High Density QCD-Matter

Javier L Albacete

IPhT-CEA-Saclay

Taller de Altas Energías 2009 Universidad de Oviedo

Outline

\Rightarrow Part I

✓ Motivation. QCD & the QCD vacuum

✓ QCD at high temperature or density: Quark Gluon Plasma

\Rightarrow Part II

- \checkmark Heavy Ion collision experiments
- ✓ Relevant findings at RHIC

Strong interactions are responsible for 99% of (visible) matter in the Universe

Electromagnetism

Microscopic theory: QED (p, e, γ)

Macroscopic, collective behavior:

- Phase transitions: gas, solid, fluid, superfluid ...
- Condensed / solid state physics: Insulators, semi-conductors, ferromagnets, glasses ...
- Chemistry ... industry

Strong interactions

Microscopic theory: QCD (quarks, gluons)

Strong interactions are responsible for 99% of (visible) matter in the Universe

Electromagnetism

Microscopic theory: QED (p, e, γ)

Macroscopic, collective behavior:

- Phase transitions: gas, solid, fluid, superfluid ...
- Condensed / solid state physics: Insulators, semi-conductors, ferromagnets, glasses ...
- Chemistry ... industry

Strong interactions

Microscopic theory: QCD (quarks, gluons) U

Macroscopic, collective behavior:

- What are the phases of QCD ?
- Is a color-chemistry possible?
- Are there color-superconductors?
- Color-industry?

↓

Study of QCD matter at high density or temperature Strong interactions are responsible for 99% of (visible) matter in the Universe

Microscopic theory \Rightarrow Quantum Chromodynamics

$$\mathcal{L}_{QCD} = \sum_{flavors} \bar{q}_f \, \left(i \not D - m_f \right) q_f - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \dots$$

quarks

$$q_f^{\alpha, a} \rightarrow \begin{cases} \alpha = 1, \dots 4\\ a = 1 \dots N_c = 3\\ f = u, d, s, c, b, t \end{cases}$$

gluons
$$A^{\mu,a} \rightarrow \begin{cases} \mu = 1, \dots, 4 & \text{Lor} \\ a = 1, \dots, N_c^2 - 1 = 8 & \text{Co} \end{cases}$$

1

Lorentz index Color index

Lorentz index

Color index

Flavor index

00000000000

Gauge symmetry: SU(N_c=3) (non-abelian)

+2/3	u (3 MeV)	c (I.2 GeV)	t (171 GeV)
-1/3	d (5 MeV)	s (105 MeV)	b (4.2 GeV)

The QCD ground state has a complicated structure:

- It anti-screens color charges (running coupling and asymptotic freedom)
- It has negative energy density
- It is confining: quarks and gluons do not exist as free states
- It breaks a few symmetries of the QCD Lagrangian: chiral, conformal
- It has a non-trivial topological structure: Instantons ...
- It has quark and gluon condensates...

 $m_{proton}(uud) \sim 1 \,\text{GeV}; \quad 2 \,m_u + m_d \sim 10 \,\text{MeV}$

 $m_{proton}(uud) \sim 1 \,\text{GeV}; \quad 2 \,m_u + m_d \sim 10 \,\text{MeV}$

Would a high-temperature (density) QCD sytem allow free quarks and gluons? if $T \gg \Lambda_{QCD}$ then $\alpha_s(T) \ll 1$

YES!!

⇒Bag model: Hadrons are "droplets" of perturbative vacuum with quasi free quarks and gluons inside:

$$H_{bag} = H_{kin} + H_{bag} + \dots \approx \frac{x}{R} + \frac{4}{3}\pi R^3 B + \dots$$

Bag
constant
$$B \sim \epsilon_{pert} - \epsilon_{Non-pert} \sim (250 \,\mathrm{MeV})^4$$

Non-perturbative vacuum $\epsilon_{NP} < 0 \quad \leftarrow 2R \rightarrow$ perturbative vacuum $\epsilon_{pert} = 0$ ⇒Bag model: Hadrons are "droplets" of perturbative vacuum with quasi free quarks and gluons inside:

$$H_{bag} = H_{kin} + H_{bag} + \dots \approx \frac{x}{R} + \frac{4}{3}\pi R^3 B + \dots$$

Bag constant

$$B \sim \epsilon_{pert} - \epsilon_{Non-pert} \sim (250 \,\mathrm{MeV})^4$$

⇒Potential models. Lines of color field are confined to flux tubes or strings

$$V(R) = -\frac{\alpha_{eff}}{R} + KR$$

String tension:

$$K \sim (420 \,\mathrm{MeV})^2 = 900 \,\mathrm{MeV} \,\mathrm{fm}^{-1}$$

⇒Bag model: Hadrons are "droplets" of perturbative vacuum with quasi free quarks and gluons inside:

$$H_{bag} = H_{kin} + H_{bag} + \dots \approx \frac{x}{R} + \frac{4}{3}\pi R^3 B + \dots$$

Bag constant

$$B \sim \epsilon_{pert} - \epsilon_{Non-pert} \sim (250 \,\mathrm{MeV})^4$$

⇒Potential models. Lines of color field are confined to flux tubes or strings

$$V(R) = -\frac{\alpha_{eff}}{R} + KR$$

String tension:

$$K \sim (420 \,\mathrm{MeV})^2 = 900 \,\mathrm{MeV} \,\mathrm{fm}^{-1}$$

With dynamical quarks, the string breaks:

⇒ Pressure and energy density of ideal Bose (and Fermi) massless gas Pion gas: $p_{\pi} \approx d_{\pi} \frac{\pi^2}{90} T^4$, $\epsilon_{\pi} = 3 p_{\pi}$, $d_{\pi} = 3 (\pi^{\pm}, \pi^0)$

 $\Rightarrow \text{ Pressure and energy density of ideal Bose (and Fermi) massless gas}$ Pion gas: $p_{\pi} \approx d_{\pi} \frac{\pi^2}{90} T^4$, $\epsilon_{\pi} = 3 p_{\pi}$, $d_{\pi} = 3 (\pi^{\pm}, \pi^0)$ QGP: $p_{QGP} \approx d_{gq\bar{q}} \frac{\pi^2}{90} T^4 - B$, $\epsilon_{QGP} \approx d_{gq\bar{q}} \frac{\pi^2}{30} T^4 + B$ $d_{gq\bar{q}} = d_g + \frac{7}{8} d_{q\bar{q}} = 2_s \cdot (N_c^2 - 1) + \frac{7}{8} \cdot 2_{q\bar{q}} \cdot 2_s \cdot N_c \cdot N_f = 37 (N_f = 2)$

⇒ Pressure and energy density of ideal Bose (and Fermi) massless gas

Pion gas:
$$p_{\pi} \approx d_{\pi} \frac{\pi^2}{90} T^4$$
, $\epsilon_{\pi} = 3 p_{\pi}$, $d_{\pi} = 3 (\pi^{\pm}, \pi^0)$

QGP:
$$p_{QGP} \approx d_{gq\bar{q}} \frac{\pi^2}{90} T^4 - B$$
, $\epsilon_{QGP} \approx d_{gq\bar{q}} \frac{\pi^2}{30} T^4 + B$

$$d_{gq\bar{q}} = d_g + \frac{7}{8}d_{q\bar{q}} = 2_s \cdot (N_c^2 - 1) + \frac{7}{8} \cdot 2_{q\bar{q}} \cdot 2_s \cdot N_c \cdot N_f = 37 \ (N_f = 2)$$

 \Rightarrow At T=Tc the pressure of the QGP becomes larger than that of the pion gas

$$p_{QGP}(T_c) = p_{\pi}(T_c)$$

 $T_c = \left(\frac{90}{\pi^2 (d_{gq\bar{q}} - d_\pi)} B\right)^{1/4} \approx 0.7 B^{1/4} \approx 140 \,\text{MeV}, \quad \text{for } B^{1/4} = 200 \,\text{MeV}$

Córdoba $T_{\rm Córdoba} \sim 10^3 \, {\rm Kelvins}$

An alternative view: Broken symmetries and phase transitions

⇒ QCD with massless quarks can be decomposed into right- and left-handed sectors

 $\mathcal{L}_{quarks} = \bar{q}_L \, i \not \!\!\!D \, q_L + \bar{q}_R \, i \not \!\!\!D \, q_R \qquad q_{L(R)} = \frac{1 \mp \gamma^5}{2} \, q$ It is invariant under $SU_L(N_f) \times SU_L(N_f)$; $\begin{pmatrix} u \\ d \end{pmatrix}_{L(R)} \mapsto \exp\left[i \, \theta^a_{L(R)} \, \lambda^a\right] \, \begin{pmatrix} u \\ d \end{pmatrix}_{L(R)}$

Chiral symmetry is spontaneously broken in the vacuum (dynamical origin of mass in QCD): Quark (chiral) condensate:

 $\langle 0|\bar{q}\,q|0\rangle = \langle 0|\bar{q}_L\,q_R + \bar{q}_R\,q_L|0\rangle \approx -(240\,\mathrm{MeV})^3 \qquad L$

The chiral condensate can be regarded as an order parameter for the phase transition

$$M_q \sim \frac{m_{hadron}}{N_{quarks}} \propto \langle 0|\bar{q}q|0\rangle = \begin{cases} \neq 0, & \text{for } T < T_c \\ = 0, & \text{for } T > T_c \end{cases}$$

 $ar{R}$

An alternative view: Broken symmetries and phase transitions

⇒ QCD with massless quarks can be decomposed into right- and left-handed sectors

 $\mathcal{L}_{quarks} = \bar{q}_L \, i \not D \, q_L + \bar{q}_R \, i \not D \, q_R \qquad \qquad q_{L(R)} = \frac{1 \mp \gamma^5}{2} \, q$ It is invariant under $SU_L(N_f) \times SU_L(N_f)$; $\begin{pmatrix} u \\ d \end{pmatrix}_{L(R)} \mapsto \exp\left[i \, \theta^a_{L(R)} \, \lambda^a\right] \, \begin{pmatrix} u \\ d \end{pmatrix}_{L(R)}$

Chiral symmetry is spontaneously broken in the vacuum (dynamical origin of mass in QCD): Quark (chiral) condensate:

$$\langle 0|\bar{q}\,q|0\rangle = \langle 0|\bar{q}_L\,q_R + \bar{q}_R\,q_L|0\rangle \approx -(240\,\mathrm{MeV})^3 \qquad L$$

The chiral condensate can be regarded as an order parameter for the phase transition

$$M_q \sim \frac{m_{hadron}}{N_{quarks}} \propto \langle 0|\bar{q}q|0\rangle = \begin{cases} \neq 0, & \text{for } T < T_c \\ = 0, & \text{for } T > T_c \end{cases}$$

 $) \bar{R}$

⇒Other symmetries: Center symmetry Z(Nc) for Polyakov loops (infinitely heavy masses)

$$L(\vec{x}) = \frac{1}{N_c} \operatorname{tr} \exp\left[i g \int_0^{\frac{1}{T}} A_4(\tau, \vec{x}) d\tau\right] \qquad \langle 0|L(\vec{x})|0\rangle = \begin{cases} = 0, & \text{for } T < T_c \\ \neq 0, & \text{for } T > T_c \end{cases}$$

An alternative view: Broken symmetries and phase transitions

 \Rightarrow Other symmetries: Center symmetry Z(Nc) for Polyakov loops. It is the order parameter in the case of infinitely heavy masses or pure gluodynamics

$$L(\vec{x}) = \frac{1}{N_c} \operatorname{tr} \exp\left[i g \int_0^{\frac{1}{T}} A_4(\tau, \vec{x}) d\tau\right]$$
$$z \in Z(N_c) \Rightarrow z = \exp\left[i \frac{2\pi n}{N_c}\right]$$

$$\langle L(\vec{x}) \rangle \sim \exp\left[-F_Q/T\right]$$

Physically it is related to the (free) energy of a single quark

The QCD action is invariant under Z(Nc) transformations; the Polyakov loop is not:

$$\langle L(\vec{x}) \rangle \to z \langle L(\vec{x}) \rangle$$

$$\langle 0|L(\vec{x})|0\rangle = \begin{cases} = 0, & \text{for } T < T_c \\ \neq 0, & \text{for } T > T_c \end{cases}$$

Results from lattice QCD

• The chiral symmetry (Z(Nc)) is restored (broken) above the phase transition:

• The inclusion of finite (bare) quark masses makes the phase transition smooth (crossover) 0.30 0.40 0.50 0.60 0.70

Debye screening of the heavy quark potential in the QGP phase

• The presence of free quarks and gluons around a heavy quark pair screens the interaction.

• The string tension tension goes to zero

$$V(r,T) \approx -\frac{\alpha_{eff}}{r} \exp[-m_D r] + K(T) r$$

Debye mass

$$m_D^2 = \frac{N_c + \frac{1}{2}N_f}{3} g^2 T^2$$

effective string tension

$$K(T) \to 0 \text{ for } T >> T_c$$

⇒Other way for the QGP: compressing nuclear matter at low temperatures

Baryon number density ~ Baryochemical potential

$$n_B = \frac{1}{3} \frac{N_q - N_{\bar{q}}}{V} = d \cdot \frac{T^3}{6} \left[\frac{\mu_B}{T} + \frac{1}{\pi^2} \left(\frac{\mu_B}{T} \right)^3 \right]$$

 $\mu_B < \mu_{Bc}$

 $\mu_B > \mu_{Bc}$

Pressure of a Fermi gas:

$$p_F = d \cdot \frac{T^4}{3} \left[\frac{7\pi^2}{120} + \frac{1}{4} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{8\pi^2} \left(\frac{\mu_B}{T} \right)^4 \right]$$

⇒Other way for the QGP: compressing nuclear matter at low temperatures

Baryon number density ~ Baryochemical potential

$$n_B = \frac{1}{3} \frac{N_q - N_{\bar{q}}}{V} = d \cdot \frac{T^3}{6} \left[\frac{\mu_B}{T} + \frac{1}{\pi^2} \left(\frac{\mu_B}{T} \right)^3 \right]$$

 $\mu_B < \mu_{Bc}$

 $\mu_B > \mu_{Bc}$

Pressure of a Fermi gas:

$$p_F = d \cdot \frac{T^4}{3} \left[\frac{7\pi^2}{120} + \frac{1}{4} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{8\pi^2} \left(\frac{\mu_B}{T} \right)^4 \right]$$

Critical baryochemical potential for the QGP phase transition (T=0) $p_{q\bar{q}}(\mu_{Bc}) = B \implies \mu_{Bc} \approx 3\sqrt{\pi} B^{1/4} \approx 1.1 \text{ GeV}$

Nuclear matter: $\mu_{B\,nm} \approx 0.9 \,\,\mathrm{GeV}$

Putting all together: The phase diagram of QCD

• At low the phase transition is smooth crossover between hadron gas and QGP. More like melting butter

 At larger the transition becomes first order. Existence of a critical point.
 More like water-vapor transition

• A number of phases, Color Superconductivity (2SC), Color Flavor Locked (CFL) ... have been proposed. Lattice methods not reliable ready in this regime

Where to find the QGP?

 \Rightarrow Heavy ion collisions

⇒ Core of neutron stars may be composed "exotic" quark matter

 $M_{NS} \sim 1 \div 2 M_{Sun}; \quad R_{NS} \sim 10 \,\mathrm{km}$

⇒ Early Universe: The temperature of the Universe at time 10^{-4} ~ 10^{-5} seconds was T_{univ}~ 200 MeV. It went through a phase transition from quarks and gluons to hadrons

Ultra-relativistic heavy ion collisions

Searching for the Quark Gluon Plasma

side view

Relativistic Heavy Ion Collider (RHIC) Alternating Gradient Synchrotron (AGS) @ Brookhaven National Lab (BNL) Large Hadron Collider (LHC) Super Proton Synchrotron (SPS) @ CERN

• First hints of QGP formation at SPS. More conclusice evidence obtained at RHIC

• Of the 4 big experimental collaborations at the LHC, one (ALICE) is fully dedicated to HIC. Other two (ATLAS and CMS) will perform related measurements

Locating HIC experiments on the QCD phase diagram:

• The baryon density in the midrapity region decreases with increasing collison energy

• The temperature increases with collision energy

Space-time view of heavy-ion collisions

We lack of a unified description of the collision dynamics at all times

The Initial State: Color Glass Condensate & Saturation

linear evolution (DGLAP, BFKL), dilute regime

$$\frac{\partial N_g}{\partial Y} \sim P N_g$$

exponentially growing gluon densities

The Initial State: Color Glass Condensate & Saturation

$$Y = \ln \frac{p_0 + p_z}{p_0 - p_z}$$

inear evolution (DGLAP, BFKL), dilute regime
gluon radiation
 $0 0 0 0 0 0 0 0 p_z$
 $0 0 0 0 0 0 k_z = x p_z$
gluon recombination
 $0 0 0 0 0 0 0 0 0 p_z$
 $\frac{\partial N_g}{\partial Y} \sim P N_g$
gluon recombination
Non-linear evolution (CGC), high density
 $\frac{\partial N_g}{\partial Y} \sim P N_g - R N_g^2$

• At high energies (large rapidities, small-x), the hadron wavefunction reach saturation due to the growing importance of recombination processes

$$\begin{array}{c} \begin{array}{c} \label{eq:rescaled} \mathbf{Rs} \end{array} & Q_s \sim \frac{1}{R_s} \end{array} & k_t < Q_s(Y) \end{array} \end{array}$$

• Saturation is enhanced in nuclei (large # of gluons, even at low energies)

 $Q_{sA}^2 \sim A^{1/3} Q_{sp}^2 \Rightarrow A^{1/3} \sim 6 \Rightarrow Q_{sAu}^{2, RHIC} \sim 1 \div 2 \,\mathrm{GeV}^2$

Bulk properties of RHIC matter: Multiplicities

• One expects the total # of produced hadrons to be proportional to the # of partons in the wavefuncttin of colliding nuclei

• First surprise at RHIC: Total multiplicities came out a lot smaller than predicted by simple superpositions of proton-proton collisions:

• Saturation explanation: The flux of colliding partons (mostly gluons) is reduced due to saturation effects

• CGC predictions account the energy rapidity, centrality of the multiplicities

... CGC has been discovered at RHIC...

Predictions before RHIC vs data

The success of hydrodynamics at RHIC

⇒ Hydrodynamics is an effective theory that describes the long wavelength modes of the conserved charges of the system

energy-momentum conservation: $\partial_{\mu} T^{\mu\nu} = 0$

baryon number conservation: $\partial_{\mu} j_{B}^{\mu} = 0$

 \Rightarrow It requires local equilibrium and a small mean free path: $\lambda_{mfp} \sim (\sigma n)^{-1} \rightarrow 0$

dissipative terms (viscosity...)

 $T^{\mu\nu} = [\epsilon(p,T) + p] u^{\mu}u^{\nu} - p g^{\mu\nu} + F(\nabla_{\mu}u^{\nu};\eta;D...)$

ideal fluid

\Rightarrow Ideal hydro describes a lot of RHIC data!!

RHIC matter flows: Elliptic (and radial) flow

⇒ The initial fireball produced in non-central collisions is highly anisotropic

$$\dot{u}^{\mu} = \frac{\nabla^{\mu} p}{\epsilon + p}$$

⇒ If the system behaves like a fluid, the initial spatial anysotropy is mapped onto the observed hadron spectra

$$\frac{d N^h}{d^2 p_t \, d\phi} \propto 1 + 2 \, \mathbf{v_2}(\mathbf{p_t}) \, \cos(2\phi) + \dots$$

RHIC matter flows: Elliptic (and radial) flow

⇒ The initial fireball produced in non-central collisions is highly anisotropic

$$\dot{u}^{\mu} = \frac{\nabla^{\mu} p}{\epsilon + p}$$

⇒ If the system behaves like a fluid, the initial spatial anysotropy is mapped onto the observed hadron spectra

$$\frac{d N^h}{d^2 p_t \, d\phi} \propto 1 + 2 \mathbf{v_2}(\mathbf{p_t}) \, \cos(2\phi) + \dots$$

The most perfect fluid?

 \Rightarrow Viscosity ~ "internal friction of a fluid" $\eta \sim I/fluidity.$

⇒ Minimum viscosity/entropy ratio: $\frac{\eta}{s} \ge \frac{1}{4\pi} \frac{\hbar}{k_B}$

 \Rightarrow QGP (from hydrodynamics):

200

 $\mathrm{N}_{\mathrm{Part}}$

300

100

Hard Tomographic Probes:

- \Rightarrow Particles with a large momentum (mass) scale M: jets, γ , $Q\overline{Q}$...
- Well controlled theoretically (pQCD) and experimentally
- Produced at early times t~I/M in (rare) hard collisions
- •The modification tells us about the medium properties

Hard Tomographic Probes:

 \Rightarrow Particles with a large momentum (mass) scale M: jets, γ , $Q\overline{Q}$...

- Well controlled theoretically (pQCD) and experimentally
- Produced at early times t~I/M in (rare) hard collisions
- The modification tells us about the medium properties

Hard Tomographic Probes:

probe out

probe in

- \Rightarrow Particles with a large momentum (mass) scale M: jets, γ , $Q\overline{Q}$...
- Well controlled theoretically (pQCD) and experimentally
- Produced at early times t~I/M in (rare) hard collisions
- •The modification tells us about the medium properties

The String Connection (or the weird couple)

- So RHIC matter behaves like a strongly interacting system (perfect fluid, jet quenching..)
- So we need a formalism that allows to study strongly coupled systems in real-time formalism (Lattice QCD operates in imaginary time)

The Anti de Sitter / Conformal Field Theory Correspondance (AdS/CFT)

Caveats: N=4 SYM is conformal. It is supersymmetric. It includes scalar and fermions. It has no charges in the fundamental representation (quarks)....

High gravitational v quark

AdS/CFT calculations yield a large jet quenching, compatible with the value extracted empirically

$$\hat{q} \sim 4 \, \frac{\mathrm{GeV}^2}{\mathrm{fm}}$$

...Although there is some numerology involved here...

• Other proposed signatures of QGP formation:

-Enhancement of thermal photons and dileptons from black-body radiation -Melting of heavy quark bound states (J/Ψ , Ψ ', γ ..) -Enhancement of strange production...

• Summary: Great progress achieved over the last 10 years in our understanding of the QCD phases. RHIC has delivered evidence for the formation of a strongly interacting, perfect-fluid-like Quark Gluon Plasma.

• Outlook: Many open questions: Dynamics of thermalization, microscopic composition of QGP around Tc, development of full viscous hydrodynamics, coupling of soft (hydro) modes and fast (jets), sharpening our understanding of the AdS/CFT correspondence, species dependence of the suppression, jet studies

• The answers will (most likely) come from a combination of experimental results (LHC, FAIR), theoretical developments (in progress) and improvements of Lattice-QCD numerical simulations

Back up slides

Beyond LL approximation: Running coupling corrections (Kovchegov-Weigert, Balitsky, Gardi et al 06, Albacete-Kovchegov)

Running coupling corrections (Kovchegov-Weigert, Balitsky, Weigert et al 07)

Complete in $\alpha_s N_f$ Evolution JLA and Y. Kovchegov PRD75 125021

 $\mathcal{S}[S]$ Conformal, non running coupling terms. Neglected in previous calculations

 $\Rightarrow \underline{Running \text{ term:}} \quad \mathcal{R}\left[S\right] = \int d^2 z \, \tilde{K}(\underline{r}, \underline{r}_1, \underline{r}_2) \left[S(\underline{x}, \underline{z})S(\underline{z}, \underline{y}) - S(\underline{x}, \underline{y})\right]$ $\Rightarrow \underline{Subtraction \text{ term:}} \quad \mathcal{S}\left[S\right] = \int d^2 z_1 d^2 z_2 \, K_{sub}(\underline{x}, \underline{y}, \underline{z}_1, \underline{z}_2) \left[S(\underline{x}, \underline{w})S(\underline{w}, \underline{y}) - S(\underline{x}, \underline{z}_1)S(\underline{z}_2, \underline{y})\right]$

⇒ Running coupling comes in a "triumvirate": $K \sim \frac{\alpha_s(R_1) \alpha_s(R_2)}{\alpha_s(R_3)}$

Fixed vs Running

⇒ The running of the coupling reduces the speed of the evolution down to values compatible with experimental data (JLA PRL 99 262301 (07)):

Fixed vs Running

⇒ The running of the coupling reduces the speed of the evolution down to values compatible with experimental data (JLA PRL 99 262301 (07)):

⇒ Geometric scaling persists, despite conformal symmetry being broken

 \Rightarrow UNIVERSALITY

$$\frac{Q_{sA}^2(\boldsymbol{Y})}{Q_{sB}^2(\boldsymbol{Y})} \to 1 \quad \text{for } \boldsymbol{Y} \to \infty$$

	EIC	LHeC
Community	US-nuclear + BNL & JLAB have declared project as key for future	European particle physicist + contacts with nuclear community
Parameters	3-20 GeV e 25-250 GeV p, ½ for A e,P polarized Lumi 10 ³² -10 ³⁴	20-120 GeV e 7 TeV p, ½ for A No P,A polarization Lumi 10 ³² -10 ³³
Physics	Spin 3D proton/nuclear structure pdfs	TeV scale, BSM Small-x physics pdfs
Cost	150 – 1400 M\$ (US accounting)	TBD
Time Scale	≥2020 (necessary ?) Wide range of cost/scope, push for early staged project ?	Depends on LHC results Scenarios TBD

LHeC option I

Ring – Ring Design tentative

F.Willeke, 70GeV * 7TeV, 50MW [JINST 2006] B.Holzer, A.Kling et al, Divonne08,ECFA08 LHeC option 2

EIC JLAB proposal

Long-term Landscape : ELIC

➤ Subsequent stages/ alternative layouts could increase e-beam & ionbeam energies and L from nominal 10 × 250 GeV, ~3 × 10³³ cm⁻²s⁻¹ e+p^{*}

Brookhaven Science Associates

Long-Term (>2020) Future of QCD Physics at RHIC: EIC → eRHIC

Add ERL injector with polarized e⁻ source to enable e+p,³He and e+A (up to Uranium) to study matter in gluondominated regime

- 10 GeV electron design energy.
 Possible upgrade to 20 GeV by doubling main linac length.
 - 5 recirculation passes (4 in RHIC tunnel)
- Multiple electron-hadron interaction points (IPs) permit multiple detectors;
- Full polarization transparency at all energies for the electron beam;
- Ability to take full advantage of transverse cooling of the hadron beams;
- Possible options to include polarized positrons at lower luminosity: compact storage ring or ILC-type e⁺ source
- R&D already under way on various accelerator issues; more to come.

Saturation-based calculations describe the energy, rapidity and centrality dependence of multiparticle production at RHIC Au-Au and d-Au collisions

k_t-factorization + saturation + local parton-hadron duality

$$\frac{dN_{AB}^g}{d\eta} \sim \alpha_s \int \frac{d^2p}{p^2} \int d^2k \,\varphi_A(\boldsymbol{x_1}, k) \,\varphi_B(\boldsymbol{x_2}, |p-k|) \quad \text{with} \quad \boldsymbol{x_{1(2)}} = \frac{p_t}{\sqrt{s}} e^{\pm \eta}$$

Multiplicity density

Results obtained using running coupling BK

- Running coupling corrections to BK-JIMWLK. Three independent calculations
 - ⇒"Shock wave" method: I. Balitsky: hep-ph/0609115
 - ⇒ Light Cone Perturbation Theory: Y. Kovchegov and H. Weigert: hep-ph/0609090
 - \Rightarrow Dispersive methods and Borel resummation: E. Gardi et. al: hep-ph/0609087

• General strategy: All order resummation of $\alpha_s N_f$ contributions from quark loops:

• Fourier transform to coordinate space (R). Brodsky-Lepage-Mackenzie scale setting:

$$\alpha_{\mu} \ln\left(\frac{1}{x}\right) \left[1 - \beta_2 \left(c_0 + c_1 \alpha_{\mu} \ln\left(\frac{4}{R^2 \mu^2}\right)\right) + \dots\right] \implies \ln\left(\frac{1}{x}\right) \frac{\alpha_{\mu}}{1 + \alpha_{\mu} \beta_2 \ln\left(\frac{4 e^{c_1}}{R^2 \mu^2}\right)}$$

$$\tilde{K}_{Bal}(\underline{r},\underline{r}_1,\underline{r}_2) = \frac{N_c \,\alpha_s(r^2)}{2\pi^2} \left[\frac{r^2}{r_1^2 \,r_2^2} + \frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

• The qq contribution ensures the renormalizability of the all orders in $\alpha_s\beta_2$ corrections and the right physical behavior of the running term:

$$\mathcal{R}[S] \to 0 \quad \text{for} \left\{ \begin{array}{l} S \to 0 \\ S \to 1 \end{array} \right. \Rightarrow \text{Probability conservation} \\ \mathcal{S} \to 1 \end{array} \Rightarrow \text{Unitarity:}$$

 $\frac{\partial S}{\partial Y} = \mathcal{R}\left[S\right] - \mathcal{S}\left[S\right]$ Subtraction term: $\mathcal{S}[S] = \int d^2 z_1 d^2 z_2 \, K_{sub}(\underline{x}, \underline{y}, \underline{z}_1, \underline{z}_2) \left[S(\underline{x}, \underline{w}) S(\underline{w}, \underline{y}) - S(\underline{x}, \underline{z}_1) S(\underline{z}_2, \underline{y}) \right]$ z_1 W y \mathcal{Y} $N_f \longrightarrow -6\pi\beta_2$ $K_{sub}(\underline{x},\underline{y},\underline{z}_1,\underline{z}_2) = -\frac{3\beta_2}{2\pi^3} \int_0^1 d\alpha \,\frac{1}{\left[\alpha(\underline{z}_1 - \underline{x})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2\right] \left[\alpha(\underline{z}_1 - \underline{y})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2\right] z_{12}^4}$ $\left\{ \left[-4\alpha\bar{\alpha}\,\underline{z}_{12}\cdot(\underline{z}-\underline{x})\,\underline{z}_{12}\cdot(\underline{z}-y) + z_{12}^2(\underline{z}-\underline{x})\cdot(\underline{z}-y) \right] \,\alpha_s(R_T(\underline{x}))\,\alpha_s(R_T(y)) \right\}$ $2\alpha\bar{\alpha}(\alpha-\bar{\alpha})z_{12}^{2}\left[\underline{z}_{12}\cdot(\underline{z}-\underline{x})\,\alpha_{s}(R_{T}(\underline{x}))\,\alpha_{s}(R_{L}(y))+\underline{z}_{12}\cdot(\underline{z}-y)\,\alpha_{s}(R_{L}(\underline{x}))\,\alpha_{s}(R_{T}(y))\right]$ $4\alpha^2 \bar{\alpha}^2 z_{12}^4 \alpha_s(R_L(x)) \alpha_s(R_L(y)) \}$

• It receives contributions from transverse (T) and longitudinal (L) gluon's polarization:

$$\ln\left(\frac{1}{R_T^2(\underline{x})\mu^2}\right) = \ln\left(\frac{4e^{-2\gamma-5/3}}{[\alpha(\underline{z}_1 - \underline{x})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2]\mu^2}\right) + \frac{\alpha\bar{\alpha}\,z_{12}^2}{(\underline{z} - \underline{x})^2}\ln\left(\frac{\alpha(\underline{z}_1 - \underline{x})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2}{\alpha\bar{\alpha}z_{12}^2}\right)$$
$$\ln\left(\frac{1}{R_L^2(\underline{x})\mu^2}\right) = \ln\left(\frac{4e^{-2\gamma-5/3}\,\alpha\bar{\alpha}\,z_{12}^2}{[\alpha(\underline{z}_1 - \underline{x})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2]^2\mu^2}\right)$$

• The solutions corresponding to different prescriptions for the running coupling kernel differ considerably: ∂S

• Solutions with KW prescription lie pretty close to those obtained with *parent dipole* running:

$$\tilde{K}(\underline{r},\underline{r}_1,\underline{r}_2) = \frac{N_c \,\alpha_s(r^2)}{2\pi^2} \,\frac{r^2}{r_1^2 \,r_2^2}$$

• Large scheme dependence: Contrary to expectations, the subtraction contribution has to be large for the two calculations to agree

 $\frac{\partial S}{\partial Y} = \mathcal{R}\left[S\right] - \mathcal{S}\left[S\right]$ Subtraction term: $\mathcal{S}[S] = \int d^2 z_1 d^2 z_2 \, K_{sub}(\underline{x}, \underline{y}, \underline{z}_1, \underline{z}_2) \left[S(\underline{x}, \underline{w}) S(\underline{w}, \underline{y}) - S(\underline{x}, \underline{z}_1) S(\underline{z}_2, \underline{y}) \right]$ z_1 W y \mathcal{Y} $N_f \longrightarrow -6\pi\beta_2$ $K_{sub}(\underline{x},\underline{y},\underline{z}_1,\underline{z}_2) = -\frac{3\beta_2}{2\pi^3} \int_0^1 d\alpha \,\frac{1}{\left[\alpha(\underline{z}_1 - \underline{x})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2\right] \left[\alpha(\underline{z}_1 - \underline{y})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2\right] z_{12}^4}$ $\left\{ \left[-4\alpha\bar{\alpha}\,\underline{z}_{12}\cdot(\underline{z}-\underline{x})\,\underline{z}_{12}\cdot(\underline{z}-y) + z_{12}^2(\underline{z}-\underline{x})\cdot(\underline{z}-y) \right] \,\alpha_s(R_T(\underline{x}))\,\alpha_s(R_T(y)) \right\}$ $2\alpha\bar{\alpha}(\alpha-\bar{\alpha})z_{12}^{2}\left[\underline{z}_{12}\cdot(\underline{z}-\underline{x})\,\alpha_{s}(R_{T}(\underline{x}))\,\alpha_{s}(R_{L}(y))+\underline{z}_{12}\cdot(\underline{z}-y)\,\alpha_{s}(R_{L}(\underline{x}))\,\alpha_{s}(R_{T}(y))\right]$ $4\alpha^2 \bar{\alpha}^2 z_{12}^4 \alpha_s(R_L(x)) \alpha_s(R_L(y)) \}$

• It receives contributions from transverse (T) and longitudinal (L) gluon's polarization:

$$\ln\left(\frac{1}{R_T^2(\underline{x})\mu^2}\right) = \ln\left(\frac{4e^{-2\gamma-5/3}}{[\alpha(\underline{z}_1 - \underline{x})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2]\mu^2}\right) + \frac{\alpha\bar{\alpha}\,z_{12}^2}{(\underline{z} - \underline{x})^2}\ln\left(\frac{\alpha(\underline{z}_1 - \underline{x})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2}{\alpha\bar{\alpha}z_{12}^2}\right)$$
$$\ln\left(\frac{1}{R_L^2(\underline{x})\mu^2}\right) = \ln\left(\frac{4e^{-2\gamma-5/3}\,\alpha\bar{\alpha}\,z_{12}^2}{[\alpha(\underline{z}_1 - \underline{x})^2 + \bar{\alpha}(\underline{z}_2 - \underline{x})^2]^2\mu^2}\right)$$

• The solutions corresponding to different prescriptions for the running coupling kernel differ considerably: ∂S

• Solutions with KW prescription lie pretty close to those obtained with *parent dipole* running:

$$\tilde{K}(\underline{r},\underline{r}_1,\underline{r}_2) = \frac{N_c \,\alpha_s(r^2)}{2\pi^2} \,\frac{r^2}{r_1^2 \,r_2^2}$$

• Large scheme dependence: Contrary to expectations, the subtraction contribution has to be large for the two calculations to agree

@ Particle production in A-A collisions (JLA arXiv.0707.2545 [hep-ph])

• kt-factorization 'a la Kharzeev-Levin-Nardi'

$$\frac{dN_{AA}}{d\eta} \propto \frac{4\pi N_c}{N_c^2 - 1} \int^{p_m} \frac{d^2 p_t}{p_t^2} \int^p d^2 k_t \, \alpha_s(Q) \, \varphi_A\left(x_1; \frac{|p_t + k_t|}{2}\right) \, \varphi_A\left(x_2; \frac{|p_t - k_t|}{2}\right)$$
• 2 \rightarrow 1 kinematics
• rapidity \leftrightarrow pseudorapidity: average hadron mass
 $x_{1(2)} = \frac{p_t}{\sqrt{s}} e^{\pm y}$
or
 $y(\eta, p_t, m) = \frac{1}{2} \ln \left[\frac{\sqrt{\frac{m^2 + p_t^2}{p_t^2} + \sinh^2 \eta} + \sinh \eta}{\sqrt{\frac{m^2 + p_t^2}{p_t^2} + \sinh^2 \eta} - \sinh \eta} \right]$
 $x_{1(2)} = \frac{m_t}{\sqrt{s}} e^{\pm y}$
• Running coupling:
 $Q = \max \left\{ \frac{|p_t \pm k_t|}{2} \right\}$
+
 $(x, k) = \int \frac{d^2 r}{2\pi^2 r^2} \exp \left[i \, \underline{k} \cdot \underline{r} \right] \, \mathcal{N}(Y, r)$
Solutions of BK equation
including all orders in $\alpha_s \beta_2$
corrections
with
 $Y = \ln \left(\frac{0.05}{x} \right) + \Delta Y_{ev}$
+

 φ

Local Hadron-Parton Duality

Numerical Solutions

• The solutions of the evolution at large rapidity exhibit the property of geometric scaling:

$$\phi(k,Y) \to \phi(\tau), \quad \tau = \frac{k}{Q_s(Y)}$$

Numerical Solutions

- BFKL evolution clearly violates unitarity: N>1
- Running coupling effects considerably slow down the evolution w.r.t. the fixed coupling case (emission of small dipoles is suppressed)

 Scaling fully realized at extremely large rapidities: Y~80.

• Fixed and running coupling scaling solutions are different.

$$Q_{fix,s}^2(Y) \sim \exp\left\{4.8\alpha_s Y\right\}$$

 $Q_{run,s}^2(Y) \sim \exp\left\{\sqrt{Y}\right\} \sim \exp\left\{0.3Y\right\}$