η represents a particle of mass mη =

√
2µ2. This way of

generating mass terms is called Spontaneous Symmetry Breaking (SSB).

Note that since L(ϕ) = L(η) they both describe the same physics. However, the
particle contents can’t be read from L(ϕ) but from L(η). On the other hand L(ϕ)
shows a symmetry ϕ→ −ϕ that is “hidden” in L(η). Note that the couplings of L(η)
satisfy non-trivial relations that are a consequence of the “lost”symmetry.

! Now we study the slightly more interesting case of a spontaneouly broken contin-
uous symmetry (a “child” model, if you like). The Lagrangian

L(ϕ, ϕ∗) = (∂µϕ)∗(∂µϕ) + µ2 ϕ∗ϕ− λ (ϕ∗ϕ)2

5-2
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V!#"

This potential has two minima at ϕ = ±v with v =
√

µ2/λ and a maximum at
ϕ = 0.

We start seeing what originated the problem with L(ϕ). The field ϕ represents
fluctuations around ϕ = 0, but this point is an unstable point. Perturbation theory
around this point wouldn’t converge. To do things right, the Lagrangian has to
be written in terms of a field that represents fluctuations around the vacuum (a
minimum); in our case, we need the Lagrangian in terms of a field that represents
fluctuations around ϕ = v (or altenatively ϕ = −v, it doesn’t matter). To do so, let’s
write

ϕ(x) = v + η(x)

Here η(x) represents the quantum fluctuations around the minumum at ϕ = v. Now,
we substitute in L(ϕ) and arrive at

L(η) =
1

2
(∂µη)(∂µη)− µ2 η2 − λ v η3 − λ

4
η4 + const.

where “const.” represents irrelevant constant terms (they may depend on λ and µ,
but not on η). We see that the η2-term now has the correct sign “−” for a mass
term and we can say that η represents a particle of mass mη =

√
2µ2. This way of

generating mass terms is called Spontaneous Symmetry Breaking (SSB).

Note that since L(ϕ) = L(η) they both describe the same physics. However, the
particle contents can’t be read from L(ϕ) but from L(η). On the other hand L(ϕ)
shows a symmetry ϕ→ −ϕ that is “hidden” in L(η). Note that the couplings of L(η)
satisfy non-trivial relations that are a consequence of the “lost”symmetry.

! Now we study the slightly more interesting case of a spontaneouly broken contin-
uous symmetry (a “child” model, if you like). The Lagrangian

L(ϕ, ϕ∗) = (∂µϕ)∗(∂µϕ) + µ2 ϕ∗ϕ− λ (ϕ∗ϕ)2
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This potential has two minima at ϕ = ±v with v =
√

µ2/λ and a maximum at
ϕ = 0.

We start seeing what originated the problem with L(ϕ). The field ϕ represents
fluctuations around ϕ = 0, but this point is an unstable point. Perturbation theory
around this point wouldn’t converge. To do things right, the Lagrangian has to
be written in terms of a field that represents fluctuations around the vacuum (a
minimum); in our case, we need the Lagrangian in terms of a field that represents
fluctuations around ϕ = v (or altenatively ϕ = −v, it doesn’t matter). To do so, let’s
write

ϕ(x) = v + η(x)

Here η(x) represents the quantum fluctuations around the minumum at ϕ = v. Now,
we substitute in L(ϕ) and arrive at

L(η) =
1

2
(∂µη)(∂µη)− µ2 η2 − λ v η3 − λ

4
η4 + const.

where “const.” represents irrelevant constant terms (they may depend on λ and µ,
but not on η). We see that the η2-term now has the correct sign “−” for a mass
term and we can say that η represents a particle of mass mη =

√
2µ2. This way of

generating mass terms is called Spontaneous Symmetry Breaking (SSB).

Note that since L(ϕ) = L(η) they both describe the same physics. However, the
particle contents can’t be read from L(ϕ) but from L(η). On the other hand L(ϕ)
shows a symmetry ϕ→ −ϕ that is “hidden” in L(η). Note that the couplings of L(η)
satisfy non-trivial relations that are a consequence of the “lost”symmetry.

! Now we study the slightly more interesting case of a spontaneouly broken contin-
uous symmetry (a “child” model, if you like). The Lagrangian

L(ϕ, ϕ∗) = (∂µϕ)∗(∂µϕ) + µ2 ϕ∗ϕ− λ (ϕ∗ϕ)2
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It has two minima at ϕ = ±v with v =
p
µ2/λ and a maximum at ϕ = 0.

ϕ represents fluctuations around ϕ = 0, but this point is an unstable point.

The Lagrangian has to be written in terms of a field that represents
fluctuations around the vacuum (a minimum)

Let’s write
ϕ(x) = v + η(x)

Here η(x) represents the quantum fluctuations around the minumum at
ϕ = v . We substitute in L(ϕ) ...



Spontaneous Symmetry Breaking

... and arrive at

L(η) =
1
2

(∂µη)(∂µη)− µ2 η2 − λ v η3 − λ

4
η4 + const.

The η2-term now has the correct sign “−” for a mass term.

η represents a particle of mass mη =
p

2µ2.

This way of generating mass terms is called Spontaneous Symmetry
Breaking (SSB).

L(ϕ) shows a symmetry ϕ→ −ϕ that is “hidden” in L(η).

L(η) gives the particle content.



Spontaneous Symmetry Breaking

F A “child” model:

L(ϕ,ϕ∗) = (∂µϕ)∗(∂µϕ) + µ2 ϕ∗ϕ− λ (ϕ∗ϕ)2

has a global phase symmetry

ϕ(x)→ ei α ϕ(x)

For µ2 > 0, the quadratic ϕ∗ϕ has the wrong sign for a mass term.

ϕ is a complex field and can be written

ϕ =
1√
2

(ϕ1 + i ϕ2)

In terms of ϕ1 and ϕ2, the Lagrangian is

L(ϕ1, ϕ2) =
1
2

(∂µϕ1)(∂µϕ1)+
1
2

(∂µϕ2)(∂µϕ2)+
1
2
µ2 (ϕ2

1 +ϕ2
2)− λ

4
(ϕ2

1 +ϕ2
2)2



Spontaneous Symmetry Breaking
The potential

V (ϕ1, ϕ2) = −1
2
µ2 (ϕ2

1 + ϕ2
2) +

λ

4
(ϕ2

1 + ϕ2
2)2

has a circle of minima in the (ϕ1, ϕ2) plane of radius v such that

ϕ2
1 + ϕ2

2 = v2 with v2 = µ2/λ

has a global phase symmetry (that some people may call global gauge symmetry)
since it is invariant under

ϕ(x)→ ei α ϕ(x)

Note that, for µ2 > 0, the sign “+” in front of the quadratic ϕ∗ϕ term prevents it
from being a mass term. ϕ is a complex field and can be written in terms of two real
fields ϕ1 and ϕ2 as

ϕ =
1√
2

(ϕ1 + i ϕ2)

In terms of ϕ1 and ϕ2, the Lagrangian is

L(ϕ1, ϕ2) =
1

2
(∂µϕ1)(∂

µϕ1) +
1

2
(∂µϕ2)(∂

µϕ2) +
1

2
µ2 (ϕ2

1 + ϕ2
2)−

λ

4
(ϕ2

1 + ϕ2
2)

2

The potential

V (ϕ1, ϕ2) = −1

2
µ2 (ϕ2

1 + ϕ2
2) +

λ

4
(ϕ2

1 + ϕ2
2)

2

has a circle of minima in the (ϕ1, ϕ2) plane of radius v such that

ϕ2
1 + ϕ2

2 = v2 with v2 = µ2/λ

As in the previous example, we want to write the Lagrangian in terms of fields that
represent fluctuations around a minimum (the vacuum). We can choose any point in
the minima circle, but for simplicity, let’s expand around

(ϕ1, ϕ2) = (v, 0)

by writing

ϕ(x) =
1√
2

[
v + η(x) + i ξ(x)

]

We obtain the Lagrangian in terms of the fields η and ξ that represent the quantum
fluctuations around a minimum:

L(η, ξ) =
1

2
(∂µξ)(∂

µξ) +
1

2
(∂µη)(∂µη)− µ2 η2

+ cubic and quartic terms in η and ξ

+ const.

We observe that field η represents a particle of mass mη =
√

2µ2, but we also have a
massless scalar ξ which is known as a Goldstone boson.

! In a similar way, it is easy to see that by spontaneous symmetry breaking of the
Lagrangian, for N scalar fields ϕa (with a = 1, . . . , N),

L(ϕa) =
1

2
(∂µϕa)(∂

µϕa) +
1

2
µ2 ϕaϕa −

λ

4
(ϕaϕa)

2
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has a global phase symmetry (that some people may call global gauge symmetry)
since it is invariant under

ϕ( )→ i α ϕ( )

Note that, for 2 0, the sign “+” in front of the quadratic ϕ∗ϕ term prevents it
from being a mass term. ϕ is a complex field and can be written in terms of two real
fields ϕ1 and ϕ2 as

ϕ =
1√
2

(ϕ1 + ϕ2)

In terms of ϕ1 and ϕ2, the Lagrangian is

L(ϕ1 ϕ2) =
1

2
(∂µϕ1)(∂

µϕ1) +
1

2
(∂µϕ2)(∂

µϕ2) +
1

2
2 (ϕ2

1 + ϕ2
2)−

λ

4
(ϕ2

1 + ϕ2
2)

2

The potential

(ϕ1 ϕ2) = −1

2
2 (ϕ2

1 + ϕ2
2) +

λ

4
(ϕ2

1 + ϕ2
2)

2

has a circle of minima in the (ϕ1 ϕ2) plane of radius such that

ϕ2
1 + ϕ2

2 = 2 with 2 = 2 λ

As in the previous example, we want to write the Lagrangian in terms of fields that
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Spontaneous Symmetry Breaking

We want to write the Lagrangian in terms of fields that represent fluctuations
around a minimum (the vacuum). We can choose any point in the minima
circle, for simplicity we take

(ϕ1, ϕ2) = (v , 0)

by writing

ϕ(x) =
1√
2

h
v + η(x) + i ξ(x)

i
We obtain the Lagrangian in terms of η and ξ:

L(η, ξ) =
1
2

(∂µξ)(∂µξ) +
1
2

(∂µη)(∂µη)− µ2 η2

+ cubic and quartic terms in η and ξ

+ const.

η represents a particle of mass mη =
p

2µ2,

ξ is a massless scalar which is known as a Goldstone boson.



Spontaneous Symmetry Breaking

F In a similar way, it is easy to see that by spontaneous symmetry breaking
of the Lagrangian, for N scalar fields ϕa (with a = 1, . . . ,N),

L(ϕa) =
1
2

(∂µϕa)(∂µϕa) +
1
2
µ2 ϕaϕa −

λ

4
(ϕaϕa)2

we get (with i = 1, . . . ,N − 1)

L(η, ξi ) =
1
2

(∂µξi )(∂µξi ) +
1
2

(∂µη)(∂µη)− µ2 η2

+ const.

+ cubic and quartic terms in η and ξi

which describes a scalar η of mass mη =
p

2µ2 and N − 1 massless
Goldstone bosons.



The Higgs Mechanism
F Let’s consider the a U(1) gauge theory described by the Lagrangian

L(ϕ,ϕ∗,Aµ) = −1
4

FµνFµν + (Dµϕ)∗(Dµϕ) + µ2 ϕ∗ϕ− λ (ϕ∗ϕ)2

where, as usually, Fµν = ∂µAν − ∂νAµ and Dµ = ∂µ − i g Aµ. It is invariant
under U(1) (Abelian) gauge transformations:

ϕ(x)→ eiα(x) ϕ(x)

Aµ(x)→ Aµ(x) +
1
g
∂µα(x)

As in the last section theories, the quadratic term (with µ2 > 0) has the wrong
sign for a mass term.

Defining ϕ = (ϕ1 + i ϕ2)/
√

2, the potential V = −µ2 ϕ∗ϕ+ λ (ϕ∗ϕ)2 has a
circle of minima in the (ϕ1, ϕ2) plane of radius v such that ϕ2

1 + ϕ2
2 = v2 with

v2 = µ2/λ. Now, expanding the Lagrangian around (ϕ1, ϕ2) = (v , 0) with

ϕ(x) =
1√
2

h
v + η(x) + i ξ(x)

i
we get ...



The Higgs Mechanism

...

L(η, ξ,Aµ) = −1
4

FµνFµν +
1
2

(∂µξ)(∂µξ) +
1
2

(∂µη)(∂µη)

− µ2 η2 +
1
2

g2v2 AµAµ − gv Aµ(∂µξ)

+ cubic and quartic terms in η and ξ

+ const.

We obtain a scalar η with mass mη =
p

2µ2.

A massless Goldstone boson.

A mass term for the gauge field which gets a mass mA = g v .

The gauge symmetry which is apparent in L(ϕ,ϕ∗,Aµ) is hidden in
L(η, ξ,Aµ) but ...

L(η, ξ,Aµ) gives the particle content.



The Higgs Mechanism

F BUT, something must be wrong because L(ϕ,ϕ∗,Aµ) has 4 degrees of
freedom and L(η, ξ,Aµ) has 5.

Alternatively, we can see

ϕ(x) =
1√
2

h
v + η(x) + i ξ(x)

i
as an infinitesimal gauge transformation of a field (v + η)/

√
2 with gauge

parameter ξ/(v + η):

ϕ(x) =

"
1 + i

„
ξ

v + η

«#„
v + η√

2

«
If we now write the gauge field as a gauge transformed field

Aµ(x) = Bµ(x) +
1
g
∂µ

„
ξ

v + η

«
field ξ doesn’t appear in the Lagrangian because it is gauge invariant.



The Higgs Mechanism

The Goldstone boson has been eaten up by the gauge field: ξ is gone and
Bµ becomes massive and gets one degree of freedom more.

We implicitly choose a gauge: the unitary gauge.

This way of getting massive gauge fields is known as the Higgs mechanism.

ϕ is the Higgs particle.
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