Trabajo de Fin de Grado de Física Universidad de Oviedo

Producción electrodébil de WZ (VBS) en el experimento CMS (LHC)

Mario González

Junio de 2019

Tutores Carlos Francisco Erice Cid Isidro González Caballero

Índice

1	Introducción	
	El Modelo Estándar El detector CMS. Sistema de coordenadas e identificación Herramientas y datos experimentales	de partículas
2	Los procesos de señal: WZ y WZ VBS	
0	Descripción teórica Motivación física	
3	La región de señal para WZ	
4	Regiones de Control (CR)	
	CR de producción ZZ CR de producción de quarks top CR de producción WZ	
5	Región de señal para WZ VBS	
6	La Fuerza de señal	
	Definición Cálculo para WZ Cálculo para WZ VBS	

El Modelo Estándar Quarks, leptones y bosones

El detector CMS Sistema de coordenadas

El detector CMS Identificación de Partículas

Herramientas y datos experimentales

Datos experimentales

- Datos recogidos en el experimento CMS durante 2016
 - $\mathcal{L} = 35.9 \text{ fb}^{-1}$
 - *E_{CM,pp}* = 13 TeV

Herramientas utilizadas en el análisis

- C++
- ROOT
- PAF (*PROOF Analysis Framework*)
- Bash, Git, Github

Este trabajo está relacionado con los contenidos de las asignaturas *Física Nuclear* y de Partículas elementales y *Física de Altas Energías y Aceleradores*

Seleccionamos los canales leptónicos tanto del W como del Z

$$W \rightarrow l + \nu$$
 $Z \rightarrow l^+ + l^-$

Mario González

La masa invariante Punto de partida

$$M^2 = \left(\sum_i \mathbf{P_i}\right)^2$$

con P el cuadrimomento de cada partícula de un estado:

$$\mathbf{P} = (E, \vec{p}) = (E, p_x, p_y, p_x)$$

- Para una partícula, $M^2 = \mathbf{P}^2 = m^2$.
- La masa invariante se conserva en los estados inicial y final.

Región de señal para WZ Punto de partida

 $p_{\rm T}\{l_{Z_1}, l_{Z_2}, l_{Z_{\rm W}}\} > \{25, 10, 25\} \text{ GeV}.$

Región de señal para WZ Selección de sucesos

Región de señal para WZ Resultados en la SR

 \rightarrow La proporción señal / total ha ascendido desde el 45% hasta el 82%

- ightarrow Reducción del fondo: 90%
- ightarrow Reducción de la señal: 48%

Fondos predominantes:

- La producción ZZ
- La producción de quarks top

Los datos aparecen ligeramente por debajo de las predicciones.

$$N = 3855$$
 $N_{pred} = 3977$

Averiguamos si la discrepancia se debe a la señal o al fondo:

 $\rightarrow \! \mathsf{Estudiamos}$ los principales fondos de la señal: ZZ y la producción de tops

Mario González

Motivación:

Verificar la modelización de los procesos de fondo en la región de señal

Proceso de señal: $WZ \rightarrow l^+l^- + l' \nu$

La región de control:

- Ha de parecerse a la de señal
- Ha de ser ortogonal a la de señal
- Debe contener pocos sucesos de señal

Región	N _{leps}	N _{OSSF}	MET	b Tags	$ M(I_{Z_1}I_{Z_2}) - m_Z $	$p_T\{I_{Z_1}, I_{Z_2}, I_W, -\}$	$\min(M(II'))$	$M(I_{Z_1}I_{Z_2}I_W)$
			[GeV]		[GeV]	[GeV]	[GeV]	[GeV]
SR WZ	= 3	≥ 1	> 30	= 0	< 15	$> \{25, 10, 25\}$	> 4	> 100
CR tops	= 3	≥ 1	> 30	> 0	> 15	$> \{25, 10, 25\}$	> 4	> 100
CR ZZ	= 4	≥ 1	> 30	= 0	< 15	$>\{25,10,25,\textbf{10}\}$	> 4	> 100

$$ZZ \rightarrow l^+l^- + l'^+l'^-$$

$$\rightarrow$$
 $N_{leps}=4,$ al menos un par de igual sabor o distinto signo

N = 114 $N_{MC} = 112$ $N_{ZZ} = 96\% N_{MC}$

Hacemos las dos regiones ortogonales

 $\rightarrow N_{\rm jets} \leq 1$

Nuevo factor de normalización:

$$k_{WZ} = \frac{N-B}{S} = 0.966$$

- $\mathrm{M}_{31} > 100 \ \text{GeV}$
- $|M(l_{Z_1}l_{Z_2}) m_Z| < 15$
- $M_{ll}^{min} > 4 \text{ GeV}$

- + 3 o más leptones en el estado final, si el cuarto tiene $p_{\rm T} < 10~\mbox{GeV}$
- $p_T\{l_{Z_1}, l_{Z_2}, l_W\} > \{25, 10, 20\}$ GeV

• No restringimos los valores de la MET:

Región de señal para WZ VBS La energía de los jets

El momento de los jets

Región de señal para WZ VBS La pseudorapidez de los jets

Pedimos $\Delta |\eta_{jj}| > 2.5$

Mario González

Región de señal para WZ VBS Resultados

La contribución de WZ VBS ha aumentado desde el 0.7% hasta el 18%

Los procesos con quarks top representan el 15% del total de los fondos

Se ha perdido el 65% de sucesos de WZ VBS

Se ha perdido el 99% de los sucesos de fondos

Mide la relación entre el número de eventos de señal observado y predicho.

Además del valor central, se calculan dos valores "ciegos" definiendo las siguientes hipótesis

La fuerza de señal en los datos confirmará una, otra o ninguna en base a su valor central y a su **incertidumbre**.

Incertidumbres en WZ

		Muones	0.014
	Leptones		0.015
		Electrones	0.015
	Pile Up	Pile Up	0.014
	lets	JEC	0.013
	Jets	b tagging	0.0035
		Non Prompt	0.0087
		$X+\gamma$	0.0022
$\mu_{WZ} = 0.964 +$	Incertidumbres de	ttX	0.0015
$\mu_{WZ} = 0.904$ \pm	normalización	tZX	0.0018
		VVV/VV	0.011
		ZZ	0.0053
	Estadísticos	Datos	0.018
	Estadisticos	Monte Carlos	0.0084
	Otros	Trigger eff	0.018
	01103	Luminosidad	0.029

Valores ciegos

$$N = B + S$$
: $\mu = 1 \pm 0.05$
 $N = B$: $\mu = 0 \pm 0.01$

Valor real

$$\mu_{WZ} = 0.96 \pm 0.02 \text{ (stat)} \pm 0.04 \text{ (syst)} \pm 0.03 \text{ (lumi)}$$
$$= 0.96 \pm 0.05 \text{ (tot)}$$

Incertidumbres en WZ VBS

	Loptonos	Muones	0.072
	Leptones	Electrones	0.072
	Pile Up	Pile Up	0.06
	lets	JEC	0.46
	Jets	b tagging	0.097
		WZ	0.17
		Non Prompt	0.042
$\mu_{\rm MRC} = 0.081 +$		$X+\gamma$	0.0073
$\mu_{VBS} = 0.501$ \pm	incertidumbres de	ttX	0.039
	normalización	tZX	0.047
		VVV/VV	0.083
		ZZ	0.013
	Estadísticos	Datos	0.43
	Estadisticos	Monte Carlos	0.18
	Otros	Trigger eff	0.089
	01103	Luminosidad	0.14

Valores ciegos

$$N = B + S$$
: $\mu = 1 \pm 0.7$
 $N = B$: $\mu = 0 \pm 0.6$

Valor real

$$\mu_{VBS} = 0.98 \pm 0.46 \text{ (stat)} \pm 0.55 \text{ (syst)} \pm 0.14 \text{ (lumi)}$$
$$= 0.98 \pm 0.73 \text{ (tot)}$$

que representa una medida con una significancia de 1.6 sigmas, calculada según

$$Z = \frac{N - B}{\delta B}$$

Conclusiones

- Tanto la normalización como la incertidumbre asociadas a los principales fondos de las dos señales ha sido validada, tras certificarse la compatibilidad con los datos observados en sus respectivas regiones de control.
- Se ha definido una tercera región de control para la producción WZ como fondo para VBS. Tras observar una ligera discrepancia entre datos y predicciones, se ha corregido el Monte Carlo que lo modela por un factor de escala
- El resultado en la región de señal de WZ, $\mu_{WZ} = 0.96 \pm 0.05$, representa una medida competitiva con los últimos resultados de CMS publicados en JHEP 04 (2019) 122.

Measurements of the pp \rightarrow WZ inclusive and differential production cross section and constraints on charged anomalous triple gauge couplings at $\sqrt{s} = 13$ TeV.

The CMS Collaboration

 $\mu_{\textit{VBS}} = \textbf{0.98} \pm \textbf{0.73}$

• El resultado en la región de señal de WZ VBS (con una sección eficaz cuatro órdenes de magnitud inferior a la de producción WZ) es tiene una incertidumbre comparable al resultado más reciente de CMS (publicado en Phys. Lett. B), con una incertidumbre del 63%, compatible con el 70% obtenido en este trabajo mediante un procedimiento más directo.

Measurement of electroweak WZ production and search for new physics in pp collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Backup

Punto de partida en el análisis WZ VBS

Cálculo de la fuerza de señal para el proceso WZ VBS

N = 169	PUSF	ElecSF	MuonSF	JEC	b Tag	Estadística	ev. totales
$X+\gamma$	0.01	0.02	0.01	0	0	0.56	1.11
ttX	0.15	0.15	0.16	0.69	1.5	0.23	12.01
VVV/VV	0.04	0.07	0.07	0.54	0.05	0.33	5.07
WZ	1.1	1.4	1.4	10	0.45	3	101.53
ZZ	0.03	0.10	0.07	0.65	0.03	0.2	5.72
tZX	0.1	0.13	0.12	0.68	0.84	0.10	9.58
Non Pr	0	0	0	0	0	0.94	4.23
WZ VBS	0.4	0.39	0.41	1.1	0.08	0.14	30.3

Proceso	Error (%)
WZ	5
Non Pr	30
$X + \gamma$	20
ttX	10
tZX	15
VVV/VV	50
ZZ	7

Además,

- Luminosidad: 2.6%
- Eficiencia del trigger; 1.6%
- Estadística de los datos: 7.8% de N

N = 3855	PUSF	ElecSF	MuonSF	JEC	b Tag	Estadística	ev. totales
$X+\gamma$	0.7	0.9	0.3	5	0	3	39
ttX	0.6	0.6	0.7	0.1	6	0.5	53
VVV/VV	0.7	1	1	0.8	0.4	1	76
ZZ	4	4	3	10	0.3	1	267
tZX	0.3	0.5	0.5	0.3	3	0.3	42
non-Pr	0	0	0	0	0	5	101
WZ	40	50	40	30	3	20	3400

Proceso	Error (%)
Non Pr	30
$X + \gamma$	20
ttX	10
tZX	15
VVV/VV	50
ZZ	7

Además,

- Luminosidad: 2.6%
- Eficiencia del trigger; 1.6%
- Estadística de los datos: 1.6% de N

Diferencia en la pseudorapidez de los jets VBS

