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Outline

* Track fitting
- Basic ideas & concepts
- Basic formulae
- Pattern recognition
- Track fitting with x? and Kalman filter techniques
— Multiple Coulomb Scattering

* Alignment
- Basic ideas & concepts
- Basic formulae
— Alignment strategy
- Alignment systematics

Disclaimer: the geometry description is an important issue that is not treated in this lecture
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Introduction

* A nice performance of the Track Fitting is a key ingredient of the

success of the physics program of the HEP experiments

— An accurate determination of the charged particles properties is necessary
* Invariant masses had to be determined with optimal precision and well
estimated errors
* Secondary vertices must be fully reconstructed: evaluate short lifetimes
* Kink reconstruction

* Challenges for the tracking systems of the LHC detectors

- High multiplicity of charged particles (up to 100 for #- 103*cm's™)

- Momenta of particles in the final state ranging from MeV to TeV

- Large background from secondary activities of the particles

- Multiple Coulomb Scattering in detector frames, supports, cables, pipes...

- Complex modular tracking systems combining different detecting
techniques, different resolutions

- Resolutions that vary as a function of the momentum (p), azimuthal angle
(), polar angle (8) or pseudorapidity (n)

- Very high event rates leading to large amount of data
* with demanding requirements CPU and storage
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Basic ingredients

* Basic ingredients of the tracking system

— Charged particles (+ve or -ve)
* laf=1,2
* e,Md,T,k,p,q,...

— lonization detector

* Continuous (e.g.: gas detectors)
* Discrete (e.g.: silicon planar detectors)

- Magnetic field (no strictly necessary)

* Necessary if momentum determination is required
- Some times experiments runs with magnets switched off

q=<0 e Lorentz force

F=q(E+VXB)

Lorentz Force

R =0668m

@q=-e
Oq=0
Og=+e

q>0 * Example: Nice Java applet
- http://www.lon-capa.org/~mmp/kap21/cd533capp.htm

( (= B
v = 19900 km/:

[ = ] Jalr

B=031T
® B into screen
O B out of scree
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Track parameters

* The track can be parametrized by 5 parameters at the track perigee
- dO’ ZO’ (pO’ 90’ P, (q)
- dg, Zy, @y, cOtO, pr, ()

* The track extrapolation to detector surfaces or elements usually
requires a different parametrization
- X Y P ei’ Pt (Q) traCk

* At intersection

- Track extrapolation
* From point to point
* Active volumes
* Passive volumes

* Heavily used in =
- Tracking code
- Alignment code

— Error matrix propagation !

* Optimization
- Track parameters given in the local reference frame
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Basic track formulae

* Consider axial (along Z) and uniform B field

- From a solenoid field as in most of the HEP experiments trackers.

- Charged particles follow a helicoidal path
* Describe circles in the XY (transverse plane) due to Lorentz force
* Move uniformly along Z '

Y /—-J
s

(=
]

j K a T
/[ Ef““iLg - L -
A ;"ﬂ F=gvXB
T~ | pr(GeV1c)=0.3q B(T)p(m)
) SN N ,f?f\ |I
A 2
\ ) f = O3B(§+2
j‘l L ;,- H?{;ﬂ_ﬂ}l 6pT _ oS
ut{i )’f Px pT \)
= e / 5pT os
4 ~_ 2 Pr
~ Pr BL
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Basic track formulae

* Helix trajectory of charged particles
- Parametrization of the helix: (x,y,z) of a trajectory point as a function of a

single path parameter . .
i X (¢pr)=—qpsin(p,—qd;)+(d,+qp)sin ¢,
\\ y(pr)=gpcos(py—qdr)—(dytqp)cos,

z(pr)=z,+A P =z,+(pcot,)
2T

X,=d,sin ¢,
Yo=—d,cos,

p=—tl
03B
pr=psiné,

Y4 P

- A — p00t90=03—BC0890

See example at: http://www-jlc.kek.jp/20030ct/subg/offl/lib/docs/helix_manip/node3.html
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Pattern recognition

* The main goal of the pattern recognition is to associate hits to tracks

— Efficient: all hits
— Robust: no noise and no hits from other tracks

* Pattern recognition is a field of applied mathematics
- It makes use of statistics, cluster analysis, combinatorial optimization, etc

— The choice of the algorithm depends heavily in the type of measurements
* 2D vs 3D points

- And in the track model
* Detector shape and B field

- Hough space transform, template matching,
minimum spanning tree, local pattern

recognition

* Hit-to-track association
- Defined by pattern recognition

- Later altered by tracking
* Removing bad hits & outliers

- Noisy channels tend to be the “party spoilers”

* |n summary: pattern recognition is an art on its own
10/09/09 Track fitting and alignment 9



Track fitting with X2 minimization

* Use well known technique of residual minimization for track

parameters determination via X? function ] Residual definition

- Usual X? definition
* Residuals (r) and their errors (o)

Ny
xX*=>
i=1

- X?minimization w.r.t. track parameters () hits
) ) v, —— |
i dX =0 R Fi dl”i =0 " "+ residuals
2
o(r) d i o(r,)dm | = |
r=m-—eV

extrapolated track

| —e 1

* Rewrite the X? using the matrix algebra:

r
V=
Iy
10/09/09

0

2 T y-—1
- X'=r'Vv r

0'2<”NR)

1) V may contain correlations terms as well.
Therefore V is not necessarily diagonal

2) The residuals errors are taken as the intrinsic
errors of the detector elements. Each hit may
come from a different tracking device and has
its own error

- Apply the X? minimization w.r.t. track parameters ()

dX’_
dT

0

dr

dTr

T

d

V'r=0 0
T, A

=l L= (bO

Ty 00

p

dr a’rll.a’rr1 drI/c.z’nNT
dm : A :
dryldm, ... dryldm,
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Track fitting with X2 minimization

dr

d Tt

OTT

T,

Taylor's expansion up to first order derivatives: ;= (rr,)+
- Computed at initial track parameter (17,) estimation

2
— Neglect second and higher order derivatives: ﬁ:o
M, a 1t ;
The minimum condition equation becomes: :

T

Virk=0 -

T

e

T

2
dX—= V'y

dTr

dr

T

dr
d Tt

dr

d T

dr

d Tt

0

OTT+ =0

Solving the above matrix equation requires to invert a N x N matrix

T -1 T
STT=— ﬂ V_l i i V_l;/' — 1T=T(O—|—51T
dT dr dT
Pros & cons:
— pros:
* The inverse of the track derivatives matrix is the correlation matrix of the track
parameters. So track parameters errors are computed for free :)
 If the problem is linear then the solution is exact
- Cons:

The derivatives of the residuals wrt track parameters may be hard to compute
If the problem is not linear then one needs to iterate
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Track fitting with X2 minimization

* The calculation of the derivatives of residuals w.r.t track parameters

[t}

H_ r=m-—e — i=_£
3 dt d
: m, el [x(ey)] ==
- m=my | e=le, | S| yier)
C m, e, Z(¢T)
_ 0x oOXx
o o= 9X g J
o 577» . aTri TT; 0 . (l)T
E'“|||III|I§|||||||||||||§|||||||||||||||||||||””
Ty 7TO+57T B

* Intersection of the track with the detector:
- Changes with changing track parameters

* Analytic calculations make assumptions:

- On track model and detector conditions
* e.g.uniform B & material description

- Fast and reliable

* Numerical calculations

~=

4 2

U (e Ye)

xo\"

&
(Xc,Yc)

- Time consuming, reliable & heavy use of the track extrapolation package

10/09/09 Track fitting and alignment
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Track fitting with X2 minimization

Track fit with constrained track parameters
- Beam spot, secondary vertices, invariant masses, ...

d,—d, a’(d,) ... 0
R=| . w=| ; - X'=r"v'r+R"W'R
p—p 0 ... o(p)
T T -1 T T
dr -1 dr dR —1 dR dr -1 dR -1
om=—|—| V + w |— —V r+|—| W R =1m,+0
" dt dm| \dm drr dr g = T TETTemn

Goodness of the fit: evaluate the pull quantities
— When fit is correct: pulls follow a Normal distribution (u=0,0=1)

- Three conditions must be fulfilled

1) The track model must be correct
2) The covariance matrix of the measurement errors must be correct

3) The reconstruction software must work properly

D @~ o @ o
Uhidaasasainsasiiannstesy RN

- N W
Trorereery

ATLAS work in progress —

IEEE FPPPE FETT YT FETEE FRPTE PEPE P
20 -0.15 -0.10 -0.05 -0.00 0.05 0.10 0.15 0.20
mm
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Treatment of the MCS

The Multiple Coulomb Scattering must be included in the track fitting

- Particle traversing material undergoes successive deflections
* In main tracking algorithms the assumption is that the MCS angles follow a
Gaussian distribution. It is know that the tails are larger than the Gaussian tails

0. =0 _13.6MeVZ/x
MCS rms ﬁCp XO

X

1+0.0381n

Practical implementation in the algorithm: two equivalent ways
— As non symmetric correlation matrix

o (r,) ... corr(r ry)
V=0tV pes= :
corr(ryry ) ... Uz(rNR)
— As extra track parameters that are fitted
Vo= 91 = gl X=r' VvV r4r, Vet
6 Nscar !
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Treatment of the MCS

* The amount of material affects the track reconstruction

—h
LI L

~ 2.5

X [ | | | | ‘- | , ] Material in the ATLAS Inner Detector
= L Services - . . .

5 L ETRT e expressed in units of radiation length
s “F @scT ] and given as a function of the

c C B Pixel ] .y

S C [JBeam-pipe - pseudorapidity

I 1.5 7

m -

- ]

o
[3)]
T TT

* Practical determination of the MCS and detector intrinsic resolution

|  MCS CTB 2004: SCT sensors |

o l P (Ge\ic) 130 160 50
%) = -
— — @ 22 K E
= g = Ga"— = |
T 3 P’ %

_/i/B _1_'5 @ [ Layer}

—_—e = . % - Layer 2

b 3 Layer 1

Og ~=— intringic resolution m1n~“ | Layer0
o B
E -
1/p i

ATLAS: 2004 CTB unpublished
ril Ll Ll Ll 1 10
10 104 107 107

1
1fpﬂ1rgwrcf
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Track fitting with Kalman filter

* The Kalman filter was developed by R.E. Kalman during the 1950's
- To solve differential matrix equations without matrix inversions

- It is a method of estimating the states of dynamic systems
* Soon applied to the NASA rocket trajectory control for the Apollo program
* Military applications: compute plane trajectory by radar tracking

* Assumption:
- The trajectory of a particle between two adjacent surfaces is described by
a deterministic function plus random disturbances (material effects, etc)
- The system equation: propagates the
estate in one surface to the next
T =F (1) + P8, (6,)=0 Cov(8,)=0,

- The measurement equation: mapping the
track in the surface and considers )
some measurement error +€

m,=H, (1,)+¢, <£k>=0 Cov(g,)=V,

Detector k-1 Scatterer Detector k
10/09/09 Track fitting and alignment 16



Track fitting with Kalman filter

* The aim is to estimate the track parameters from the observations
- From jobservations and a k" measurement: obtain a new k estimate
{{mlm]} 11']-} + m, - Tm,
- Prediction 1= () + P8,
* and its covariance matrix (error): Coi1=F Cripim F,+P,Q. P,
- Filtering, based on m,, , and m,.

* It consists in minimizing the following:
L (Trk>=<mk_Hk1Tk)T V? (mk_HkTrk)+(1Tk|k—1_1Tk)TCk|k—l (Trklk—l_n-k)
* The solution should be well known by now:
=T H (HLV  HO)+Co| [HI YV (my—H )
* And its covariance matrix (error):

_ 1
Ck|k=[<H£ V 1Hk>+ Ck|k—1}

— The residual is thus: _
Fyg=m,—H T,

» Which allows to compute a x? in order to test the goodness of the fit

2 T yr—1 2 2
_ Xiw=r: Vi ry X _Zxk
that needs some smoothing. k
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Track fitting with Kalman filter

* Estimate of the track parameters and state at the detector surfaces

- Filtering from estimate k-1 to k
* Quter points estimates have more information than inner points

- ® Prediction

ess

® Measurement

i

A

i

® Filtered

truth

e

- Smoothing: from estimate k to k-1 (sort of backward filter)
* All points estimates have the same information

/

® Measurement

At

-

® Smoothing

/

10/09/09 Track fitting and alignment
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Track fitting summary

* From detector hits to particle trajectories

Detector
hits

Geometry
description

Pattern recognitiona

Error model

Reject track & reuse hits

Magnetic
Field B

Track elements

Track model

~ Track Fitting

-
=
&
=
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Basic ideas & concepts for alignment

* The aim of the detector alignment is to provide an accurate
description of the detector geometry

- In straight words: to know where the modules are

* The point is: the limited knowledge of the alignment constants should
not lead to a significant degradation of the track parameters, beyond

that of the intrinsic tracker resolution
- In ATLAS and for the “initial physics analysis” the requirement is that the
degradation should be kept below the 20%

pixels SCT
barrel | endcap | barrel | endcap
ro(um) | 7 7 12 12
z(pm) | 20 100 50 200

10/09/09

Barrel

Overlap
Forward
Far fwd

TRT Lo E

O ~ o

~ - | Silicon
S -

o

w0

4r e

500 GeV (%)

N
|
<

o(1/py) for pg

S
|III|:III|III|III|I

| | 1 1 1 1
20 25 200 250 300 350

O-S_I\\Il\lllll\\ll\\l
O 5 10 15

Ry error (um) Straw Resolution (um)
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Basic ideas & concepts for alignment

* High accuracy is required for precision measurements

- A W-mass measurement accuracy of 15-20 MeV/c? requires 1um
alignment precision (S. Haywood, ATL-INDET-2000-2005)

- Higgs mass: if 180 <m_< 400 GeV/c*. H~ZZ~ 4l
- B-tagging: impact parameter & mass

Day-1 Barrel | Day-1 Endcap | Day-100 Barrel | Day-100 Endcap
 Example: Z_>p+“"ana|ysis Pixel | 20um 50 um 10 um 10 um
. . SCT 20 um 50 um 10 um 10 um
- random misalignment TRT | 100um 100 m 50 um 50 um
- Day-1: expected alignment accuracy for Day-1 from cosmic data
- Day-100: estimate of situation after 100 days of collision data
- Reconstructed Z mass AM,,(Reco - Truth)
2%4000_—"" T TTT LT T T T gzsuu;"""I'"I"'I"'I""I""""_
g g E o Ideal Alignment d_}ﬁ ATLAS Preliminary g | o Ideal Alignment y ATLAS Preliminary ]
§'l-l§ 3%00F . ;::11 .;Zoer::try o +$ Z—uu Monte Carlo _g :Ii:zuuu . ;:y-j.?;a;:tioz o Z—uyu Monte Carlo E
L)_ B 3000 1w =91.43 GeV ' — 3 w=-0.00, o= 3.01 GeV .
= E [+ Day-100 Geometry @y d E * Day-100 Geometry _' I
%-E 25005 u=91.42 GeV & _; > ol 0.00, 0= 228GeV {4 '\ h
§ 2uuuf— i : — I
% 15002— ) — "’“":_ ]
é 1uuuf— :D o — i o 3
5 500/ U*‘::B .éé"’(_-.. ] (J‘f sﬁ:mq_
i _ c"lﬁ‘ri.‘al L |‘5‘§;§§| O . L goooco et o E . e —
= ED 70 80 90 100 110 120 -cb[) -15 -10 -5 0 5 10 15 20
M, [GeV] A M, (Reco-Truth) [GeV]
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Basic ideas & concepts for alignment

* Basic visualization of the alignment problem

- Modules are at “unknown” positions. Real hit coordinates are generated
by particles that crosses the detector at their “true” location

- Reconstruction without knowing the real module location. Hits are located
at “apparent” positions. Track reconstructions is not accurate

— After alignment it is possible to have a “residual” misalignment. It will affect
the hit positions and the track reconstruction. Hopefully the effect is
small

REALITY APPARENT AFTER ALIGNMENT
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Alignment by ¥x? minimization

* Need to determine 6 alignment parameters per module

- Require the minimum condition w.r.t. the alignment parameters

dr,
da

T
V'r,=0

dx’
=0 —
da ;‘

gy dri/da, ... drlda,

da ; h :
drylda, ... drylday

10/09/09 Track fitting and alignment
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Alignment by ¥x? minimization

* Now... the residuals derivative contain a nested dependence
- Residuals depend on track parameters and alignment parameters
— And track parameters depend on their turn on alignment parameters

/’/' da
T :
e orhe da %
e F -
a’ﬂ Dn o
iy 2Pl \T\

- e

" |

- Mathematically this means:

d"_ﬂda—i—ﬂdn- - dr_5r+8r d 1t

" Oa ok 1 da da Omda

* Actually this is equivalent to a track refit when alignment parameters change
-1

dr_ |[dr| [dr)| |(dr| ,-or

da dTr dT dm oa

track fit matrix

- Again, the derivatives can be computed analytically or numerically

-1
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Alignment by ¥x? minimization

or

* Now... use the first order Taylor expansion r=r(a,)+
- Neglect second order derivatives
- Compute track parameters, residuals and derivatives with an initial set of
alignment constants aj

* The alignment solution:

T -1

V—l

T

dr T

da

or
oa

dr

oa=— —
da

* The alignment matrix can be huge !
* ATLAS silicon tracker (pixel + microstrips) 36K x 36K — 4.5 GB
« CMS tracker: ~100K x 100K (size grows a N,?)

- Inversion time:

* Tests in ALINEATOR (4-core, 32 GB, parallel) @ IFIC-Valencia
- Full & dense matrix > 1 day (time grows as ~N,3)
- Correlation matrix of a available

* |In a commercial PC:
- Fast inversion of sparse matrix ~1 min
— No correlation matrix available
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Alignment by ¥x? minimization

 Solving the alignment. Two approaches: Globalx? vs Localx?

- Globalx? :module correlation is taken into account by dmmda
* Alignment matrix becomes dense

- Localx?: dimda = 0 module correlation is not considered
* Alignment matrix becomes block diagonal
* Alignment matrix inversion is not an issue

* More iterations are needed
" [BigMatrix|  [Enwies 7 ] r

________________________________

SCT (ECA)

Example of GlobalX? matrix
Example of LocalX? matrix

 Adding constraints. The alignment x? accepts constraint terms
- Track parameters: beam spot, invariant masses, E/p for electrons ?
- Alignment parameters: Assembly survey, online laser survey, soft mode

cuts,...
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Alignment strateqgy

* Alignment algorithm is run in an iterative procedure
— Until convergence is reached
- [Each iteration may take several hours (up to 1 day)

Esquema del Globaly?
GEleccién del nivel de Ajuste de los pardmetros de las trazas: G

alineamiento: dx2 Plano ZY Plano XY Ajuste de los pardmetros de alineamiento:
- N1 PIX: 1 estructura Y.
- N1 SCT: capas y EC
- I\:Z: Capas y discos X a= Ty, Ty, TR Ry, R,
- N3: Médulos . \ £ \%
(Se estdn implementando X Z
niveles intermedios) dn

Evaluacién de da
T -1 T
ar ar ar
Definicién del y*: Minimizacién respecto a los oa = 2 (%) W &:1] [ 2 (E] Wr]
xz - 2 r' (r,a)V 'r(n,a) pardmetros de alineamiento: trazas trazas
Trazas dy’ ax'dm dx
. da " om da’ da Notacién o
No convergencia: - e [ i)rw ar v= 2 EWr
ﬂ=an+aﬁ i =~ &' &J irgzEr
— Correcciones a los , _ _ ,
Srantrns da W incluye informacion de la matriz de
Si alcanzamos la convergenci par . . covariancias y de la variacion de los residuos en
Ba=~06 X2 no cambia alineamiento: funcién de los pardmetros de las trazas
da=-M'v -
Constantes finales de alineamiento Mélod'ns de 'resnluc.zérL.
Inversién, diagonalizacién,
acondicionamiento de la matriz,...
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Alignment strateqgy

* The alignment procedure mimics the detector assembly structures

Level 1 (4 alignable siructures )

- From large structures
* PIX, SCT,
* Barrel, End caps
* Layers, disks
* Staves, rings

— To individual modules

The size of corrections

- Large structures
* mm and mrad

- Staves
* 100s microns

- Modules
* 10s microns

Statistics needed:
- Large structures: O(1000)

10/09/09

- Staves: 0(10,000)

-~ Modules: O(1,000,000)

Track fitting and alignment

Level 2 (31 alignable siruciures )

level 27 (292 shwetoresy—

Level 3 (5832 alignable struchures )

Y - S——

Level 1: 4 struct. — 24 Dofs
PIX: complete detector
SCT: 1 barrel + 2 end caps

Level 1.8: 14 struct. — 84 Dofs
PIX: (B) 3x2 half layers + 2 EC
SCT: (B) 4 layers + 2 EC

Level 2: 31 struct. = 186 Dofs
PIX: (B) 3 layers + 2x3 EC disks
SCT: (B) 4 layers + 2x9 EC disks

Level 2.7: 292 struct = 1752 Dofs
PIX: (B) 112 staves + 2 EC
SCT: (B) 176 staves + 2 EC

Level 3: 5832 struct = 34992 Dofs
PIX: (B) 1456 + (EC) 2x144
SCT: (B) 2112 + (EC) 2x988
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Alignment systematics

Weak modes: these are solutions of the alignment that do not
correspond with real movements, but that preserve the helicoidal
path of the tracks, leaving the track x? almost unchanged

Twist
//' '// Misalignment

i
H AP =cZ
-

Examples of weak modes: cu

Misalignment
A® =cR + /R
Large: 300 um

\\ - N \\ Large: 300 um
Small: Aligned
Telescope

Elliptical
Misalignment ——=—x /f_ﬁ Misalignment
AZ =cR = —- &/ AR = c.Rcos(20)/2
: \/ Large: = 1000 ym

Large: 3000 pm

Small: Aligned

Small: 300 ym Small: £ 250 ym

Material effects:

- In order to achieve a resolution of the alignment corrections down to 1
micron one needs to consider closely the material effects in the track
reconstruction.

— The material description must be accurate and all operational conditions
under control

- Detector deformation: out of plane twisting and bending (planar silicon

devices), wire sag (gas systems)
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Alignment summary

The goal of the ID alignment is to determine the position of the

tracking modules with enough precision for the physics analysis

— This requires precision below 10 microns (ultimate goal 1 micron)

— Determination of almost 40K ATLAS & 100K CMS degrees of freedom
* 6 per module (Tx, Ty, Tz, Rx, Ry, and Rz)

Track based alignment algorithms can reach good precision
— Combination almost mandatory with survey constraints
— Track parameters constraints

Study of random and systematic deformations is difficult to tackle

ATLAS & CMS alignment of tracking systems ready
for first LHC collisions

Thanks to: Carlos Escobar, Vicente Lacuesta and Regina Moles
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