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O U T L I N E
• Overview: ML and its applications 

• Introduction to Artificial Neural Networks 

• Supervised learning 

• Neural networks 

• (Stochastic) gradient descent  

• Backpropagation (chain rule) 

• Practicalities: overfitting, hyperparameter optimization 

• Tools 

• ML: Keras/TensorFlow, PyTorch 
• CMS/HEP: rootpy, root_numpy 

• Exercises 
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“All the impressive achievements of deep learning 
amount to just curve fitting.” 

-Judea Pearl
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W H AT  I S  M A C H I N E  L E A R N I N G ?
• Learning mathematical models from data that  

• characterize the patterns, regularities, and relationships 
amongst variables in the system  

• Three key components: 

• Model: chosen mathematical model (depends on the 
task / available data) 

• Learning: estimate statistical model from data  

• Prediction and Inference: using statistical model to 
make predictions on new data points and infer 
properties of system(s) 
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M A C H I N E  L E A R N I N G  A P P S
• Many applications in HEP: 

• Convolutional neural networks using an analogy between 
calorimeters and images 

• Recursive neural networks built upon an analogy between 
QCD and natural languages 

• …
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FIG. 1. QCD-motivated recursive jet embedding for classifi-
cation. For each individual jet, the embedding hjet

1 (tj) is com-
puted recursively from the root node down to the outer nodes
of the binary tree tj . The resulting embedding is chained to
a subsequent classifier, as illustrated in the top part of the
figure. The topology of the network in the bottom part is
distinct for each jet and is determined by a sequential recom-
bination jet algorithm (e.g., kt clustering).

B. Full events

We now embed entire events e of variable size by feed-
ing the embeddings of their individual jets to an event-
level sequence-based recurrent neural network.

As an illustrative example, we consider here a gated re-
current unit [21] (GRU) operating on the pT ordered se-
quence of pairs (v(tj),h

jet
1 (tj)), for j = 1, . . . ,M , where

v(tj) is the unprocessed 4-momentum of the jet tj and

hjet
1 (tj) is its embedding. The final output hevent

M
(e) (see

Appendix B for details) of the GRU is chained to a subse-
quent classifier to solve an event-level classification task.
Again, all parameters (i.e., of the inner jet embedding
function, of the GRU, and of the classifier) are learned
jointly using backpropagation through structure [9] to
minimize the loss Levent. Figure 2 provides a schematic
of the full classification model. In summary, combining
two levels of recurrence provides a QCD-motivated event-
level embedding that e↵ectively operates at the hadron-
level for all the particles in the event.

In addition and for the purpose of comparison, we
also consider the simpler baselines where i) only the 4-
momenta v(tj) of the jets are given as input to the GRU,
without augmentation with their embeddings, and ii) the
4-momenta vi of the constituents of the event are all di-
rectly given as input to the GRU, without grouping them
into jets or providing the jet embeddings.

IV. DATA, PREPROCESSING AND
EXPERIMENTAL SETUP

In order to focus attention on the impact of the
network architectures and the projection of input 4-
momenta into images, we consider the same boosted W
tagging example as used in Refs. [1, 2, 4, 6]. The signal
(y = 1) corresponds to a hadronically decaying W boson
with 200 < pT < 500 GeV, while the background (y = 0)
corresponds to a QCD jet with the same range of pT .
We are grateful to the authors of Ref. [6] for shar-

ing the data used in their studies. We obtained both
the full-event records from their PYTHIA benchmark sam-
ples, including both the particle-level data and the tow-
ers from the DELPHES detector simulation. In addition,
we obtained the fully processed jet images of 25⇥25 pix-
els, which include the initial R = 1 anti-kt jet clustering
and subsequent trimming, translation, pixelisation, rota-
tion, reflection, cropping, and normalization preprocess-
ing stages detailed in Ref. [2, 6].

Our training data was collected by sampling from the
original data a total of 100,000 signal and background jets
with equal prior. The testing data was assembled sim-
ilarly by sampling 100,000 signal and background jets,
without overlap with the training data. For direct com-
parison with Ref. [6], performance is evaluated at test
time within the restricted window of 250 < pT < 300
and 50  m  110, where the signal and background jets
are re-weighted to produce flat pT distributions. Results
are reported in terms of the area under the ROC curve
(ROC AUC) and of background rejection (i.e., 1/FPR) at
50% signal e�ciency (R✏=50%). Average scores reported
include uncertainty estimates that come from training 30
models with distinct initial random seeds. About 2% of
the models had technical problems during training (e.g.,
due to numerical errors), so we applied a simple algo-
rithm to ensure robustness: we discarded models whose
R✏=50% was outside of 3 standard deviations of the mean,
where the mean and standard deviation were estimated
excluding the five best and worst performing models.

For our jet-level experiments we consider as input to
the classifiers the 4-momenta vi from both the particle-
level data and the DELPHES towers. We also compare the
performance with and without the projection of those
4-momenta into images. While the image data already
included the full pre-processing steps, when considering
particle-level and tower inputs we performed the initial
R = 1 anti-kt jet clustering to identify the constituents of
the highest pT jet t1 of each event, and then performed
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 
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Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

[L. de Oliveira, et al. arXiv:1511.05190]
[G. Louppe, et al. 
arXiv:1702.00748]
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T Y P E S  O F  L E A R N I N G

• Unsupervised Learning 

• Clustering  

• Dimensional reduction 

• … 

• Supervised Learning 
• Classification  

• Regression 
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Supervised Learning 

•  Given N examples with features {xi ∈ X} and  
targets {yi ∈  Y}, learn function mapping h(x)=y 

–  Classification: Y is a finite set of  labels (i.e. classes) 
      

     

   Y = {0, 1}  for binary classification,  
      encoding classes, e.g. Higgs vs  Background 

 
 

   Y = {c1, c2, … cn} for multi-class classification 
 

    represent with “one-hot-vector”   
 

      �  yi = (0, 0,…, 1 ,…0)  
 

    were kth element is 1 and all others zero for class ck 

18	S U P E R V I S E D  L E A R N I N G
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S U P E R V I S E D  L E A R N I N G

• Example: jet mass, b-tag score
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Supervised Learning: How does it work? 

•  Design function with adjustable parameters 

•  Design a Loss function 

•  Find best parameters which minimize loss 
–  Use a labeled training-set to compute loss 

–  Adjust parameters to reduce loss function 

–  Repeat until parameters stabilize 

•  Estimate final performance on test-set 

26	
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•  Design function with adjustable parameters 
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A neural network!
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N E U R A L  N E T W O R K

• Universal approximation theorem: 

• Simple neural networks can 
represent a wide variety of 
complicated functions. 

• Neural network layer: an MxN 
matrix taking an input vector of 
length M outputs a vector of 
length N.



• Multiple layers: output of previous layer is fed forward to next layer 
after applying non-linear activation function 

• Fully connected: many independent weights 

• Learning: Use analytic derivatives and  
stochastic gradient descent to find optimal  
weights

!14

N E U R A L  N E T W O R K

Inputs

Hidden layers

Outputs

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)
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Hidden layers

(hypothesis space)
all possible functions

32

neural networks are universal function approximators, 
but we still must find an optimal approximating function

we do so by adjusting the weights

optimal 
approximating 

function
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learning as optimization

Loss

Weight 
Parameter

to learn the weights, we need the derivative of the loss w.r.t. the weight
i.e. “how should the weight be updated to decrease the loss?”

w = w � ↵
@L
@w

with multiple weights, we need the gradient of the loss w.r.t. the weights

w = w � ↵rwL

!16

L E A R N I N G  =  O P T I M I Z AT I O N
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S T O C H A S T I C  G R A D I E N T  D E S C E N T

52

optimization

local minima and saddle points are largely not an issue

stochastic gradient descent (SGD): 
use stochastic gradient estimate to descend the surface of the loss function

w = w � ↵r̃wL

recent variants use additional terms to maintain“memory” of  
previous gradient information and scale gradients per parameter

in many dimensions, can move in exponentially more directions

http://sebastianruder.com/optimizing-gradient-descent/index.html

See animated gifs: http://ruder.io/optimizing-gradient-descent/

http://ruder.io/optimizing-gradient-descent/
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B A C K P R O PA G AT I O N

Hidden layers
34

backpropagation

use chain rule to calculate gradients

a neural network defines a function of composed operations

fL(wL, fL�1(wL�1, . . . f1(w1,x) . . . ))

chain rule example

input parametersx

evaluate parameter derivatives:

y = w2e
w1x

w1, w2

@y

@w1
,
@y

@w2

output y

define

v ⌘ ew1x

u ⌘ w1x

y = w2v

v = eu

then
@y

@w2
= v = ew1x

@y

@w1
=

@y

@v

@v

@u

@u

@w1
= w2 · ew1x · x

chain rule

and the loss      is a function of the network outputL



!19

B A C K P R O PA G AT I O N
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backpropagation

L
x(L)s(L)

W(L)

x(L�1)

TARGET

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

rW(L)L ⌘ @L
@W(L)

note is notational convention

depends on the 
form of the loss

derivative of the 
non-linearity

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)



• Main task is computer vision/image recognition 

• Control the number of parameters by baking in assumptions 
like locality and translation invariance to share weights within 
a layer

!20

C O N V O L U T I O N A L  N E T W O R K S

Krizhevsky, et al.

NIPS 4824

8 layers 
0.7 GFLOPs 

62 million parameters 
(94% are in FC layers)

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


!21

Input

Output
Filter

++

• Filter moves across input dimension

• c0 = f0*i-1 + f1*i0 + f2*i1


• Example hyper-parameter settings:

• Input size = 4

• Number of channels = 3

• Filter size = 3

• “Same” / “Half” zero padding

• Number of filters = 2

• Output size = 4

1 D  C O N V O L U T I O N A L  L AY E R



P R A C T I C A L I T I E S
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O V E R F I T T I N G

• Split data to training/validation/test sets: 

•  After each epoch (one iteration of 
training on the whole dataset), 
validate the model on the validation 
set. Stop training early when 
overfitting appears.  

• Benchmark final model on the test set.

Epoch
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D R O P O U T

• Randomly remove connections between layers  

• Effective against overfitting.

Srivastava et. al. 
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http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf


H Y P E R PA R A M E T E R  O P T I M I Z AT I O N

• Hyperparameters: Initial parameters to design the 
neural networks, not learnable via SGD.  

• Example: Number of hidden layers, number of 
neurons in each layer, learning rate, etc. 

• Solutions: Random search, grid search, Bayesian 
optimization, evolutionary algorithm. 

• Minimize f(x) where x: set of hyperparameters, f(x): 
model performance given the set of 
hyperparameters.
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B AY E S I A N  O P T I M I Z AT I O N

• Objective: Find the optimal point in hyperparameter space x that minimizes 
the objective function y = f(x). 

• Bayesian optimization: fit the distribution {yn = f(xn)}n=1..N with Gaussian 
process regression, predict the next value xN+1 that offers the best expected 
improvement on y.  

• x = set of hyperparameters 

• f(x) = final validation loss or negative validation accuracy of the model 
trained with given set of hyperparameters x.

Bayesian 
Optimization Training

Hyperparameters xn

Figure of merit yn

GP regression

Hyperparameters xn+1

Figure of merit yn+1
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G P U  V S  C P U

• GPUs: specialized hardware originally created to render games 
in high frame rates.  

• Graphics texturing and shading require a lot of matrix and 
vector operations executed in parallel. 

• Deep learning also requires super fast matrix computations. 

IMCL 2009

http://www.machinelearning.org/archive/icml2009/papers/218.pdf


T O O L S

C M G

!28



T O O L S

• Python 

• NumPy: http://www.numpy.org/ 

• SciPy: https://www.scipy.org/ 

• Machine Learning 

• scikit-learn: http://scikit-learn.org/ 

• Keras: https://keras.io/ 

• PyTorch: https://pytorch.org/ 

• CMS/HEP 

• root_numpy: http://scikit-hep.org/root_numpy/ 

• uproot: https://github.com/scikit-hep/uproot
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W H Y  P Y T O R C H ?

• No pre-compilation, easy to print out and debug. 

• Native support for multiple-GPUs. 

• Maximum flexibility in prototype & implementation.
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• https://github.com/thongonary/
machine_learning_vbscan


