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An Introduction 
to Machine Learning
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What Is Machine Learning

“Giving computers the ability to learn without explicitly programming
them” A. Samuel (1959).

Is fitting a straight line machine learning ?
Models that have enough capacity to define its own internal
representation of the data to accomplish a task : learning from data.

In practice : a statistical method that can extract information from the
data, not obviously apparent to an observer.

➔ Most approach will involve a mathematical model and a cost/reward
function that needs to be optimized.

➔ The more domain knowledge is incorporated, the better.
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Overview

Yann Le cun, CERN 2016
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Supervised Learning

● Given a dataset of samples, a subset of features is qualified as
target, and the rest as input

● Find a mapping from input to target
● The mapping should generalize to any extension of the given

dataset, provided it is generated from the same mechanism

● Finite set of target values : 
➔ Classification

● Target is a continuous variable : 
➔ Regression

dataset≡{( xi , y i)}i
find function f s.t. f (x i)= y i
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Unsupervised Learning

● Given a dataset of samples, but there is no subset of feature
that one would like to predict

● Find mapping of the samples to a lower dimension manifold
● The mapping should generalize to any extension of the given

dataset, provided it is generated from the same mechanism

● Manifold is a finite set 
➔ Clusterization

● Manifold is a lower dimension manifold : 
➔ Dimensionality reduction, 

density estimator

dataset≡{(xi)}i
find f s.t. f (x i)= pi
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Reinforcement Learning

● Given an environment with multiple states, given a
reward upon action being taken over a state

● Find an action policy to drive the environment toward
maximum cumulative reward

st+1=Env(st , at)
r t=Rew (st , at)

π(a∣s)=P (At=a∣S t=s)
find π s.t.∑

t

r t is maximum
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Motivation

Classical (read not deep-learning) machine learning has been around for
long and used at many level in science.

Artificial neural network : a.k.a “Deep learning” is now very present in data-
science thanks to :

 Increased computation power through general purpose graphical
processing units (GP-GPU)

 Increased dataset size through the internet-of-things (IOT)
 Improved models architectures (relu activation, convolution, …)

➔ It became possible to train models with millions of parameters on
dataset with millions of samples, each with multiple thousands of
pixels 

➔ It became possible to extract very complex correlations, otherwise
cumbersome to model.
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Machine Learning in Industry

https://www.nvidia.com/en-us/deep-learning-ai/ 

http://www.shivonzilis.com/machineintelligence 

● Prominent field in industry nowadays
● Lots of data, lots of applications, lots of

potential use cases, lots of money
➔ Knowing machine learning can open

significantly your career horizons

https://www.nvidia.com/en-us/deep-learning-ai/
http://www.shivonzilis.com/machineintelligence


01/31/20
Machine Learning in HEP,

CMS Induction, Jan 2020, J.-R. Vlimant
11

(Some) Machine Learning Methods

http://scikit-learn.org/stable/tutorial/index.html 

http://scikit-learn.org/stable/tutorial/index.html
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Decision Tree
● Decision trees is a well known tool in supervised learning.
● It has the advantage of being easily interpretable
● Can be used for classification or regression
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Artificial Neural Network
● Biology inspired analytical model, but not bio-mimetic
● Booming in recent decade thanks to large dataset, increased computational

power and theoretical novelties
● Origin tied to logistic regression with change of data representation
● Part of any “deep learning” model nowadays
● Usually large number of parameters trained with stochastic gradient

descent

h=ϕ(Ux+v)
o(x)=ωT h+b

pi≡ p( y=1∣x)≡σ(o(x))= 1

1+e−o(x)

lossXE=−∑
i

y i ln ( pi)+(1− yi) ln (1− pi)



01/31/20
Machine Learning in HEP,

CMS Induction, Jan 2020, J.-R. Vlimant
14

Neural Net Architectures
http://www.asimovinstitute.org/neural-network-zoo

➢ Does not cover it all : densenet, graph network, ...

http://www.asimovinstitute.org/neural-network-zoo


01/31/20
Machine Learning in HEP,

CMS Induction, Jan 2020, J.-R. Vlimant
15

Spiking Neural Network
● Closer to the actual biological brain
● Adapted to temporal data
● Hardware implementation with low power

consumption  
● Trained using evolutionary algorithms
● Economical models 
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Take Home Message

Machine learning helps with tasks on complex dataset, with
complex/unknown correlations.

Large potential for applications in science.

Desired knowledge/skill for career path in industry.
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Motivations for Using 
Machine Learning in High Energy Physics
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Operation Vectorization

ANN ≡ matrix operations  ≡ parallelizable

Computation of prediction from artificial neural network model can be
vectorized to a large extend.
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Hyper-Fast Prediction

Synthesizing FPGA firmware from trained ANN
https://hls-fpga-machine-learning.github.io/hls4ml/ 

J. Duarte et al.https://arxiv.org/abs/1804.06913 

Prediction from artificial neural network model can be
done on FPGA, GPU, TPU, ...

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
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Low Power Prediction

Neuromorphic hardware dedicated to spiking neural networks.
Low power consumption by design.

Slide C. Schumanhttps://indico.fnal.gov/event/13497/contribution/0 

https://indico.fnal.gov/event/13497/contribution/0
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Physics Knowledge 

Machine Learning can help understand Physics.

P. Komiske, E. Metodiev, J. Thaler, https://arxiv.org/abs/1810.05165 

https://arxiv.org/abs/1810.05165
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Use Physics

Let me model include Physics principles to
master convergence

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia https://arxiv.org/abs/1909.12790 

https://arxiv.org/abs/1909.12790
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Learning from Complexity

“Simple” machine learning model can extract information
from complex dataset.

More classical algorithm counter part may
 take years of development. 
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Event Triggering

Select what is important to keep for analysis.
Ultra fast decision in hardware and software.

Reconstruction(s) of the event under limited latency.
Better resolution help lowering background trigger rates.

Enabling approximate, deep learning algorithms can help.
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From digital signal, to local hits, to a sequence of particles, jets, and high-level features.
Complex and computing intensive task that could find a match in ML application.

Detector
Data

Detector Data Local reconstruction Jet ClusteringParticle
representation

High level features

Event Processing

Dimensionality reduction

Globalization of information

From RAW to High Level Features
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Simulating Collisions
Event Generator: compute predictions of the standard models to several
orders of expansion in coupling constants (LO, NLO, NNLO, ...) using proton
density functions.

Hadronization: phenomenological model of the evolution of hadrons under the
effect of QCD.

Material simulator: transports all particles throughout meters of detector,
using high resolution geometrical description of the materials.

Electronic emulator: converts simulated energy deposits in sensitive material,
into the expected electronic signal, including noise from the detector.

Madgraph,
Pythia,
Sherpa, ...

Pythia, ...

GEANT 4,
GEANT V

Homegrown
software

Non-differentiable sequence of complex simulators of the signal expected from the detectors. 
Computing intensive task, exceeding budget for reconstruction.
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Possible Utilizations

Accuracy Speed

Interpretable

➔ Fast surrogate models (trigger, simulation, ...) for computing restricted algorithms.
➔ Model more accurate than existing algorithms (tagging, ...)
➔ Model performing otherwise impossible tasks (operations, ...)
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Take Home Message

Model prediction can be fast and help with computing restrictions.

HEP data representation is multi-trait and match with wide range of
existing tools. 

Machine learning can help with extracting better physics knowledge
from data.
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360º of Pitfalls
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Machine Learning Concept

Dataset Model

Objective
function

Optimization Method

Predictive
model

All comes down to an optimization problem.
What follows are some of the things to keep an eye

on when developing a machine learning solution
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Cross Validation

● Model selection requires to have an estimate of the uncertainty on the metric
used for comparison

➢ K-folding provides an un-biased way of comparing models
● Stratified splitting (conserving category fractions) protects from large variance

coming from biased training
● Leave-one-out cross validation : number folds ≡ sample size
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Under-fitting

● Poor model performance can be explained 
 Lack of modeling capacity (not enough parameters,

inappropriate parametrization, …)
 Model parameters have not reached optimal values
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Need for Data
● “What is the best performance one can get ?” rarely has an answer
● When comparing multiple models, one can answer “what is the best of

these models, for this given dataset ?”
● It does not answer “what is the best model at this task ?” 
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Over-fitting

● “Too good to be true” model performance can be explained 
➢ Excessive modeling capacity (too many parameters, parametrization is too

flexible, ...)
➢ Model parameters have learn the trained data by heart

● Characterized by very good performance on the training set and (much) lower
performance on unseen dataset 
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Generalization
● Systematic error ≡ bias
● Sensitivity of prediction ≡ variance
● A good model is a tradeof of both
➢ Early stopping can help with halting the model 
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Figure(s) of Merit(s)

● Objective function in optimization might be chosen for
computational reason (differentiable, …)

● Objective function might only be a proxy to the actual figure
of merit of the problem at hand

● Multi-objective optimization is subject to trade-off between
objectives

➢ While model optimization is based on the loss function over the
training set, following the evolution of a more interesting metric
over the validation can help selecting models that are better for
the use case
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Class Imbalance

● In many cases the number of samples varies significantly from class to class
● Class imbalance biases the performance on the minority class
● Multiple ways to tackle the issue

➢ Over-sample the minority class
➢ Synthetic minority over-sampling
➢ Under-sample the majority class
➢ Weighted loss function
➢ Active learning

● NB: metrics can be sensitive to class imbalance and be misguiding if not
correct : e.g. 99% accuracy with 0% recall 
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Training

● Training phase or learning phase is when the parameters of the model are
adujsted to best solve the problem

● For some model/technique (especially deep learning) this can become
computationally prohibitive

● General purpose graphical processing units (GP-GPU) offer an enormous
amount of parallel compute power, applicable to specific numerical problems

● Matrix calculation, minibatch computation, deep learning, … can get a
significant boost from GP-GPU.

● Further parallelization can be obtained across multiple nodes/GPU using 



01/31/20
Machine Learning in HEP,

CMS Induction, Jan 2020, J.-R. Vlimant
39

Hyper-parameter Optimization
● Most optimization methods and models require hyperparameters 

 number of layers in an ANN, number of leaves in a decision tree,
learning rates, …

● In most cases these parameters cannot be optimized while the model
is trained

● Their values can however significantly influence the final performance

➢ These can be optimize in various ways
 Simple grid search
 Bayesian optimization
 Evolutionary algorithm

➢ Model comparison should be done very carefully
 K-folding is a “must”
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Cost of Running the Model
● Contrary to training, making prediction from a trained model is usually

rather fast, even on CPU
● However fast is may be, it might still not be fast enough for the

particular application
● Faster inference can be obtained on specialized hardware GP-GPU,

TPU, FPGA, neuromorphic, … when the application allows it (trigger,
onboard electronics, ...)

75 ns

https://hls-fpga-machine-learning.github.io/hls4ml/ 

https://hls-fpga-machine-learning.github.io/hls4ml/
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Take Home Message

Machine learning applications need to be developed with scientific rigor.

Lots of interesting studies possible on statistics/theory of learning.

Keep an eye on cost of prediction.
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Machine Learning in CMS
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Take Home Message

Model prediction can be fast and help with computing restrictions.

HEP data representation is multi-trait and match with wide range of
existing tools. 

Machine learning can help with extracting better physics knowledge
from data.
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Particle Identification
with ML
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electron
photon

JINST 13 (2018) P10005

tau

Particle Id

Object-level features boosted
decision tree classification.

Analysis specific Muon
identification with MVA.

https://cds.cern.ch/record/2629363 https://cds.cern.ch/record/2037370/ 

http://dx.doi.org/10.1088/1748-0221/13/10/P10005
https://cds.cern.ch/record/2629363
https://cds.cern.ch/record/2037370/
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Tau-id with DNN

http://cds.cern.ch/record/2669190?ln=en 

Tau jet features MVA

Particle DNN

τ
had

 Identification

Combine the jet and particle features.
Reduction of fake hadronic taus.

http://ceur-ws.org/Vol-2507/84-88-paper-13.pdf 

Combines jet and particle-image features.
Less fakes, more hadronic taus.

http://cds.cern.ch/record/2669190?ln=en
http://ceur-ws.org/Vol-2507/84-88-paper-13.pdf
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Jet Tagging
with ML

Extended studies in
https://cds.cern.ch/record/2683870 

https://cds.cern.ch/record/2683870
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Jet Tagging

https://cds.cern.ch/record/2275226/

q/g

Jet-level features in a boosted
decision tree for Quark/Gluon

discrimination.

Combining jet-level, vertex-level
and track-level features in FC

neural net.

l/b/c

http://cds.cern.ch/record/2255736 

https://cds.cern.ch/record/2275226/
http://cds.cern.ch/record/2255736
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Higgs Tagging

http://cds.cern.ch/record/2630438/ 

bb/cc

Combining jet-level, track-level  and
vertex-level features in

Conv1D/GRU/FC neural net.
https://cds.cern.ch/record/2682638 

Combines particle and secondary
vertex features in Conv1D/FC

bb/cc

http://cds.cern.ch/record/2630438/
https://cds.cern.ch/record/2682638
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Jet x-Tagging

https://cds.cern.ch/record/2275226/

Jet-level features computed in
hypothesized rest frame in dense

multi-class neural net.

l/t/W/Z/H

https://cds.cern.ch/record/2627468 

b/c/l/g

Jet-level, vertex-level and particle-
level features in Conv1D/LSTM/FC

multi-class neural net. 

https://cds.cern.ch/record/2275226/
https://cds.cern.ch/record/2627468
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Top Tagging

http://cds.cern.ch/record/2295725 

top

Combining particle-level, track-level
and vertex-level features in

Conv1D/FC neural net.

top

Combining particle-image and
subjet tagging features with

CNN/FC neural net.

https://cds.cern.ch/record/2683870 

http://cds.cern.ch/record/2295725
https://cds.cern.ch/record/2683870
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Mass Decorrelation

Decorrelates the model output from targeted quantities. 

https://arxiv.org/abs/1611.01046 
https://arxiv.org/abs/1409.7495 

Slide J. Duarte

https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/1409.7495
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Decorrelation Performance

http://inspirehep.net/record/1746161 
https://indico.cern.ch/event/836360/ 

Slide L. Gouskos

http://inspirehep.net/record/1746161
https://indico.cern.ch/event/836360/
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Data/MC Agreement

Mitigates the modeling discrepancies of discriminant between
data and simulation

flatter

Training region

flatter

Control region

http://cds.cern.ch/record/2705632 

http://cds.cern.ch/record/2705632
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Energy Regression
with ML
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Higgs to gamma2 

Classifier

regression

Per photon boosted decision tree based
prediction of energy and resolution with

semi-parametrized loss function.
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Fully connected jet-level features neural network predicts the jet
energy correction and resolution using quantile regression .

~20% improvement on Higgs mass resolution. 

b-jet Energy & Resolution

https://cds.cern.ch/record/2690804 

https://doi.org/10.1103/PhysRevLett.121.121801 

https://cds.cern.ch/record/2690804
https://doi.org/10.1103/PhysRevLett.121.121801
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Analysis
with ML
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Increased Sensitivity

https://cds.cern.ch/record/2636067 

H→bb

https://cds.cern.ch/record/2312113 

ttH

https://cds.cern.ch/record/2278570 

Increased sensitivity of analysis with BDT/NN signal extraction.
Would require more data otherwise.

X→HH

http://cds.cern.ch/record/2668320 

WW

http://cds.cern.ch/record/2667222 

H±→tb

https://cds.cern.ch/record/2636067
https://cds.cern.ch/record/2312113
https://cds.cern.ch/record/2278570
http://cds.cern.ch/record/2668320
http://cds.cern.ch/record/2667222
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Multi-category Classification

https://cds.cern.ch/record/2308267 

Regular analysis fit categories sub-divided using DNN
output nodes for added sensitivity. 

Slide M. Rieger

https://cds.cern.ch/record/2308267
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Monitoring
with ML
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Muon DT Quality Monitor

https://arxiv.org/abs/1808.00911 

Unsupervised and supervised methods to identify
alarming patterns in the muon drift tubes chambers.

https://arxiv.org/abs/1808.00911
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Take Home Message

Deep Learning primarily deployed in Jet tagging within CMS.

Increased use of neural networks in analysis.

Emerging applications in other areas of doing physics at CMS.
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Machine Learning R&D in CMS
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Charged Particle Tracking R&D



01/31/20
Machine Learning in HEP,

CMS Induction, Jan 2020, J.-R. Vlimant
66

Seed Cleaning
● Categorization of hits doublet

using the pixel cluster shapes
as input

● Significantly reduce timing in
pattern recognition

https://indico.cern.ch/event/742793/contributions/3298727 

https://indico.cern.ch/event/742793/contributions/3298727
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Seed Finding in Jets

https://indico.cern.ch/event/742793/contributions/3274301/

● Predict tracklets parameters from raw pixels using CNN
● Approaching the maximum performance

https://indico.cern.ch/event/742793/contributions/3274301/
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Track Quality with DNN

Simplifies and improves track selection within the
scope of CMS iterative tracking

BDT
DNN

BDT
DNN

https://indico.cern.ch/event/658267/contributions/2813693/ 

https://indico.cern.ch/event/658267/contributions/2813693/
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Calorimeter – Jet
R&D
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HCAL Energy

Learn the pre-pileup energy deposition in a regression from the
sampled pulse shape.

https://indico.cern.ch/event/797510/ 

https://indico.cern.ch/event/797510/
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Tagging Scale Factor 

Learn per-jet data/MC
scale factor using

adversarial technique.

https://cds.cern.ch/record/2666647 

https://cds.cern.ch/record/2666647
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HGCal Reconstruction

https://indico.cern.ch/event/847990/ Slide J. Kieseler

Use of graph models to perform reconstruction
in the high granularity calorimeter.

Node clustering, Edge classification, node
segmentation, ...

https://indico.cern.ch/event/847990/
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end-2-end Mass Regression

https://indico.cern.ch/event/798721/contributions/3464782/ 

Learn the a/di-photon mass from the
energy deposition at the Ecal surface.

Unprecedented reach at low mass.

Slide M. Andrews

https://indico.cern.ch/event/798721/contributions/3464782/
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Particle Flow Reconstruction

Slide J. Pata

https://indico.cern.ch/event/884801/contributions/3730336/ 

Multiple possible objective for applying machine learning for particle flow.
Graph network appears to be the most appropriate.

https://indico.cern.ch/event/884801/contributions/3730336/
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Particle-Cloud Jets

https://tinyurl.com/y44ggt5b 
https://arxiv.org/abs/1902.08570 

https://arxiv.org/abs/1810.05165 

● Particle-flow jets are collection of
reconstructed particles

● Graph / point-cloud representation is
rather natural

● Connectivity of the graph depends on
the model https://arxiv.org/abs/1908.05318

https://arxiv.org/abs/1909.12285 

https://tinyurl.com/y44ggt5b
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
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Monitoring
R&D
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Data Quality Monitoring

https://indico.cern.ch/event/708041/contributions/3276189/ 

Catch anomalies in data taking
using auto-encoder of hundreds of

features 
Slide A. Pol

https://indico.cern.ch/event/708041/contributions/3276189/
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Trigger Rate Prediction

https://indico.cern.ch/event/708041/contributions/3276197/ 

Detect deviation of trigger rate
using variational auto-encoder on

high level trigger rate, and L1
trigger rate in latent space

https://indico.cern.ch/event/708041/contributions/3276197/
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Operation
R&D
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Data Popularity

https://arxiv.org/abs/1602.07226 

R&D on predicting popularity of analysis datasets, in a view to a
more efficient data placement.

Slide V. Kuznetsov

https://arxiv.org/abs/1602.07226
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Predicting Operator's Action

Challenging task of predicting the operator's action from
the information they are provided with.

https://indico.cern.ch/event/587955/contributions/2937424/ 

https://indico.cern.ch/event/587955/contributions/2937424/


01/31/20
Machine Learning in HEP,

CMS Induction, Jan 2020, J.-R. Vlimant
82

Outlooks
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ML in Operation

● Potential application of machine learning to operation and
reduce manpower needs, burden on operation, expedite
production of data from detector and simulation

➢ Detector control 
➢ Data quality
➢ Computing operation
➢ ...
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ML in Trigger

● Potential application of machine learning in data
acquisition and triggering

➢ Anomaly detection in data taking
➢ Unsupervised new physics mining
➢ Signal specific trigger paths
➢ Background and trigger rate reduction 
➢ ...
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ML in Reconstruction

● Event reconstruction, online and offline may be in part replaced by
surrogate models (approximate and faster) or by novel algorithm
(improved performance)

➢ Charged particle tracking (GNN, vertexing, ...)
➢ Calorimeter reconstruction (local, clustering, ...)
➢ Particle flow (GNN, ...)
➢ Particle identification (boosted jets, isolation, ...)
➢ Pileup mitigation
➢ Energy regression (end-2-end, ...)
➢ ...
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ML in Simulation

● Producing events through full/fast simulation is extremely
computing intensive, and limiting somehow how the Physics reach
of the experiment. ML may help reducing the load

➢ Calorimeter shower surrogate simulator
➢ Analysis level simulator
➢ Pile-up overlay generator
➢ Monte-carlo integration
➢ ML-fast-simulation
➢ Invertible full-simulation (probprog, ...)
➢ ...
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ML in Analysis

● ML has entered analysis long ago. Novel technics have been
published in HEP outside of experiments. Hard work of
bringing proof of concept to analysis

➢ Likelyhood free inference
➢ Background modeling technics
➢ Kinematic reconstruction
➢ Unsupervised new physics search
➢ ...
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ML Methodology

● ML as tool works very well empirically. Lots of understanding is
still required at the theoretical level. Science and physicists
may help several items

➢ Network compression
➢ Transfer learning
➢ Uncertainty quantification
➢ Interpretability
➢ Mechanism of convergence
➢ Incorporating domain knowledge 
➢ ...
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Take Home Message

Many applications of deep learning for high energy physics.

Many exciting projects to be done within CMS.

Keep the analysis/physics in line of sight.



01/31/20
Machine Learning in HEP,

CMS Induction, Jan 2020, J.-R. Vlimant
90

Summary

➔Machine learning as a personal asset to acquire
➔Field developing very rapidly

➔Powerful tool to boost and full the science
➔Increasing amount of deep learning applications for HEP 

➔Get involved with CMS Software, THEN apply ML

...
➔Do not loose sight of the physics/analysis
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Resource
Groups
● CML Machine Learning Forum : https://indico.cern.ch/category/9376/ 
● Hypernews : https://hypernews.cern.ch/HyperNews/CMS/get/machine-learning.html 
● IML : https://iml.web.cern.ch/
● CERN Openlab : https://indico.cern.ch/category/3169/ 
● Fermilab machine learning : https://machinelearning.fnal.gov/ 
● Fast machine learning lab : https://fastmachinelearning.org/ 
● AMVA4NP : https://amva4newphysics.wordpress.com 
● Dark Machines : http://darkmachines.org/ 
● NNPDF : http://nnpdf.mi.infn.it/

Conference
● Data Science in HEP series : https://indico.fnal.gov/event/13497/ (last)
● Hammers and Nails : http://www.weizmann.ac.il/conferences/SRitp/Aug2019/ (last)
● ML4JET Workshop series : https://indico.cern.ch/event/809820 (last)
● ACAT : https://indico.cern.ch/category/7679/ 
● Machine Learning and the Physical Science : https://ml4physicalsciences.github.io (last)
● CERN DS-IT Seminars : https://indico.cern.ch/category/9320/ 

Training
● CMS Data Analysis School : https://lpc.fnal.gov/programs/schools-workshops/cmsdas.shtml
● mPP deep learning training : https://indico.cern.ch/category/10066/ 
● Machine learning in High Energy Physics Schools : https://indico.cern.ch/event/838377/ (last)

Tools
● Scikit Learn : https://scikit-learn.org 
● Keras : https://keras.io/ 
● Tensorflow : https://www.tensorflow.org/ 
● Pytorch : https://pytorch.org/ 

Journals
● Computing and Software for Big Science (CSBS) : https://www.springer.com/journal/41781 
● Machine Learning: Science and Technology (MLST) : https://iopscience.iop.org/journal/2632-2153 
● Big data and AI for HEP (BDAI) : https://frontiersin.org/big-data-and-ai-in-high-energy-physics 

https://indico.cern.ch/category/9376/
https://hypernews.cern.ch/HyperNews/CMS/get/machine-learning.html
https://iml.web.cern.ch/
https://indico.cern.ch/category/3169/
https://machinelearning.fnal.gov/
https://fastmachinelearning.org/
https://amva4newphysics.wordpress.com/
http://darkmachines.org/
http://nnpdf.mi.infn.it/
https://indico.fnal.gov/event/13497/
http://www.weizmann.ac.il/conferences/SRitp/Aug2019/
https://indico.cern.ch/event/809820
https://indico.cern.ch/category/7679/
https://ml4physicalsciences.github.io/
https://indico.cern.ch/category/9320/
https://lpc.fnal.gov/programs/schools-workshops/cmsdas.shtml
https://indico.cern.ch/category/10066/
https://indico.cern.ch/event/838377/
https://scikit-learn.org/
https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://www.springer.com/journal/41781
https://iopscience.iop.org/journal/2632-2153
https://frontiersin.org/big-data-and-ai-in-high-energy-physics
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Model Prediction in CMSSW

Prediction from already trained models can be made
directly in CMS Software Framework.

ONNX on the fast side of things. 
TORCH api considered  

Chronologically
● Lightweight Trained Neural Network (LWTNN)

 https://github.com/lwtnn/lwtnn 
● Tensorflow (google)

https://www.tensorflow.org/ 
● Apache mxnet (opensource)

https://mxnet.apache.org/
● ONNX (Facebook and Microsoft)

https://onnx.ai 

https://github.com/lwtnn/lwtnn
https://www.tensorflow.org/
https://mxnet.apache.org/
https://onnx.ai/
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