

Jean-Roch Vlimant

Outline

An introduction to Machine Learning Motivations for Using ML in HEP >360° of pitfalls >Usage in CMS R&D in CMS >Outlooks

An Introduction to Machine Learning

01/31/20

Machine Learning in HEP, CMS Induction, Jan 2020, J.-R. Vlimant

What Is Machine Learning

"Giving computers the ability to learn without explicitly programming *them*" A. Samuel (1959).

Is fitting a straight line machine learning? Models that have enough capacity to define its own internal representation of the data to accomplish a task : learning from data.

In practice : a statistical method that can extract information from the data, not obviously apparent to an observer.

- Most approach will involve a mathematical model and a cost/reward function that needs to be **optimized**.
- → The more domain knowledge is incorporated, the better.

Overview

Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- 10→10,000 bits per sample

Unsupervised Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Yann Le cun, CERN 2016

Supervised Learning

- Given a dataset of samples, a subset of features is qualified as target, and the rest as input
- Find a mapping from input to target
- The mapping should generalize to any extension of the given dataset, provided it is generated from the same mechanism

$$dataset \equiv [(x_i, y_i)]_i$$

find function f s.t. $f(x_i) = y_i$

- Finite set of target values : Classification
- Target is a continuous variable :
 - → Regression

Unsupervised Learning

- Given a dataset of samples, but there is no subset of feature that one would like to predict
- Find mapping of the samples to a lower dimension manifold
- The mapping should generalize to any extension of the given dataset, provided it is generated from the same mechanism

$$dataset \equiv [(x_i)]_i$$

find f s.t. $f(x_i) = p_i$

- Manifold is a finite set → Clusterization
- Manifold is a lower dimension manifold :
 - Dimensionality reduction, density estimator

01/31/20

Reinforcement Learning

- Given an environment with multiple states, given a reward upon action being taken over a state
- Find an **action policy to drive** the environment toward maximum cumulative reward

$$s_{t+1} = Env(s_t, a_t)$$

$$r_t = Rew(s_t, a_t)$$

$$\pi(a|s) = P(A_t = a|S_t = s)$$

find π s.t. $\sum_t r_t$ is maximum

Motivation

Classical (read not deep-learning) machine learning has been around for long and **used at many level** in science.

Artificial neural network : a.k.a "Deep learning" is now very present in datascience thanks to :

- Increased computation power through general purpose graphical processing units (GP-GPU)
- Increased dataset size through the internet-of-things (IOT)
- Improved models architectures (relu activation, convolution, ...)
- It became possible to train models with millions of parameters on dataset with **millions of samples**, each with **multiple thousands of** pixels
- It became possible to extract very complex correlations, otherwise cumbersome to model.

Machine Learning in Industry

Deep Learning Everywhere

NTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

Cancer Cell Detection

MEDICINE & BIOLOGY

Diabetic Grading Drug Discovery

Video Captioning Video Search Real Time Translation

MEDIA & ENTERTAINMENT

SECURITY & DEFENSE AUTONOMOUS MACHINE Pedestrian Detection Lane Tracking Recognize Traffic Sign

Face Detection

Video Surveillance

Satellite Imagery

https://www.nvidia.com/en-us/deep-learning-ai/

MACHINE INTELLIGENCE 3.0

VISUAL Orbital Insight (Bignet darifa) & DEPVISION Orotrica @ligocian SPACE_KNOW Captricity) netra deepomatic	AUDIO (Constitution) (Consti	ITERPRISE INTELLIGE SENSOR PREDIX Ciglof MAANA Sonteroi @ PLANET OS UPTAKE @ MUBIT > Ratected is thingwork @ KONUK Alluvium	NCE INTERNAL DATA PREVACE IN INVATSON © Open Palantir ARIMO® Malation @sopho Quitler Digital Reasoning	MARKET
Digital Genius Kasisto CUSTOMER SUPPORT Digital Genius Kasisto CELOQUENT <i>Uliseia</i> ACTIONIO ^C aendesk al Powet ^C CLARABRIDCE	SALES collective[] Same fuse[machines AVISO salesforce respected Compart 2004	NTERPRISE FUNCTIO MARKETINO Slattice RACIUS Alinguier (PERSADO) Digitized Cittation Occonico Zalega Cittation	NS SECURITY CYL_ANCE COMBRITACE CHIPERIUM disgradiant Sentime Demistro graphistry drawbridge SignaSense AppZen	RECRUITING • textio erricio • vade « verdy hil] unifive Ø SpringRole @ oroster //w %
GROUND NAVIGATION drive al @AdasWorks 200X @77 Moonerer ©UER @Google Trealn @rationary Auto Rebotis	AUTONOMOUS SYSTE AERIAL SKYDIO Airware CJI LLY ToroneDoploy pilo?cai & SKYCATCH	MS INDUSTRIAL JAYBRIDGE OSARO ©LEARPATH & fetch KINJSES In HARVERT rebuilds	AG PERSONAL amazon alexa Cortana Allo facebook A Siri @ @ Repliko t	ENTS ROFESSIONAL Johutterai POGO SKIPFLAG Oclara X.ai Slack alla [®] Zoom® Sudo
AGRICULTURE BLUEØRIVER MAVFX tule TRACE Provi Territion Agrit-GATA	EDUCATION KNEWTON Volley al gradescope VCTI coursers Undactry anschool	INDUSTRIES INVESTMENT Bloomberg sentient isENTIUM KENSHO alphaerse Dotominr C.SERRALLIM Quandl	LEGAL blue J & BEAGLE Sverlaw RAVEL Sseal ROSS LEGAL ROSOT	LOGISTICS % NAUTO Acerta % PROTECT % Routific clearmetel MARBLE PITSTOP
INDUSTRI MATERIALS zymergen	IES CONT'D RETAIL FINANCE TALA Continuance Lendo earnest Affirm /// MIRADOR Wesithfront // Determent	PATIENT PULSE Careskore Z FEXTYR W Water Oncere States Atomvise Numerate	HEALTHCARE	BIDLOBICAL CICarbonX COLOT GRAIL deeggenomics © recursion CUMINIST Numerate Atomicis Verily © 17541
shivonzilis.com/MACHINEINTELLIGENCE · Bloomberg BET/				

http://www.shivonzilis.com/machineintelligence

- Prominent field in industry nowadays
- Lots of data, lots of applications, lots of potential use cases, lots of money
- Knowing machine learning can open significantly your career horizons

(Some) Machine Learning Methods

Decision Tree

- Decision trees is a well known tool in supervised learning.
- It has the advantage of being easily interpretable
- Can be used for classification or regression

Artificial Neural Network

layer

- Biology inspired analytical model, but not bio-mimetic
- Booming in recent decade thanks to large dataset, increased computational power and theoretical novelties
- Origin tied to logistic regression with change of data representation
- Part of any "deep learning" model nowadays
- Usually large number of parameters trained with stochastic gradient descent Input Hidden

$$h = \phi(Ux + v)$$

$$o(x) = \omega^{T} h + b$$

$$p_{i} \equiv p(y = 1 | x) \equiv \sigma(o(x)) = \frac{1}{1 + e^{-o(x)}}$$

$$loss_{XE} = -\sum_{i} y_{i} \ln(p_{i}) + (1 - y_{i}) \ln(1 - p_{i})$$

layer

Output layer

Neural Net Architectures

http://www.asimovinstitute.org/neural-network-zoo

> Does not cover it all : densenet, graph network, ...

Machine Learning in HEP, CMS Induction, Jan 2020, J.-R. Vlimant

Spiking Neural Network

- Closer to the actual biological brain
- Adapted to temporal data
- Hardware implementation with low power consumption
- Trained using evolutionary algorithms
- Economical models

	Deep Learning	Spiking	
Training Method	Back-propagation	Not well established (here, genetic algorithms)	
Native Input Types	Images/Arrays of values	Spikes	
Network Size	Large (many layers, many neurons and synapses per layer)	Relatively small (fewer neurons and sparser synaptic connections)	
Processing Abilities	Good for spatial	Good for temporal	
Performance	Well understood and state-of-the-art	Not well understood	

Take Home Message

Machine learning helps with tasks on complex dataset, with complex/unknown correlations.

Large potential for applications in science.

Desired knowledge/skill for career path in industry.

Motivations for Using Machine Learning in High Energy Physics

Machine Learning in HEP, CMS Induction, Jan 2020, J.-R. Vlimant

Operation Vectorization

ANN \equiv matrix operations \equiv parallelizable

$$\begin{bmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \\ w_{13} & w_{23} \end{bmatrix} \cdot \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} (w_{11} \times i_1) + (w_{21} \times i_2) \\ (w_{12} \times i_1) + (w_{22} \times i_2) \\ (w_{13} \times i_1) + (w_{23} \times i_2) \end{bmatrix}$$

Computation of prediction from artificial neural network model can be vectorized to a large extend.

Hyper-Fast Prediction

Synthesizing FPGA firmware from trained ANN

https://hls-fpga-machine-learning.github.io/hls4ml/

J. Duarte et al.https://arxiv.org/abs/1804.06913

Prediction from artificial neural network model can be done on FPGA, GPU, TPU, ...

Low Power Prediction

Best Results: Single View

Spiking Neural Network Result: ~80.63%

Source for CNN results: A. Terwilliger, et al. Vertex Reconstruction of Neutrino Interactions using Deep Learning. IJCNN 2017. 33 Programmi

CAK RIDGE

https://indico.fnal.gov/event/13497/contribution/0 Slide C. Schuman

Neuromorphic hardware dedicated to spiking neural networks. Low power consumption by design.

Physics Knowledge

Machine Learning can help understand Physics.

Let me model **include Physics principles** to master convergence

Learning from Complexity

"Simple" machine learning model can extract information from complex dataset. More classical algorithm counter part may

take years of development.

Event Triggering

Select what is important to keep for analysis. Ultra fast decision in hardware and software.

Reconstruction(s) of the event under limited latency. Better resolution help lowering background trigger rates. Enabling approximate, deep learning algorithms can help.

From RAW to High Level Features

From digital signal, to local hits, to a sequence of particles, jets, and high-level features. Complex and computing intensive task that could find a match in ML application.

Machine Learning in HEP, CMS Induction, Jan 2020, J.-R. Vlimant

Simulating Collisions

Madgraph, Pythia, Sherpa,	Event Generator : compute predictions of the standard models orders of expansion in coupling constants (LO, NLO, NNLO,) us density functions.
Pythia,	Hadronization: phenomenological model of the evolution of hadrons effect of QCD.
GEANT 4, GEANT V	Material simulator : transports all particles throughout meters of using high resolution geometrical description of the materials.
Homegrown	Electronic emulator: converts simulated energy deposits in sensitive into the expected electronic signal, including noise from the detector.
SUILWAIE	

Non-differentiable sequence of complex simulators of the signal expected from the detectors. Computing intensive task, exceeding budget for reconstruction.

Possible Utilizations

→ Fast surrogate models (trigger, simulation, ...) for computing restricted algorithms. → Model more accurate than existing algorithms (tagging, ...) Model performing otherwise impossible tasks (operations, ...)

01/31/20

Take Home Message

Model prediction can be fast and help with computing restrictions. HEP data representation is multi-trait and match with wide range of existing tools.

Machine learning can help with extracting better physics knowledge from data.

360° of Pitfalls

•••

Machine Learning Concept

All comes down to an optimization problem. What follows are some of the things to keep an eye on when developing a machine learning solution

Cross Validation

Final Accuracy = Average(Round 1, Round 2, ...)

- Model selection requires to have an estimate of the uncertainty on the metric used for comparison
- K-folding provides an un-biased way of comparing models
- Stratified splitting (conserving category fractions) protects from large variance coming from biased training
- Leave-one-out cross validation : number folds ≡ sample size

01/31/20

Under-fitting

- Poor model performance can be explained
 - Lack of modeling capacity (not enough parameters, inappropriate parametrization, ...)
 - Model parameters have not reached optimal values

Need for Data

- "What is the **best performance one can get**?" rarely has an answer
- When comparing multiple models, one can answer "what is the **best of** these models, for this given dataset ?"
- It does not answer "what is the **best model at this task**?"

Machine Learning in HEP, CMS Induction, Jan 2020, J.-R. Vlimant

Over-fitting

- "Too good to be true" model performance can be explained
 - Excessive modeling capacity (too many parameters, parametrization is too) flexible, ...)
 - Model parameters have learn the trained data by heart
- Characterized by very good performance on the training set and (much) lower performance on unseen dataset

Generalization

- Systematic error ≡ bias
- Sensitivity of prediction ≡ variance
- A good model is a tradeof of both
- > Early stopping can help with halting the model

Machine Learning in HEP, CMS Induction, Jan 2020, J.-R. Vlimant

Figure(s) of Merit(s)

- Objective function in optimization might be chosen for computational reason (differentiable, ...)
- Objective function might only be a proxy to the actual figure of merit of the problem at hand
- Multi-objective optimization is subject to trade-off between objectives
- While model optimization is based on the loss function over the training set, following the evolution of a more interesting metric over the validation can help selecting models that are better for the use case

Class Imbalance

- In many cases the number of samples varies significantly from class to class
- Class imbalance biases the performance on the minority class
- Multiple ways to tackle the issue
 - > Over-sample the minority class
 - Synthetic minority over-sampling
 - > Under-sample the majority class
 - > Weighted loss function
 - Active learning

• NB: metrics can be sensitive to class imbalance and be misguiding if not correct : e.g. 99% accuracy with 0% recall

01/31/20

Training

- Training phase or learning phase is when the parameters of the model are adujsted to best solve the problem
- For some model/technique (especially deep learning) this can become computationally prohibitive
- General purpose graphical processing units (GP-GPU) offer an enormous amount of parallel compute power, applicable to specific numerical problems
- Matrix calculation, minibatch computation, deep learning, ... can get a significant boost from GP-GPU.
- Further parallelization can be obtained across multiple nodes/GPU using

Hyper-parameter Optimization

- Most optimization methods and models require hyperparameters
 - number of layers in an ANN, number of leaves in a decision tree, learning rates, ...
- In most cases these parameters cannot be optimized while the model is trained
- Their values can however significantly influence the final performance
- These can be optimize in various ways
 - Simple grid search
 - Bayesian optimization
 - Evolutionary algorithm
- Model comparison should be done very carefully
 - K-folding is a "must"

Cost of Running the Model

- Contrary to training, making prediction from a trained model is usually rather fast, even on CPU
- However fast is may be, it might still not be fast enough for the particular application
- Faster inference can be obtained on specialized hardware GP-GPU, TPU, FPGA, neuromorphic, ... when the application allows it (trigger, onboard electronics, ...)

Take Home Message

Machine learning applications need to be developed with scientific rigor. Lots of interesting studies possible on statistics/theory of learning. Keep an eye on cost of prediction.

Machine Learning in CMS

01/31/20

Take Home Message

Model prediction can be fast and help with computing restrictions. HEP data representation is multi-trait and match with wide range of existing tools.

Machine learning can help with extracting better physics knowledge from data.

Particle Identification with ML

Particle Id

CMS Simulation

Efficiency: $H \rightarrow \tau \tau$

Isolation sum WP

Misidentification probability

10

10

10

Object-level features boosted decision tree classification. Analysis specific Muon identification with MVA.

01/31/20

Tau-id with DNN

Jet Tagging with ML

Extended studies in https://cds.cern.ch/record/2683870

Jet Tagging

01/31/20

Higgs Tagging

01/31/20

Top Tagging

Mass Decorrelation

Decorrelates the model output from targeted quantities.

Decorrelation Performance

The "simpler" approach: Sample reweighting

Reweight the QCD jet mass distribution to match the signal one

<u>The "brute force" approach:</u> "Designing Decorrelated Tagger" (DDT)

- Define a metric e.g., $\rho = \ln(m_{SD}^2/p_T^2)$ to capture tagger's correlation with m(jet) ٠
- **Then:** transform tagger's response to preserve constant BKG rejection across **jet** mass and p_T: Tagger^{DDT} = Tagger – X_(#%)

The "painful" approach: Adversarial networks

Data/MC Agreement

Mitigates the modeling discrepancies of discriminant between data and simulation

Energy Regression with ML

Higgs to gamma²

Machine Learning in HEP, CMS Induction, Jan 2020, J.-R. Vlimant

b-jet Energy & Resolution

Fully connected jet-level features neural network predicts the jet energy correction and resolution using quantile regression.

~20% improvement on Higgs mass resolution.

Analysis with ML

Increased Sensitivity

Increased sensitivity of analysis with BDT/NN signal extraction. Would require more data otherwise.

> Machine Learning in HEP, CMS Induction, Jan 2020, J.-R. Vlimant

Multi-category Classification

Regular analysis fit categories sub-divided using DNN output nodes for added sensitivity.

Monitoring with ML

Muon DT Quality Monitor

Unsupervised and supervised methods to identify alarming patterns in the muon drift tubes chambers.

https://arxiv.org/abs/1808.00911

Take Home Message

Deep Learning primarily deployed in Jet tagging within CMS. Increased use of neural networks in analysis. Emerging applications in other areas of doing physics at CMS.

Machine Learning R&D in CMS

01/31/20

Charged Particle Tracking R&D

Seed Cleaning

https://indico.cern.ch/event/742793/contributions/3298727

Seed Finding in Jets

- Predict tracklets parameters from raw pixels using CNN
- Approaching the maximum performance

https://indico.cern.ch/event/742793/contributions/3274301/

Track Quality with DNN

Simplifies and improves track selection within the scope of CMS iterative tracking

https://indico.cern.ch/event/658267/contributions/2813693/

01/31/20

Calorimeter – Jet R&D

HCAL Energy

Learn the pre-pileup energy deposition in a regression from the sampled pulse shape.

01/31/20

Tagging Scale Factor

01/31/20

HGCal Reconstruction

S.R. Qasim, J.K. Y. Iiyama, M Pierini arXiv:1902.07987, EPJC

- · Objects appear as vertices that are connected to each other, but not connected to others
- · Edges can carry additional information like particle ID
- Recipe [3]:
- Pre-define a graph containing all possibly true edges (e.g. neighbours within a sphere)
- Train the network and perform inference

Use of graph models to perform reconstruction in the high granularity calorimeter. Node clustering, Edge classification, node segmentation, ...

https://indico.cern.ch/event/847990/

Slide J. Kieseler

end-2-end Mass Regression

Search for exotic Higgs decay to light pseudoscalar, a

- \rightarrow H \rightarrow a+a \rightarrow 2y+2y
- For sufficiently low m_a (≤ 1 GeV) each of the 2y can be reconstructed as 1 merged γ , giving similar signature as SM $H \rightarrow \gamma \gamma$

Slide M. Andrews

Learn the a/di-photon mass from the energy deposition at the Ecal surface. Unprecedented reach at low mass.

Particle Flow Reconstruction

Slide J. Pata

Multiple possible objective for applying machine learning for particle flow. Graph network appears to be the most appropriate.

Particle-Cloud Jets

- Particle-flow jets are collection of reconstructed particles
- Graph / point-cloud representation is rather natural
- Connectivity of the graph depends on the model

C ((P+2DE) × No

Monitoring R&D

Data Quality Monitoring

Chosen Autoencoder Architecture

- Trained with Keras/TensorFlow.
- Adam optimizer (Ir= 0.0001, $\beta_1 = 0.9$, $\beta_2 = 0.7$) and early stopping (patience = 32 epochs).
- Trained to minimize mean squared error between input vector and the output one: $\frac{1}{n}\sum_{i=0}^{n}(X_i-\hat{X}_i)^2$.
- Activations: parametric rectified linear units.

Proposed autoencoder architecture

Catch anomalies in data taking

using auto-encoder of hundreds of

features

Semi-supervised AD: Results

- Test set chosen gives representative values for ROC AUC.
- Anomaly score is the average reconstruction error squared over 100 worst reconstructed features $TOP100 = \frac{1}{100} \sum_{i=1}^{100} sorted(X_i - \hat{X}_i)^2$.
 - Contributions from well behaving features are irrelevant.

Performance of different AEs

https://indico.cern.ch/event/708041/contributions/3276189/

Trigger Rate Prediction

Detect deviation of trigger rate using variational auto-encoder on high level trigger rate, and L1 trigger rate in latent space

https://indico.cern.ch/event/708041/contributions/3276197/

01/31/20

Machine Learning in HEP, CMS Induction, Jan 2020, J.-R. Vlimant

Operation R&D

Data Popularity

Slide V. Kuznetsov

R&D on predicting popularity of analysis datasets, in a view to a more efficient data placement.

Predicting Operator's Action

Challenging task of predicting the operator's action from the information they are provided with.

https://indico.cern.ch/event/587955/contributions/2937424/

ML in Operation

- Potential application of machine learning to operation and reduce manpower needs, burden on operation, expedite production of data from detector and simulation
 - Detector control
 - Data quality
 - Computing operation

ML in Trigger

- Potential application of machine learning in data acquisition and triggering
 - Anomaly detection in data taking
 - > Unsupervised new physics mining
 - Signal specific trigger paths
 - Background and trigger rate reduction

ML in Reconstruction

- Event reconstruction, online and offline may be in part replaced by surrogate models (approximate and faster) or by novel algorithm (improved performance)
 - Charged particle tracking (GNN, vertexing, ...)
 - Calorimeter reconstruction (local, clustering, ...)
 - Particle flow (GNN, ...)
 - Particle identification (boosted jets, isolation, ...)
 - Pileup mitigation
 - Energy regression (end-2-end, ...)

>

ML in Simulation

- Producing events through full/fast simulation is extremely computing intensive, and limiting somehow how the Physics reach of the experiment. ML may help reducing the load
 - Calorimeter shower surrogate simulator
 - Analysis level simulator
 - Pile-up overlay generator
 - Monte-carlo integration
 - > ML-fast-simulation
 - Invertible full-simulation (probprog, ...)

01/31/20

ML in Analysis

- ML has entered analysis long ago. Novel technics have been published in HEP outside of experiments. Hard work of bringing proof of concept to analysis
 - Likelyhood free inference
 - Background modeling technics
 - > Kinematic reconstruction
 - > Unsupervised new physics search

ML Methodology

- ML as tool works very well empirically. Lots of understanding is still required at the theoretical level. Science and physicists may help several items
 - Network compression
 - Transfer learning
 - Uncertainty quantification
 - Interpretability
 - Mechanism of convergence
 - Incorporating domain knowledge

01/31/20

>

Take Home Message

Many applications of deep learning for high energy physics. Many exciting projects to be done within CMS. Keep the analysis/physics in line of sight.

Summary

→Machine learning as a personal asset to acquire →Field developing very rapidly Powerful tool to boost and full the science Increasing amount of deep learning applications for HEP

→Get involved with CMS Software, THEN apply ML

→Do not loose sight of the physics/analysis

- - -

Resource

<u>Groups</u>

- CML Machine Learning Forum : https://indico.cern.ch/category/9376/
- Hypernews : https://hypernews.cern.ch/HyperNews/CMS/get/machine-learning.html
- IML : https://iml.web.cern.ch/
- CERN Openlab : https://indico.cern.ch/category/3169/
- Fermilab machine learning : https://machinelearning.fnal.gov/
- Fast machine learning lab : https://fastmachinelearning.org/
- AMVA4NP : https://amva4newphysics.wordpress.com
- Dark Machines : http://darkmachines.org/
- NNPDF : http://nnpdf.mi.infn.it/

<u>Conference</u>

- Data Science in HEP series : https://indico.fnal.gov/event/13497/ (last)
- Hammers and Nails : http://www.weizmann.ac.il/conferences/SRitp/Aug2019/ (last)
- ML4JET Workshop series : https://indico.cern.ch/event/809820 (last)
- ACAT : https://indico.cern.ch/category/7679/
- Machine Learning and the Physical Science : https://ml4physicalsciences.github.io (last)
- CERN DS-IT Seminars : https://indico.cern.ch/category/9320/

<u>Training</u>

- CMS Data Analysis School : https://lpc.fnal.gov/programs/schools-workshops/cmsdas.shtml
- mPP deep learning training : https://indico.cern.ch/category/10066/
- Machine learning in High Energy Physics Schools : https://indico.cern.ch/event/838377/ (last)

<u>Tools</u>

- Scikit Learn : https://scikit-learn.org
- Keras : https://keras.io/
- Tensorflow : https://www.tensorflow.org/
- Pytorch : https://pytorch.org/

<u>Journals</u>

- Computing and Software for Big Science (CSBS) : https://www.springer.com/journal/41781
- Machine Learning: Science and Technology (MLST) : https://iopscience.iop.org/journal/2632-2153
- Big data and AI for HEP (BDAI) : https://frontiersin.org/big-data-and-ai-in-high-energy-physics

Model Prediction in CMSSW

Chronologically

- Lightweight Trained Neural Network (LWTNN) https://github.com/lwtnn/lwtnn
- Tensorflow (google) **Tensor**Flow https://www.tensorflow.org/
- Apache mxnet (opensource)
 mxnet https://mxnet.apache.org/
- ONNX (Facebook and Microsoft) INX https://onnx.ai

Prediction from already trained models can be made directly in CMS Software Framework.

> ONNX on the fast side of things. **TORCH** api considered

