
STATISTICS: textbooks find monographs volume 68

GOODNESS-OF-FIT
TECHNIQUES

1.0
.9
.8
.7

Pni’') 6

76  80 120  126

edited by

Ralph B. D’Agostino 
Michael A. Stephens



GOODNE8S-OF-FIT TECHNIQUES



S T A T IS T IC S : T ex tbooks and Monographs

A  S E R IE S  E D IT E D  B  Y

D. B. OWEN, Coordinating Editor

D ep a rtm en t o f  Statistics 

Sou th ern  M e th o d is t  U n iversity  

Dallas, Texas

Vol. I: The Generalized Jackknife Statistic, Я. L. Gray and У1, R  Schucany 
Vol. 2: Multivariate Analysis, /fsAirsjgffr
Vol. 3: Statistics and Society, Walter T. Federer
Vol. 4: Multivariate Analysis: A  Selected and Abstracted Bibliography, 1957-1972, 

Kocherlakota Subrahmaniam and Kathleen Subrahmaniam (out of print)
Vol. Si Design of Experiments: A Realistic Approach, K irg ? / Anderson e/id 

Robert A . McLean
Vol. 6: Statistical and Mathematical Aspects of Pollution Problems, John W. Pratt 
Vol. 7: Introduction to Probability and Statistics (in two parts), Pärt I: Probability;

Part II: Statistics, Narayan C  Giri
Vol. 8: Statistical Theory of the Analysis of Experimental Designs, J. Ogawa 
Vol. 9: Statistical Techniques in Simulation (in two parts). Jack P. C  Kleijnen 

Voi. 10: Data Quality Control and Editing, dosep/? I. Naus (out of print)
Vol. 11: Cost of Living Index Numbers: Practice, Precision, and Theory, Kali S. Banerjee 

Vol. 12: Weighing Designs: For Chemistry, Medicine, Economics, Operations Research, 
Statistics, Kali S. Banerjee

Vol. 13: The Search for Oil: Some Statistical Methods and Techniques, edited by  

D. B. Owen
Vol. 14: Sample Size Choice: Charts for Experiments with Linear Models, Robert E . Odeh 

and Martin F ox
Vol. 15: Statistical Methods for Engineers and Scientists, Robert M . Bethea, Benjamin S.

Duran, and Thomas L. Boullion 
Vol. 16: Statistical Quality Control Methods,/mng W. Burr 

Vol. 17: On the History of Statistics and Probability, edited by D. B, Owen  
Vol. 18: Econometrics, Peter Schmidt
Vol. 19: Sufficient Statistics: Selected Contributions, Vasant S. Huzurbazar (edited by  

Anant M . Kshirsagar)
Vol. 20: Handbook of Statistical D i s t r i b u t i o n s , K. Patel, C. H, Kapadia, and 

D. B. Owen
Vol. 21: Case Studies in Sample Design,/4. C  Rosander
Vol. 22: Pocket Book of Statistical Tables, compiled by R. E. Odeh, D. B. Owen, Z. W. 

Birnbaum, and L. Fisher
Vol. 23: The Information in Contingency Tables, D. V. Gokhale and Solomon Kullback 

Vol. 24: Statistical Analysis of Reliability and Life-Testing Models: Theory and Methods, 
Lee J. Bain

Vol. 25: Elementary Statistical Quality Control, Irving W. Burr
Vol. 26: An Introduction to Probability and Statistics Using BASIC, Richard A. Groeneveld 
Vol. 27: Basic Applied Statistics, B. L. Raktoe and J. J. Hubert 
Vol. 28: A Primer in Probability, Kathleen Subrahmaniam 

Vol. 29: Random Processes: A First Look,/?. Syski



Vol. 30:

Vol. 31:
Vol. 32:

Vol. 33:
Vol. 34:

Vol. 35:
Vol. 36:

Vol. 37:
Vol. 38:
Vol. 39:
Vol. 40:
Vol. 41:
Vol. 42:
Vol. 43:

Vol. 44:

Vol. 45:
Vol. 46:

Vol. 47:
Vol. 48:

Vol. 49:

Vol. 50:

Vol. 51:
Vol. 52:
Vol. 53:
Vol. 54:

Vol. 55:

Vol. 56:

Vol. 57:

Vol. 58:

VoL 59:

VoL 60:

Vol. 61:

Vol. 62:

Regression Methods: A  Tool for Data Analysis, R udolf J. Freund and Paul D. 
Minton
Randomization T esis, Eugene S. Edgington
Tables for Normal Tolerance Limits, Sampling Plans, and Screening, Robert E. 
Odeh and D, B, Owen
Statistical Computing, William J. Kennedy, Jr, and James E. Gentle
Regression Analysis and Its Application: A  Data-Oriented Approach, Richard F.
Gunst and Robert L. Mason
Scientifíc Strategies to Save Your Life,/. D, J, Bross
Statistics in the Pharmaceutical Industry, edited by C. Ralph Buncherand
Jia-Yeong Tsay
Sampling from a Finite Population, J. Hafek 

Statistical Modeling Techniques, S. S. Shapiro
Statistical Theory and Inference in Research, T. A . Bancroft and C.-P. Han 
Handbook of the Normal Distribution, К. Patel and Campbell В. Read
Recent Advances in Regression Methods^ Hrishikesh D. V inodandAm an Ullah 

Acceptance Sampling in Quality Control, Edward G, Schilling 

The Randomized Clinical Trial and Therapeutic Decisions, edited by Niels 
Tygstrup, John M , Lachin, and Erik Juhl
Regression Analysis o f Survival Data in Cancer Chemotherapy, Walter H. Carter, 
Jr„ Galen L. Wampler, and Donald M . Stablein 

A  Course in Linear Models, Anant M . Kshirsagar
Qinical Trials: Issues and Approaches, edited by  Stanley H. Shapiro and 
Thomas H. Louis
Statistical Analysis o f DNA  Sequence Data, edited by  B. S. Weir 
Nonlinear R^ression Modeling: A  Unified Practical Approach, David A , 
Ratkowsky
Attribute Sampling Plans, Tables of Tests and Confidence Limits for Proportions, 
Robert E. Odeh and D. B. Owen
Experimental Design, Statistical Models, and Genetic Statistics, edited by  Klaus 
Hinkelmann
Statistical Methods for Cancer Studies, edited by  Richard G. Cornell 
Practical Statistical Sampling for Andilois, Arthur J, Wilburn 
Statistical Signal Processing, edited by Edward J, Wegman and James G. Smith 
Self-Organizing Methods in Modeling: GMDH Type Algorithms, edited by  
Stanley J. Farlow
Applied Factorial and Fractional Designs, Robert A . McLean and Virgil L. 
Anderson
Design of Experiments: Ranking and Selection, edited by Thomas J. Santner 
and Ajit C. Tamhane
Statistical Methods for Engineers and Scientists. Second Edition, Revised 
and Expanded, Robert M. Bethea, Benjamin S. Duran, and Thomas L.
Boullion
Ensemble Modeling: Inference from Small-Scale Properties to Large-Scale 
Systems, Alan E. Gelfand and Crayton C. Walker 

Computer Modeling for Business and Industry, Bruce L. Bowerman 
and Richard T  0*Connell
Bayesian Analysis of Linear Models, Lyle D. Broemeling

Methodological Issues for Health Care Surveys, Brenda Cox and Steven Cohen

Applied Regression Analysis and Experimental Design, Richard J. Brook and 

Gregory C  Arnold



VoL 63: Statpal: A  Statistical Package for Microcomputers -  PC-DOS Version for the 
IBM PC and Compatibles, Bruce J, Chalmer and David G. Whitmore

VoL 64: Statpal: A  Statistical Package for Microcomputers — Apple Version for the 
II, II+, and lie, David G. Whitmore and Bruce J. Chalmer

VoL 65: Nonparametric Statistical Inference, Second Edition, Revised and 
Expanded, Jean Dickinson Gibbons

VoL 66: Design and Analysis o f Experiments, Roger G. Petersen

Vol. 67: Statistical Methods for Pharmaceutical Research Planning, Sten W. Bergman and 

John C  Gittim

VoL 68: Goodnessof-Fit Techniques, edited by Ralph B. D*Agostm o and Michael A , 

Stephens

OTHER VOLUMES IN PREPARATION



A N  IM PORTANT MESSAGE TO READERS.. .

A  Marcel Dekker, Inc. Facsimile Edition contains the exact contents o f  an 
original hard cover MDI published work but in a new soft sturdy cover.

Reprinting scholarly works in an economical format assures readers that im
portant information they need remains accessible. Facsimile Editions provide 
a viable alternative to books that could go “ out o f  print.’* Utilizing a contem
porary printing process for Facsimile Editions, scientifîc and technical books 
are reproduced in limited quantities to meet demand.

Marcel Dekker, Inc. is pleased to offer this specialized service to its readers in 
the academic and scientifíc communities.





GOODNESS-OF-FIT TECHNIQUES

ed/ied by

Ralph B. D’Agostino
Departm ent of Mathematics 
Boston University 
Boston, Massachusetts

Michael A. Stephens
Departm ent of Mathem atics and Statistics
Simon Fraser University
Burnaby, British Columbia, Canada

MARCEL DEKKER, INC. New York and Basel



Library o f Congress Cataloging-in-Pubiicatíon Data

Goodness-of-fit techniques.

(Statistics, textbooks and monographs ; vol. 68) 
Includes bibliographies and index.
I . Goodness-of-fit tests. I. D ’Agostino, Ralph B.

11. Stephens, Michael A., [date ]. 111. Series: 
Statistics, textbooks and monographs ; v. 68. 
QA277.G645 1986 519.5’6 86-4571
ISBN: 0 -8247 -8705 -6

COPYRIGHT ©  1986 by MARCEL DEKKER, INC. A LL  RIGHTS RESERVED

Neither this book nor any part may be reproduced or transmitted in any form or 
by any means, electronic or mechanical, including photocopying, microfilming, 
and recording, or by any information storage and retrieval system, without per
mission in writing from the publisher.

MARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

Current printing (last digit):
10 9 8 7 6 5 4 3

PRINTED IN THE UNITED STATES OF AMERICA



То Egon S. Pearson 

who helped us both





Preface

From the earliest days of statistics, statisticians have begun their analysis 
by proposing a distribution for their observations and then, perhaps with 
somewhat less enthusiasm, have checked on whether this distribution is 
true. Thus over the years a vast number of test procedures have appeared, 
and the study of these procedures has come to be known as goodness-of-flt. 
When several of the present authors met at the Annual Meeting of the Am eri
can Statistical Association in Boston in 1976 and proposed writing a book on 
goodness-of-fit techniques, we certainly did not foresee the magnitude of 
the task ahead. Quite early on we asked Professor E. S- Pearson if he would 
join us. He declined and stated his view that the time was not yet ripe for a 
book on the subject. As we, nevertheless, have slowly written it, it has often 
appeared that his assessment was correct. As fast as we have tried to survey 
what we know, with every issue the journals produce new papers with new 
techniques and new information.

However, many colleagues have told us that the time is ready for a major 
summary of the literature, and for some sorting and sifting to take place.
This we have tried to do. The emphasis of this book was determined by the 
writers to be mostly on the practical side. The intent is to give a survey of 
the leading methods of testing fit, to provide tables where necessary to make 
the tests available, to make (where possible) some assessment of the com
parative merits of different test procedures, and finally to supply numerical 
examples to aid in understanding the techniques.

This applied emphasis has led to some difficult decisions. Many goodness- 
of-flt techniques are supported by elegant mathematics involving combina
torics, analysis, and geometric probability, mostly arising in the distribution 
theory, both small-sample and asymptotic, or in examining power and effi
ciency. Furthermore, there are many unsolved problems, especially in



Vl PREFACE

discovering the relationships between different approaches, which would 
require sophisticated mathematics to resolve. However, for the book to be 
of manageable size, mathematical details have had to be held to the minimum 
necessary to describe clearly the various techniques. References to fuller 
mathematical treatments are given throughout the book. We also leave out 
tests comparing several samples. Although these are often closely related 
to the one-sample tests of this volume, they are not usually classified as 
goodness-of-fit tests. Including them here would have made the book too large.

In arranging the book it was necessary to decide whether to collect to
gether all methods of testing for specific famous distributions, such as the 
normal or the exponential, or whether to group tests according to techniques 
such as chi-squared tests, empirical distribution function tests, or tests 
based on probability plotting. In the end, and perhaps because of the fact that 
many authors were Involved, we reached the Inevitable compromise to try to 
do both. In order to make chapters as complete as possible, there is some 
necessary overlap.

There is also some imbalance with respect to tables. Some major, w e ll- 
established techniques require quite small tables—surely an attractive fea^ 
ture—while many new and unproven techniques need fairly extensive tables, 
often based on Monte Carlo studies. Where we have judged the techniques 
important, either as new methods or to complete a group of existing methods, 
we have included the necessary tables and, in fact, have considerably ex
tended some of those in the literature. By doing so we hope not only to make 
the newer techniques available for practical use but also to make the book 
useful for further research in making the comparisons between methods which 
we feel are still necessary. On the other hand, we at times only refer to 
tables for some techniques which have never appeared to win much favor.

As we have surveyed the tests available, it has become clear that much 
work remains to be done. It sometimes seems that new test statistics, even 
for standard problems, are invented every day. In goodness-of-fit, where 
there is a wide range of problems and almost never a best solution, this ap
pears to be easy to do. However, the simple invention of a test statistic is 
surely not enough. We suggest that, to gain acceptance, new methods should 
have a clear motivation, be easily understood by the practical statistician, 
and be well documented^ Where new tables are necessary, they should be 
comprehensive. The day may well come when computer algorithms will re 
place tables, but for most statisticians this day has not yet arrived. Also 
new methods should be compared with the array of procedures which often 
already exist.

Finally, of course, this book is inevitably a reflection of the interests of 
the editors and the contributors. Although we have tried to cast our net wide, 
some special techniques for testing fit may seem to have received too much 
attention, while others have been neglected. For the latter cases it is, 
we believe, mostly because the practical aspects are not yet sufficiently 
developed. We have attempted throughout the book to at least summarize the
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present state of knowledge for these. We hope that by drawing attention to 
them, we can again encourage further research.

We also acknowledge gratefully M s. Sylvia Holmes and M r. Thomas 
Orowan of Simon Fraser University and Boston University, respectively, 
for much help with the typing of the manuscript, and the staff of Marcel 
Dekker, In c ., for their patient editorial work with this volume.

RALPH B. D ’AGOSTINO 
MICHAEL A. STEPHENS
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O verview

Ralph В. D^Agostino Boston University, Boston, Massachusetts 

Michael A. Stephens Slm onFraserUniversity, Burnaby, B . C . ,  Canada

1.1 GOODNESS-OF-FIT TECHNIQUES

This book is devoted to the presentation and discussion of goodness-of-fit 
techniques. By these we mean methods of examining how well a sample of 
data agrees with a given distribution as its population. The techniques dis
cussed are almost entirely for univariate data, for which there is a vast 
literature; methods for multivariate data are much less well developed.

In the formal framework of hypothesis testing the null hypothesis Hq is 
that a given random variable x follows a stated probability law F(x) (for ex
ample, the normal distribution or the Weibull distribution); the random vari
able may come from a process which is under investigation. The goodness- 
of-fit techniques applied to test Hq are based on measuring in some way the 
conformity of the sample data (a set of x-values) to the hypothesized distri
bution, or, equivalently, its discrepancy from it. The techniques usually 
give formal statistical tests and the measures of consistency or of discrep
ancy are test statistics.

The null hypothesis Hq can be a simple h3pothesis, when F(x) is specified 
completely, for example, normal with mean ß  = 100 and standard deviation 
0- = 10; or Hq can give an incomplete specification and will then be a com
posite hypothesis, for example, when it states only that F(x) is normal with 
unspecified ß  and cr.

In most applications of goodness-of-fit techniques, the alternative 
hypothesis Ĥ  is composite—it gives little or no information on the distribu
tion of the data, and simply states that Hq is false. The major focus is on 
the measure of agreement of the data with the null hypothesis; in fact, it is 
usually hoped to accept that H q Is  true.
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There are several reasons for this. First, the distribution of sample 
data may throw light on the process that generated the data; if a suggested 
model for the process is correct, the sample data follow a specific distri
bution, which can be tested. Also, parameters of the distribution may be 
connected with important parameters in describing the basic model. Sec
ondly, knowledge of the distribution of data allows for application of standard 
statistical testing and estimation procedures. For example, if the data follow 
a normal distribution, inferences concerning the means and variances can 
be made using t tests, analyses of variances, and F tests; sim ilarly, if the 
residuals after fitting a regression model are normal, tests may be made 
on the model parameters. Estimation procedures such as the calculation of 
confidence intervals, tolerance intervals, and prediction intervals, often 
depend strongly on the underlying distribution. Finally, when a distribution 
can be assumed, extreme tail percentiles, which are needed, for example, 
in environmental work, can be computed.

The fact that it is usually hoped to accept the null hypothesis and proceed 
with other analyses as if it were true, sets goodness-of-fit testing apart 
from most statistical testing procedures. In many testing situations it is 
rejection of the null hypothesis which appears to prove a point. This might 
be so, for example, in a test for no treatment effects in a factorial analysis— 
rejection of Hq indicates one or more treatments to be better than others. 
Even when one would like to accept a null hypothesis—for example, in a test 
for no interaction in the above factorial analysis—the statistical test is 
usually clear and the only problem is with the level of significance. In a 
test of fit, where the alternative is very vague, the appropriate statistical 
test w ill often be by no means clear and no general theory of Незгтап- 
Pearson type appears applicable in these situations. Thus many different, 
sometimes elaborate, procedures have been generated to test the same null 
hypothesis, and the ideas and motivations behind these are diverse. Even 
when concepts such as statistical power of the procedures are considered it 
rarely happens that one testing procedure emerges as superior.

It may happen that the alternative hypothesis has some specification, 
although it could be Incomplete; for example, an alternative to the null 
hypothesis of normality may be that the random variable has positive skew
ness. When the alternative distribution contains some such specification, 
tests of fit should be designed to be sensitive to it. Even in these situations 
uniquely best tests are rarities.

In addition to formal hypothesis testing procedures, goodness-of-flt 
techniques also include less formal methods, in particular, graphical tech
niques. These have a long history in statistical analysis. Graphs are drawn 
so that adherence to or deviation from the hypothesized distribution results 
in certain features of the graph. For example, in the probability plot the 
ordered observations are plotted against functions of the ranks. In such plots 
a straight line indicates that the hypothesized distribution is a reasonable 
model for the data and deviations from the straight line indicate inappropri-



atenesS of the model. The type of departure from the straight line may indi
cate the nature of the true distribution. Historically the straight line has 
been judged by eye, and it is only recently that more formal techniques have 
been given.

OVERVIEW 3

1.2 OBJECTIVES OF THE BOOK

There are five major objectives of this book. They are:

1. To identify the major theories behind goodness-of-fit techniques;
2. To present an up-to-date picture of the status of these techniques;
3. To give references to the relevant literature;
4. To illustrate with numerical examples, and
5. To make some recommendations on the use of different techniques.

There are several features that bear mention. First, a substantial 
number of numerical examples are included. These are for the most part 
easy to find. In many chapters subsections containing numerical examples 
are identified by the letter E before the section number. For example, in 
Chapter 9, Section E 9 .3 .4 .1.1 contains a numerical example of the Shapiro- 
Wilk test for normality.

Second, a set of data sets is used throughout the book. These allow for 
comparisons of some of the techniques on the same data sets. Some of these 
data sets are real data and others are simulated. The data sets are given in 
full in the appendix.

Third, the chapters contain specific recommendations for use of the 
test methods. Nevertheless, we have avoided the attempt to present final 
definitive recommendations. The authors for the chapters of this book each 
have significant expertise, but there is not always complete agreement among 
them on what is best. As we stated previously, theory does not exist which 
can identify the uniquely best procedure for most goodness-of-fit situations, 
and personal opinion and judgment will often enter any consideration. Each 
author has made recommendations based on his or her understanding and 
view of the problem.

Fourth, many references are given. There is an enormous literature 
and we have made no attempt to survey all of it. We have especially 
avoided heavy mathematical treatment and the details of theorems. A sub
stantial list of references is given with each chapter, they include references 
to earlier source material and to the theoretical background of the test pro
cedures; it is hoped they will aid the development of further research.

Finally we recognize that it is impossible to include all goodness-of-fit 
topics in this survey; our emphasis is largely on the practical aspects of 
testing. Some techniques are still underdeveloped, and, for example, sug
gested tests may lack tables for practical application, or enough comparisons



have not been made to assess their merits; for these and sim ilar reasons, 
some subjects have been lightly treated, if at all.

In goodness-of-fit there are many areas with unsolved problems, or 
unanswered questions. Some of the subjects on which there will surely be 
much work in the future include tests for censored data, especially for ran
domly censored data, tests based on the empirical characteristic function, 
tests based on spacings, and tests for multivariate distributions, especially 
for multivariate normality. Many comparisons between techniques are still 
needed, and also the exploration of wider questions such as the relationship 
of formal goodness-of-fit testing (as, indeed, in other forms of testing) to 
modern, more informal, approaches to statistical analysis where distribu
tional models are not so rigidly specified. We hope this book sets forth the 
major topics of its subject, and will act as a base from which these and many 
other questions can be explored.
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1.3 THE TOPICS OF THE BOOK

In addition to this chapter the book consists of eleven other chapters. These 
are divided into three groups. The first consists of Chapters 2 to 7, con
taining general concepts applicable to testing for a variety of distributions. 
Chapter 2 describes graphical procedures for evaluating goodness-of-fit. 
These are informal procedures based mainly on the probability plot, useful 
for exploring data and for supplementing the formal testing procedures of the 
other chapters.

Chapter 3 reviews chi-square-type tests. The classical chi-square 
goodness-of-fit tests are reviewed first and then recent developments in
volving general quadratic forms and nonstandard chi-squared statistics are 
also discussed.

Chapter 4 presents tests based on the empirical distribution function 
(edf). These tests include the classical Kolmogorov-Smimov test and other 
tests such as the Cramdr-von Mises and Anderson-Darling tests. Considera
tion is given to simple and composite null hypotheses. The normal, expo
nential, extreme-value, Weibull, and gamma distributions among other 
distributions are given individual discussion.

Chapter 5 deals with tests based on regression and correlation. Some 
of these procedures can be viewed as arising from computing a correlation 
coefficient from a probability plot and testing if it differs significantly from  
unity. Also involved are tests based on comparisons of linear regression  
estimates of the scale parameter of the hypothesized distribution to the esti
mate coming from the sample standard deviation. The Shapiro-Wilk test for 
normality is one such test.

In Chapter 6 transformation techniques are reviewed. Here the data are 
first transformed to uniformity and goodness-of-fit tests for uniformity are
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applied to these transformed data. These techniques can deal with simple 
and composite hypotheses.

Tests based on the third and fourth sample moments are presented in 
Chapter 7. These techniques were first developed to test for normality. In 
Chapter 7 they are extended to nonnormal distributions.

The second group of chapters consists of Chapters 8, 9, and 10. These 
deal with tests for three distributions—the uniform, the normal, and the 
exponential —which have played prominent roles in statistical methodology. 
Many tests for these distributions have been devised, often based on the 
methods of previous chapters, and they are brought together, for each dis
tribution, in these three chapters.

Chapters 11 and 12 form the last group; they cover extra materials.
The problem of analyzing censored data is of great importance and Chapter 11 
is devoted to this. Many of the previous chapters have sections on censored 
data. Chapter 11 collects these together, fills in some omissions, and gives 
examples; there is also a discussion on probability plotting of censored data.

The final chapter 12 is on the analysis and detection of outliers. This 
material might be considered outside the direct scope of goodness-of-flt 
techniques; however, it is closely related to them since they are often applied 
with this problem in mind, so we felt it would be useful to close the book with 
a chapter on outliers.





Graphical Analysis

Ralph B. D^Agostino Boston University, Boston, Massachusetts

2.1 INTRODUCTION

The purpose of this chapter is to illustrate the use of graphical techniques 
as they relate to goodness-of-fit problems. Graphical techniques as pre
sented here are simple tools which can be implemented easily with the use 
of graph paper or simple computer program s. They are less formal than 
the numerical techniques that are presented in the following chapters and 
are great aids in understanding the numerous relationships present in data. 
For goodness-of-fit problems they can be used in at least two ways:

As an exploratory technique. Here the objective is to uncover charac
teristics of the data that are suggestive of mathematical properties of 
the underlying phenomena ranging from incomplete specifications such 
as symmetry or thick tailness to complete specification such as normal
ity with specific mean and standard deviation.
In conjunction with formal numerical techniques. Here the objective is 
to test formally a preconceived hypothesis or one suggested by the 
graphs. The graphs can help reveal departures from the assumed 
models and statistical distributions. Often they uncover features of the 
data that were totally unanticipated prior to the analysis. The numer
ical techniques quantify the information and evidence in the data or 
graphs and act as a verification of inferences suggested from these.
The use of graphs alone may lead to spurious conclusions and the use 
of numerical techniques is often essential in order to avoid this.

In general, with goodness-of-fit problems, it is useful for numer
ical testing to be preceded and supplemented by graphical analysis. In



the following we w ill point out the specific relations between some 
graphical procedures and those formal numerical tests that quantify the 
information revealed in the graphs.

This chapter deliberately concerns itself with simple to use graphical 
procedures involving arithmetic or log graph papers in conjunction possibly 
with simple arithmetic and table look-ups, or else with procedures involving 
readily available special probability plotting papers. Further most of the 
procedures are or can be easily computerized. The view underlying this 
approach is that graphical techniques are useful because of their ease and 
informality. Involved, complicated procedures detract from this usefulness.

This chapter borrows heavily from the works, concepts, and spirit of 
W lk  and Gnanadesikan (1968), Feder (1974), Daniel (1959), Bliss (1967),
W . Nelson and Thompson (1971), W . Nelson (1972), Tukey (1977), and 
Chambers, Cleveland, Kleiner, and Tukey (1983).

8 D’AGOSTINO

2.2 EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION  

2.2.1 Definition

Say we have a random sample , . . . ,  drawn from a distribution with 
cumulative distribution function (cdf ) F , then the empirical cumulative dis
tribution function (ecdf ) is defined as

Fn(X)
#(X. < X)

-OO < X < OO (2. 1)

where #(Xj < x) is read, the number of X j’s less than or equal to x. The 
ecdf is also often called the edf, empirical distribution function. The plot of 
the ecdf is done on arithmetic graph paper plotting i/n as ordinate against 
the i’th ordered value of the sample, as abscissa. Figure 2.1a is an
ecdf plot of the data set NOR given in the appendix which is a random sample 
of size 100 from the normal distribution with mean 100 and standard devia
tion 10.

The ecdf plot provides an exhaustive representation of the data. For all 
X values F^(x) converges for large samples to F (x), the value of the under
lying distribution’s cdf at x. This convergence is actually strong convergence 
uniformly for all x (R^nyi, 1970, p. 400).

The use of the ecdf plot does not depend upon any assumptions concerning 
the underlying parametric distribution and it has some definite advantages 
over other statistical devices, v iz .,

1. It is invariant under monotone transformations with regard to quan
tiles. However, its appearance may change.

2. Its complexity is independent of the number of observations.



3. It supplies immediate and direct information regarding the shape of 
the underlying distribution (e .g . , on skewness and bimodalily).

4. It is an effective indicator of peculiarities (e .g . , outliers).
5. It supplies robust information on location and dispersion.
6. It does not involve grouping difficulties that arise in using for ex

ample, a histogram.
7. It can be used effectively in censored samples.
There is, however, one serious potential drawback with the use of ecdf 

plots and other graphical techniques which was already mentioned in the last 
section. They can be sensitive to random occurrences in the data and sole 
reliance on them can lead to spurious conclusions. This is especially true 
if the sample size is small. This warning always should be kept in mind. In 
the following we w ill illustrate uses of the ecdf and related graphs. We will 
also indicate situations where the user may be misled by them and where 
further clarification or confirmation via other graphical analyses (e .g . , 
probability plotting) or numerical techniques may be needed.

The ecdf is a standard item in a number of computer packages such as 
the Statistical Package for the Social Sciences (SPSS), the Statistical Analy
sis System (SAS), and Biomedical Computer Programs (BM D P).
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FIGURE 2.1 Empirical distribution function of NOR data set. (a) Ecdf of 
full data set (n = 100). (b) Ecdf of first ten observations.
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Two other technical points are worth mentioning here. First, as defined 
by formula (2. 1) the ecdf is actually a step function with steps or jumps at 
the values of the variable that occur in the data. Figure 2. Ia  does not dis
play the ecdf as a step function. Very often it is not displayed as such, espe
cially when the sample size is large and the underlying variable is continuous 
as is the case with the NOR data. Figure 2. Ib displays the ecdf as a step 
function for the first ten observations of the NOR data set. The ordered val
ues of these first ten observations along with their ecdf values are:

Ordered observations
F (X) = i/n 

n'Number (i) Value

I 84.27 .1
2 90.87 .2
3 92.55 .3
4 96.20 .4
5 98.70 .5
6 98.98 .6
7 100.42 .7
8 101.58 .8
9 106.82 .9

10 113.75 1.0

Second, if the data set consists of grouped data and the variable is con
tinuous , then the ecdf should be defined so that the steps occur at the true 
upper class limits. For example, if the frequency table is

Classes Frequency

10-13
14-17
18-21

15
20
15

and an observation is categorized in the first class if it is in the interval
9.5 < X < 13.5 and similarly for the other classes, then the ecdf is defined
as

X

13.5 .30
17.5 .70
21.5 1.00
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2.2.2 Investigation of S5rmmetry

Figure 2.2 contains plots of three distributions to illustrate different situa
tions one can encounter in attempting to determine if a distribution is s y m 
m e t r i c  or skewed. The three distributions are the normal (which is sym
metric), the negative exponential (which is positively skewed—i . e . , "its 
upper tail is longer than its lower tail" or "its upper percentage points are 
farther from the median than are the lower") and the Johnson unbounded 
Su (1»2) curve (which is negatively skewed—i . e . , "its lower tail is longer 
than its upper ta il"). The density functions for these three distributions are, 
respectively.

f(x) =

I -x/e 
f(x) = - e

expj^- | [(x  -  ti)/<T]^

and

f(x) =
cr's/^ 's/1 + ((X -  Д)/(Т)2 'Bезф -  o i v  + ö s in h -* [(X  -  ß )/ (T ] Ÿ

Here yt, (T, 0, y, and ô are parameters of the distributions.
If a distribution is symmetric, then in the plot of the population cdf F(x) 

the distance on the horizontal axis between the median (50-th percentile) and 
any percentile P  below the median (0 < P  < 50) is equal to the distance from  
the median to the (100 -  P)th percentile. Figure 2.3a represents this relation

density

cum ulative
Norm al 

(Symmetri c)
Negative Exponential 

(Positive  Skew)
Johnson SU(1,2) 
(Negative Skew)

FIGURE 2. 2 Differentiation of symmetric and skewed distributions.
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(а) Relation of percentile about median for symmetric distributions-

(b) Ecdfs for three distributions.

FIGURE 2.3 Use of ecdfs for investigation of S3rm m e try .
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in diagram form. This relation should be reflected in the ecdf. An examina
tion of the ecdfs given in Figure 2.3b shows it clearly is in the NOR data set 
and clearly is for the other two data sets (EXP for the negative exponen
tial distribution and SU(1,2) for the Johnson unbounded distribution). Some 
rough numerical values from the ecdfs are:

Absolute Values of Distances from Sample Median to Percentiles

Sample percentiles 
P

100 -  P NOR EXP SU(1,2)

10
90

20
80

25
75

40
60

21
25

11
9

10
7

4
3

3.5  
15.0

2.36. 0
2.0
3.5

.7
1.1

1.75
1.55

.50

.85

.15

.55

.05

.20

If the distribution has positive skewness the portion of the ecdf for i/n 
values close to I ( e .g . , greater than .9) w ill usually be longer and flatter 
(almost parallel to the horizontal axis) than the rest of the ecdf. Similarly, 
if the distribution has negative skewness the long flat portion w ill lie in the 
lower end of its ecdf (e . g . , i/n values less than . I ).  The ecdfs from both 
the EXP and SU(1,2) data sets behave as expected.

Another, more sensitive and informative graph for studying asymmetry 
is a simple scatter diagram plotting the upper half of the ordered observa
tions against the lower. That is, letting X^i), ^ (2 )^  * * * » ^(n) represent the 
ordered observations, plot X^^j versus versus X^2)» ^
general, Х^^+^.ц versus Х(ц for i < n/2. Figure 2.4 contains these plots 
for the NOR, EXP, and SU(1,2) data sets. A negative unit slope indicates 
S5rmmetry, a negative slope exceeding unity in absolute value indicates posi
tive skewness, and a negative slope less than unity in absolute value indi
cates negative skewness. Notice how well this technique identifies the 
behavior of the distribution with respect to symmetry. Note also that not all 
of the observations are plotted. They are not needed usually for a correct 
visual identification.

Another useful plotting technique involves plotting the sums Х(ц+1_^) + Х^ц 
against the differences -  X^¿ ,̂ which would produce a horizontal con
figuration for a symmetric distribution (Wilk and Gnanades ikan, 1968). A  
plot of the (100 -  P)th sample percentile versus the P^^ sample percentile
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125

120
Upper
Observation  ̂̂

no
105

100

95

90

85

80

75

39 J 
261̂  

20'

15

10

75 80 85 90 95 100 b 0 2 4 6 -3

Lower Observations Lower Observations Lower Observations

FIGURE 2.4 Plot of upper versus lower observations for investigation of 
symmetry, slope computed on all data, (a) NOR data, slope = -1.06.
(b) EXP data, slope = -4.62. (c) SU(1,2) data, slope = -.75 .

for 0 < P < 50 is called a symmetry plot and is also useful (Chambers et a l . , 
1983).

Form al numerical techniques for investigating and testing for S3nmnetry 
are often based on the sample statistic. A  full treatment of this proce
dure is given in Chapter 7.

2.2.3 Detection of Outliers

Outliers, observations that appear to deviate markedly from other members 
of the sample (Grubbs, 1969), often can be detected by the use of ecdf plots. 
They usually appear as one or a cluster of observations separated from the 
rest of the sample and are identifiable in the ecdf if, in addition to the plot, 
some knowledge is available concerning the features of the underlying dis
tribution which should be reflected in the data ( e .g . , the maximum perm is
sible range of the observations or the largest or smallest possible correct 
values of the observations may be known or it may be known that the under
lying distribution is symmetric.

Figure 2.5 illustrates the use of the ecdf for detecting an outlier. The 
figure contains two ecdfs. The first (Figure 2. 5a) is a plot of the first ten 
observations of the NOR data set. These observations are: 92.55, 96.20, 
84.27, 90.87, 101.58, 106.82, 98.70, 113.75, 98.98, and 100.42. The 
second ecdf (Figure 2. 5b) is a plot of the same data with the last observation, 
100.42, replaced by an outlier equal to 140. This example is an exaggeration



GRAPHICAL ANALYSIS 15

of what usually happens in practice, but it illustrates well the type of con
figuration that results in an ecdf plot of a symmetric distribution such as 
the normal distribution when an outlier or outliers are present. Note if it 
were not known that the underlying distribution is symmetric or nearly sym
metric, it would be impossible to judge if the ecdf of Figure 2.5b represents 
data with an outlier present or data from a skewed distribution (see, for ex
ample, the ecdfs of the SU(1,2) and EXP data sets given in Figure 2.3b).

We will illustrate later in this chapter the use of the probability plotting 
technique for detecting outliers. Further, Chapter 12 is devoted solely to 
the problems of detecting and testing for outliers. The formal techniques of 
that chapter should be used in conjunction with informal graphical techniques-

2.2.4 Mixtures of Distributions—
Presence of Contamination

At times we may be dealing with samples that arise as mixtures of two or 
more distributions. For example, the author once was involved in a study 
dealing with taking measurements on parasite transmitting snails obtained 
from field sampling. There was no nonstatistical way to separate the differ
ent generations ( i . e . , age groups) of snails in the sample. The parameters 
that were desired were related to age. The author was also involved in

FIGURE 2.5 Plots of ecdfs from NOR data set illustrating effect of an outlier, 
(a) Ecdf of first ten observations, (b) Ecdf of first nine plus one outlier.



16 D’AGOSTINO

another study dealing with oral glucose tolerance test data. In this study it 
was suggested that there might exist two sul^>opulations—normals and dia
betics. The data set consisted mainly of normals. Again there was no simple 
nonstatistical way of removing the small "contaminating" subsample of dia
betics . In both of these situations the graphical techniques of this chapter 
proved to be extremely useful.

Unless the component distributions of the mixture are very distinct (e .g . , 
the difference between the means is much larger than the individual distri
butions’ standard deviation), the ecdf of the combined sample may not supply 
much information to aid in determining if a mixture exists. Figure 2.6 illus
trates the problem. It contains separate and combined densities of mixtures 
of normal distributions. If the component distributions are "close" as in (a) 
and (b) of Figure 2.6, the combined distribution may very well be unimodal.

Figure 2.7 further illustrates the problem. These are ecdfs from mix
tures of two normal distributions. The main underlying distribution is the 
normal distribution with mean zero and standard deviation unity. However, 
the sampling was done in such a way that for each observation drawn there 
was a probability тг that the observation would come from the normal distri
bution with mean 3 and standard deviation unity. The data set for (a) of 
Figure 2.7 had тг = . I (data set LCN (. 10,3) of the appendix) and the set

separate 
component 
dens iti es

comb i ned
components
density

FIGURE 2.6 Mixtures of normal distributions. (a) Two equal close com
ponents. (b) Two close components, (c) W ell separated components.
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Fn(X)

1.0 - 

.9- 
Я -  
.7-

.5

.4

.3

.2
.1

-3 -2  -I -2 0 I

FIGURE 2. 7 Ecdfs of contaminated distributions (main component is standard 
normal: mean zero and standard deviation unity). (a) Standard normal with 
10 percent contamination from normal with mean 3 and standard deviation I. 
(b) Standard normal with 20 percent contamination from normal with mean 3 
and standard deviation I .

for (b) of Figure 2.7 had тг= .2 (data set LCN (.20 ,3 )). The ecdfs in F ig
ure 2.7 look very much like those that are produced by positively skewed 
distributions. In fact the populations cdfs are positively skewed. The con
tamination "caused” the skewness.

If the component distributions are "well separated" as in (c) of Figure 
2.6, the resulting mixture will be bimodal and with sufficient data available, 
the ecdf w ill show the changes from concavity to convexity to concavity as 
does the cdf of (c) in Figure 2.6. In general only under the condition of sub
stantial separation of the components w ill the ecdf reveal bimodality.

There is an extensive literature on mixtures (see, for example, Johnson 
and Kotz, 1970, Section 7.2) and the usual procedure is to assume some 
functional form for the components or for the major distribution or distri
butions of the components. Specific parametric techniques are then employed
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to establish if a mixture does exist and to estimate the parameters of the 
components (e .g ., B liss, 1967, Chapter 7). Giventhese assumptions about 
the functional form of the underlying distributions, graphical techniques such 
as the probability plotting techniques which w ill be discussed later in this 
chapter can be very useful in detecting the presence of mixtures even in situ
ations such as those in Figure 2.6a and 2.6b. These probability plotting 
techniques are the graphical techniques we recommend for use. Other graph
ical procedures are given in Harding (1949) and Taylor (1965).

2.2.5 Assessing Tail Thickness

At times the interest is not in describing the entire distribution of a variable 
but rather only one or both of the tails of the distribution. For example, the 
Environmental Protection Agency is interested often in making inferences 
and issuing standards concerning high concentrations of various pollutants 
(Curran and Frank, 1975). In such situations it is more important to under
stand the behavior of the upper tail of the distribution than it is to fit the 
entire distribution. Although a particular model may adequately describe 
most of the distribution, it would be useless for predicting maximum or 
extreme values if the model broke down for the upper percentiles. Also, a 
model that is not accurate for a large portion of the data may still be useful 
for predicting upper values if it adequately describes the behavior of the 
upper percentiles. Bryson (1974) presented a graphical technique applicable 
to deal with assessing the behavior of the tails of a distribution. The develop
ment below is due to the adaptation of Curran and Frank (1975).

To be specific say the interest lies in assessing the behavior of the upper 
tail. Mathematically, this is equivalent to assessing the thickness of the 
upper tail or finding a mathematical model which ’’fits” the upper tail. The 
most convenient mathematical model is the negative exponential distribution. 
Here, the probability density function is

r  -x/ö 
f(x) = ~e в > 0, X > 0 (2.2a)

and the cumulative distribution function is

, . -x/âF(X) = I -  e

From this we have 

I -  F(X) =

(2.2b)

and

ln(l -  F(X)) = -x/0 (2.2c)
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FIGURE 2.8 Relation of lognormal and Weibull distributions to negative 
exponential on sem i-log graph paper (for investigation of tail thickness).

The implication is that if I  -  F(x) is plotted against x on sem i-log graph 
paper the plot w ill be a straight line (see Figure 2.8 ). Because of this, it is 
convenient to use the negative exponential distribution as the reference dis
tribution and compare other distributions to it. The Weibull and lognormal 
distributions are often the two major distributions of potential interest for 
this type of problem. The two-parameter Weibull has as its probability 
density and as its cdf

Л -1
f(x) = | (| ) , e>0,  x>0 ,  k > 0

-(х/в)F(X) = I -  e

The lognormal distribution has as its probability density

f « . —
XO-

(2.3a)

(2.3b)

(2.4)

Its cdf, F(X), does not have a closed form representation. Figure 2.8 con
tains plots of I -  F(x) versus x on sem i-log paper for a negative exponential, 
a Weibull with к > I and a lognormal distribution. Notice the negative expo
nential produces a straight line, the lognormal distribution curves upward 
and the Weibull with к > I curves downward. A distribution that curves down
ward is termed "light tailed. " A heavy tailed distribution has a probability 
density function whose iQ>per tail approaches zero less rapidly than the
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FIGURE 2.9 Plots of data sets on semi-log graph paper (for determining tail thickness), (a) EXP data set. 
(b) WE2 data set.
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e?фonential or, in other words, a heavy tailed distribution has a greater 
probability of yielding high values. On the other hand, a light tailed distri
bution has a probability density function whose upper tail approaches zero 
more rapidly than the езфопепиа! and, therefore, is less likely to yield high 
values • In particular it should be mentioned that all lognormal distributions 
are heavy tailed and all Weibull distributions with к > I  are light tailed 
(when к = I ,  the Weibull is the negative exponential distribution)* So if these 
are the two models of Interest for the upper tail, an examination of a plot of 
I -  F ji(X) ( i . e . , one minus the ecdf) versus Х (ц, the ordered observations 
will often indicate which is the appropriate model.

The sem i-log graph paper used in Figure 2.8 is four cycle paper. Three 
quarters of the vertical axis concerns only the upper 10”  ̂to 10““* points of 
the distribution (.90 < F(x) < .9990). So this graph does focus almost exclu
sively on the upper 10 percent of the distribution. However, it does contain 
on the vertical axis the rest of the distribution and plotting the full distribu
tion can cause confusion in attempting to judge the fit of the upper tail. In 
general, points for which Fjj(x) < .5 should not be plotted. For samples as 
small as 100 the author has found it convenient to use two cycle sem i-log  
paper, define Fjj(x) as

#(X. < x) -  . 5
V x z ________

n n
.5

(2.5)

and plot the data only for Fjj(x) > . 50. Note in (2.5) i = #(Xj < x).

E 2 .2 .5 .1 Example

Figure 2.9 contains the above described plots for the EXP and WE2 (Weibull 
with к = 2) data sets. Consider first the EXP data set plotted in Figure 2.9a. 
The dots represent the observed values of I -  Fjj(x) for Fn(x) > .50. These 
appear to lie roughly on a straight line. If the negative exponential distribu
tion is an adequate model for these data, then a straight line for the theo
retical exponential as in Figure 2.8 should fit the observed points. To obtain 
the theoretical line we need The parameter Ö in (2. 2) can be estimated by

в = ln(l -  F^(X)) (2 . 6)

where x represents any value for which the model is supposed to hold. In 
particular the x for which Fjj(x) = .6321 or I -  Fjj(x) = .3699 yields a direct 
estimate of Ö. For the EXP data set the estimate of в using this or almost 
any choice of x is approximately 5 ( i . e . , 0 = 5 ) .  The line drawn in Figure 
2.9a is the line I -  F(x) for the negative exponential with 0 = 5 . Except for 
the last two data points it fits well to the data. The inference to be drawn 
from this exercise is that the negative exponential model is an appropriate
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model which accounts well for all the data points except possibly the last 
two. Note that in judging the goodness-of-fit of these points it is the hori
zontal distance from the points to the line that are important, not the vertical 
distances. The last data point, in particular, may appear to be further away 
from the line than might be expected. Such variability in the extreme obser
vation is, however, often observed.

Consider next the WE2 data plotted in Figure 2.9b. Using the x for which 
Fn(X) = .6321 to obtain в in (2.6) we obtain 0 = .98. The line I -  F(x) for 
the negative exponential with ö = .98 is drawn in Figure 2.9b. Notice how it 
lies above most of the data. Using Figure 2.8 as a guide this suggests (cor
rectly) that the data is from a distribution with a thinner upper tail than the 
negative exponential. Also on Figure 2.9b are plotted two other lines repre
senting I - F (X )  for the negative exponential of (2.2). These arose from  
solving (2.6) for fusing Fjj(x) = .90 and Fjj(x) = .95. The estimators of в  
are, respectively, .59 and .52. Againthe inference is the same, v iz ., the 
negative exponential model of (2. 2) is not appropriate and the distribution 
under consideration has a thinner tail than the negative exponential. Note, 
this inference is correct.

A further examination of the WE2 data plot in Figure 2. 9b does reveal 
that the points do appear to lie on a straight line. The above analysis estab
lishes that the data cannot be explained by a model such as (2.2). They can, 
however, be explained by a negative e^qx>nential model which incorporates a 
displacement value, v iz .,

0 > 0, X > Л. (2.7)

where Л. is the displacement value. The cdf for this distribution is

Ч -. -[(x-X)/ö]F(X) = I -  e

If we start with this model then any two distinct x values (or two F^(X) 
values) can be used to produce linear equations for X  and 0. The equations 
are

ln(l -  F^(x^))e + A = 

ln(l -  F^(Xg)) 0 + A = X̂ (2. 8)

Using F jj(Xi ) = .50 and Fjj(X2) = .90 in the WE2 data set produces в = .28, 
X =  .73. The line of I -  F(x) for model (2.7) with these parameters is also 
plotted in Figure 2.9b. This provides an excellent fit. So if we restrict our 
attention solely to the upper tail the WE2 data can be well explained by a 
negative exponential of the form (2.7). Of course, the correct model is the
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Weibull of (2.3) with к = 2. Completion of the first part of the above analysis 
would have led correctly to the Weibull model.

2 .2 .5 .2  Extensions

The above material can easily be modified to examine the lower tail of the 
distribution (v iz ., by plotting F^(X) of (2.5) versus the observations on 
sem i-log paper).

Often the normal distribution is used as the reference distribution in 
discussing tail thickness and the standardized central fourth moment (the 
kurtosis measure) is used as the appropriate measure. For these problems, 
one is usually interested in fitting the complete distribution and not just the 
tail. We w ill discuss this tail thickness concept in Section 2.4 below. Also, 
Chapter 7 w ill discuss in detail the formal computational procedures associ
ated with this concept.

2.2.6 Assessing the Fit of the Full Distribution

The ecdf can be used also for assessing how well a particular statistical 
distribution fits the entire data set. The procedure starts by plotting on the

FIGURE 2. 10 Comparison of population and empirical cumulative distribution 
functions for NOR data set. (a) Full data set (n = 100): population mean 100, 
standard deviation 10. (b) F irst ten observations: sample mean 98.41, 
standard deviation 8.28.
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same grid of a piece of graph paper the ecdf of the sample and the cdf of the 
hзфothetical distribution. For example. Figure 2.10a contains the ecdf of 
the NOR data along with the cdf for the normal distribution with mean 100 
and standard deviation 10 ( i . e . , the true underlying distribution). If values 
of the parameters of the hypothetical distribution are unspecified, these 
must be estimated for the data set under investigation by means of some 
procedure such as the method of moments or the method of maximum likeli
hood and then the cdf of the hypothetical distribution using these estimates 
as parameter values are plotted. For an example, Figure 2. IOb contains 
the plot of the ecdf of the first ten observations of the NOR data set along 
with the cdf of the normal distribution with mean and standard deviation equal 
to the sample mean and standard deviation, v iz . , x = 98.41 and s = 8.28.

The next step in the informal graphical analysis involves comparing the 
two plots (ecdf and cdf) and deciding if they are "c lo se .” Usually this infor
mal procedure is the first step in a more elaborate análysis which includes 
formal numerical techniques referred to as empirical cumulative distribution 
function techniques or more simply empirical distribution function (EDF) 
techniques. Chapter 4 contains a detailed account of these techniques.

While the above described graphical procedure has merit, especially 
when used with the formal numerical EDF techniques, it is deficient as an 
informal technique in that there are more informative simple graphical 
techniques—namely those involving probability plotting which are the subject 
matter of the remainder of this chapter.

2.3 GENERAL CONCEPTS OF PROBABILITY PLOTTING  

2.3.1 Introduction

A major problem with the use of the ecdf plot in attempting to judge visually 
the correctness of a specific hypothesized distribution is due to the curva
ture of the ecdf and cdf plots. It is usually very hard to judge visually the 
closeness of the curved (or step function) ecdf plot to the curved cdf plot. If 
one is attempting to reach a decision based on visual inspection it is prob
ably easiest to judge if a set of points deviates from a straight line. A prob
ability plot is a plot o f the data that offers exactly the opportunity for such a 
judgment, for it w ill be a straight line plot, to within sampling erro r, if the 
hypothesized distribution is the true underlying distribution. The straight 
line results from transforming the vertical scale of the ecdf plot to a scale 
which w ill produce exactly a straight line if the h3npothesized distribution is 
plotted on the graph.

The principle behind this transformation is simple and is as follows. 
Say the true underlying distribution depends on a location parameter ß  and a 
scale parameter ct*. Qx and a  need not be the mean and standard deviation, 
respectively). The cdf of such a distribution can be written as



F(X) = g ( ^ )  = G(Z) 

where
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(2.9)

is referred to as the standardized variable and G(*) is the cdf of the standard
ized random variable Z . The ecdf plot is based on plotting F(x) on x. For 
sample data F (x) is replaced by Fj^(x) and the plotted values of x are the ob
served values of the random variable X. Now if the plot were one of z on x 
(or equivalently G“^(F(x)) on x where G"^(.) is the inverse transformation 
which here transforms F(x) into the corresponding standardized value z), the 
resulting plot would be the straight line

Z = G -^F (X )) =
X -M

(2.10a)

or in terms of x on z

X =  M +  Z(7

A probability plot is a plot of 

Z = G"^(F (X )) on X

(2 .10b)

(2.11a)

where x represents the observed values of the random variable X. Notice 
F(X) in (2 .10a) is replaced by F^(X) in (2 .11a). With observed ordered obser
vations X(I) < • * • < *(n)* ^ probability plot can also be described as a plot of

' l  ■ “  ’‘fl)
(2.11b)

For probability plotting the ecdf Fji(x) of (2 .11a) o r Fn(X(()) of (2.11b) are 
usually not defined as in (2.1) but rather as either

f o r i = l .  . . . . n

or more generally as

(2 . 12)

I - C
n -  2c + I

for 0 < C <  I (2.13)

In (2.12) the C of (2.13) is equal to 0.5. See Barnett (1975) and Chapter 11 
for further discussion of the selection of c. In the following we w ill always
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use the (x) given by p,- of (2.12). Given that F is the true cdf, the proba
bility plot of (2.11) should be approximately a straight line. In fact there is 
strong convergence to a straight line for large samples.

E 2.3.2 An Example—Logistic Distribution

As an example of the above consider the problem of investigating the appro
priateness of the logistic distribution as the underlying distribution from  
which the LOG data set was obtained. (The LOG data set was drawn from a 
logistic distribution and is given in the Appendix.) The cdf of the logistic 
distribution is

F(X) = [I + exp{-ir(x - n)/{(T'^3)}]~^ (2.14)

Here Д and a  are the mean and standard deviation, respectively. The cdf of 
the standardized logistic distribution ( i - e . , of Z = (X -  pt)/o*) is

G(Z) = [I  + exp (-7tz/ n/3)]"^

lOOF-lx)
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FIGURE 2.11 Logistic probability plot of LOG data set.
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TABLE 2. 1 Partial Data for Logistic Probability Plot of LOG Data 
(Plotted in Figures 2.11 and 2.12)

Ordered Observation 
Number (i)

-ri # V i — • 5 
F„(x) - P -  

n i n Z

Ordered Observation

I .005 -2.90 51.90
2 .015 -2.31 60.57
3 .025 -2.02 63.35
4 .035 -1.83 65.87
5 .045 -1.68 66.35
6 .055 -1.56 68.44
7 .065 -1.47 74.29
8 .075 -1.39 76.52
9 .085 -1.31 78.32

10 .095 -1.24 78.48
11 .105 -1.18 79.07
12 .115 -1.12 79.32
13 .125 -1.07 81.17
14 .135 -1.02 81.61
15 .145 -  .98 82.45

86 .855 .98 113.79
87 .865 1.02 114.97
88 .875 1.07 116.01
89 .885 1.12 116.58
90 .895 1.18 116.99
91 .905 1.24 117.01
92 .915 1.31 118.54
93 .925 1.39 118.92
94 .935 1.47 121.83
95 .945 1.56 123.39
96 .955 1.68 123.58
97 .965 1.83 131.24
98 .975 2.02 132.40
99 .985 2.31 144.28

100 .995 2.90 145.33
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Recalling from (2.9) that 

F(X) = g ( ^ )  = G(Z)

where z = (x -  /х)/(т and solving for z in terms of F(x) we obtain from the 
above.

■«-<-«>-T -(T ilk )
Now, according to (2.11) a logistic probability plot consists of plotting on 
arithmetic graph paper

ж ^ V l - F  (X )/  n' '
(2.15)

where Fj^(x) is the ecdf defined by (2.12) on one axis (e .g . , the vertical axis) 
versus X on the other (horizontal) axis. Here x represents the observed val
ues in the sample. Figure 2.11 contains an appropriate graph set up for 
this problem.

Notice in Figure 2.11 there are two alternative ways of labeling the 
vertical axis. The first way, which is probably the most informative, is to 
label the axis in terms of Fn(x) (or lOOFjj(x) which is the more conventional 
way). The second way is in terms of the values of the standardized vari
able z. In Figure 2.11 we have labelled the left vertical axis as 100Fjj(x) and 
the right vertical axis as z. Notice the vertical axis is linear in z. It is not 
linear in F^ (x ).

Figure 2.11 contains the data plotted on it. To make more езфИси the 
actual points plotted on this graph we list in Table 2.1 the values of Fjj(x) of 
(2.12) and Z obtained for (2.15) for the first and last fifteen ordered obser
vations . Also listed are the corresponding ordered observations.

2.3.3. Informal Goodness-o f-F it and Estimation of Parameters

Once the data are plotted the next step is to determine the goodness-of-fit of 
the data. For a probability plot this means determining if a straight line 
’’fits well” the data. This problem can be approached in a very formal manner 
and Chapter 5 (Regression Techniques) discusses this approach in detail. For  
the purposes of this chapter it means drawing a straight line through the 
points and deciding in an informal manner if the fit is good.

2 .3.3.1 First Procedure

The simplest procedure is to draw a line ”by eye” through the points. One 
convenient way to do this is to locate a point on the plot corresponding to
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around the IOth percentile (F^(X) = . 10) and another around the 90th percent
ile (Fji(x) = -90) and connect these two. Figure 2 .12a contains such a line for 
the logistic probability plot of the complete LOG data set. (Notice this is the 
same plot as Figure 2.11. Here we have the straight line imposed on the 
graph.) This line fits the data extremely well, accommodating even the ex
treme points. There are two comments which need mentioning here. The 
first concerns the non-random pattern of the points about the line. The 
ordered observations are not independent and the type of pattern shown in 
Figure 2 .12a is to be ej^ected. Second, in judging deviations from the line 
remember it is the horizontal distances from the points to the line that are 
important.

After the *Ъу eye” line is drawn it can be used to supply quick estimates 
of the parameters of the distribution. For example, with the LOG data of 
Figure 2 .12a we can obtain estimates of the mean м and standard deviation a  
by recalling that z = 0 corresponds to the mean ц. and z = I (86th percentile) 
corresponds to д + o*. In Figure 2 .12a we have lines extending from z = 0 
and I to the straight line and down to the x ax is. From these we estimate 
ii = 99 and a  = 17.

2 .3 .3 .2  OtherProcedures

A second procedure for obtaining the line and estimates is to recognize that 
from (2. 10) we have that the desired line can be represented by

X = /1+2(7 (2.16)

and estimates of and a  can be obtained by using unweighted least squares 
(simple linear regression). The general solution for these are

 ̂ Z  (z -  z)x ,-4  -   ̂-
S (Z -Z )Z  and Í. = X -(T Z (2.17)

If Z z  = O, then

 ̂ -  , -4  Z  ZX
Al = X and (T = (2.18)

for the LOG data set, /z = 99.78 and a  =  16.70.
Still a third procedure applicable if /z and cr are the mean and standard 

deviation, as they are in the logistic distribution of (2.14), is to use x and s, 
the sample mean and standard deviation, as estimates. For the LOG data 
X = 99.78 and s = 16.67. Notice for the LOG data there are very little differ
ences among the results of these different procedures. The true parameter 
values are /z = 100 and C7 = 18.14.

More elaborate procedures involve finding the best linear unbiased esti
mators of /Z and (7 (see D^Agostino and Lee, 1976, for the logistic distribu
tion). These procedures lead to the regression techniques of Chapter 5.
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FIGURE 2.12 Logistic analysis of LOG data set. (a) Full data set (n = 100) line fit "by eye. " (b) First 
ten observations, small sample analysis.
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2.3.4 Small Samples

When the size of the sample is small (say 50 or less) the probability plots 
of Z on X as given by (2.11) may display curvature in the tails even if the 
hypothesized distribution is correct. For these cases the usual recommen
dation is to use the expected values of the ordered statistics from the stand
ardized distribution of the h3̂ othesized distribution for the plotting positions 
of the vertical axis. These are used in place of the z of (2.11) which are the 
percentile points of the standardized distribution. The ejqjected values are 
defined as follows. Say Z (i ) < • • • < Z(n) represent the ordered observations 
for a sample of size n from a standardized distribution. Then the expected 
values are defined as for i = I , . . . »  n where E represents the e3q>ected
value operator.

E 2.3.4.1 Example

For the logistic distribution the expected values are readily available (Gupta 
and Shah, 1965, and Gupta, Qurelshi and Shah, 1967). However, for this 
particular distribution there appears to be no reason to use them in plotting. 
Figure 2.12b contains a logistic probability plot ( i . e . , a logistic analysis) of 
the first ten unordered observations of the LOG data. The data along with the 
expected values of the ordered observations, Fjj(x) and z of (2.11) and (2.15) 
are as follows:

Expected values 
Ordered of standardized

observations logistic ordered observations F  (X) = p.
n'

Z of (2.11) 
and (2.15)

63.35 -1.56 .05 -1.62
78.32 -.95 .15 -.96
94.63 -.60 .25 -.61
96.91 -.34 .35 -.34

102.97 -.11 .45 -.11
104.47 .11 .55 .11
109.99 .34 .65 .34
111.81 .60 .75 .61
118.54 .95 .85 .96
144.28 1.56 .95 1.62

The differences between the expected values and the z ’s of (2.15) are not 
large enough to influence the plots. This is seen clearly in Figure 2 .12b. 
Remember in judging the fit it is the horizontal distance from a point to the 
line that is important.
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FIGURE 2.13 Use of computer scatter diagrams for probability plotting, 
(a) Logistic analysis of LOG data.

FIGURE 2.13 (b) Logistic analysis of UNI data.
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FIGURE 2.13 (c) Uniform analysis of UNI data.

2.3.5 Grouped Data/Ties in Data

For groined data such as discussed in Section 2.2.1 the simplest procedure 
for probability plotting is to plot only the data at the true upper class limit 
for each Interval. Of course, use (2.12) for the F^(X). This is equivalent 
to representing all the observations in the interval at the upper end points 
of the intervals. For ungrouped data with ties the simplest procedure is to 
average the z values for the observations in the ties (see E 2 .4 .1.1 for a 
numerical example).

2.3.6 Use of Simple Computer Graphics

Elaborate sophisticated computer graphics are not needed to produce proba
bility plots. Many interactive systems have the capability of ordering the 
observations of a data set and defining new variables. In such systems a 
probability plot is simply a scatter diagram with z of (2.11) on the vertical 
axis and the sample observations on the horizontal axis. Figure 2.13 dis
plays such scatter diagram-probability plots. Figure 2 .13a is the logistic 
plot of the LOG data (already plotted in Figures 2.11 and 2.12a). Figure 
2 .13b is a logistic analysis of the UNI data. The UNI data were drawn from
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the uniform distribution defined on the interval 0 to 10. This analysis clearly 
indicates lack of fit. Figure 2.13c is a uniform analysis of the UNI data.
That is , it is a probability plot Investigating if the UNI data were drawn from  
a uniform distribution. In Chapter 6 techniques are discussed which involve 
transforming the data first to a uniform distribution. In that chapter the 
uniform probability plot plays a very important adjunct role in judging 
goodness-of-fit. For a uniform probability plot the standardized variable z 
usually is defined as the uniform distribution on the unit Interval.

In addition to the plotting, many interactive computer programs can also 
be used to obtain the estimates of д and <t given by (2.17). These are just the 
intercept and slope estimates from a simple linear regression of x on z. 
However, the correlation coefficient from this simple linear regression must 
be viewed with care in attempting to judge goodness-of-fit. Because of the 
matching of the ordered observations with increasing z values both x and z 
are monotonically increasing, so the correlation coefficient w ill be usually 
large in magnitude regardless of how well the data fit a straight line. For 
example, the correlation coefficient for the data of Figure 2 .13b (logistic 
analysis of the UNI data) is . 947. The fit of these data to a straight line 
obviously leaves much to be desired.

In addition to the use of programs as described above to do probability 
plotting, many standard software packages (e .g . , SAS) have specific routines 
for probability plotting. These should be used when available.

2.3.7 Summary Comments

As given above a probability plot is a plot of

Zj = G -*(F^(x ĵ̂ )) = G -I(P j) on x̂ ĵ (2.19)

where G"^(*) is the inverse transformation of the standardized distribution 
of the population (hypothesized distribution) under consideration. We recom
mend for Fjj(X^i))

^n("(i)> = Pi =
(2.20)

In the examples above we have used arithmetic graph paper placing z on the 
vertical axis and x on the horizontal axis. Of course, it is not incorrect to 
place X on the vertical axis and z on the horizontal axis. (In Chapter 11 prob
ability plotting is done that way.) Nor is it essential to use arithmetic paper. 
Many probability plotting papers, which have the axes appropriately labelled, 
are available commercially. Logistic paper and many other probability 
papers are available from the Codex Book Company, 74 Broadway in Norwood, 
Massachusetts.
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TABLE 2.2 Plotting Formulas for Some Fam iliar Distributions 
(  i - 0 . 5 ^

Distribution C df F (X )

Horizontal
Axis

Vertical Axis

Uniform ------- for Д < X < ß  + (T
(T * (i )

i -  .5  

P i=  n

Normal
" (I )

See (2.22) to (2.24)

Lognormal In(X^i)) See (2.22) to (2.24)

Weibull I -  ® * p ( - ( i )  ) ln (-ln (l -  p.))

Extreme Value I -  e x p ( - e x p ( ^ ) )
" (i )

ln (-ln (l - p . ) )

Logistic [ I  + exp { -7T(x -  m)/(tn/3 }  ] “^
" (i )

nTs
—  ln (P i/ (l - P i »

Exponential I -  exp (-(x/ö))
*(1)

- I n ( I - P j )

Once the points are plotted the major task is to judge if the plotted data 
form a straight line. If they do not, the task is then to decide what are the 
properties of the underlying distribution or data which cause this nonlinearity. 
We will now illustrate this probability procedure with the normal, lognormal 
and Weibull plotting. Table 2.2 contains the appropriate formulas for proba
bility plotting for those and other fam iliar distributions.

2.4 NORMAL PROBABILITY PLOTTING

2.4.1 Probability Plotting

Normal probability plotting, normal plotting or normal analysis is the plotting 
of data in order to investigate the goodness-of-fit of the data to the normal 
distribution with density given by

f(x) =
^Í2Ír<T

(2 .21)
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FIGURE 2.14 Normal probability paper.
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TABLE 2.3 Plotting Positions z for Normal Probability Plotting (n < 50) 
(Expected Values of Standard Normal Order Statistics*)

(n = Sample Size, i = Observation Number)

i\n 3 4 5 6 7 8 9 10

I -0.85 -1.03 -1.16 -1.27 -1.35 -1.42 -1.49 -1.54
2 0.00 -0.30 -0.50 -0.64 -0.76 -0.85 -0.93 -1.00
3 0.00 -0.20 -0.35 -0.47 -0.57 -0.66
4 0.00 -0.15 -0.27 -0.38
5 0.00 -0.12

11 12 13 14 15 16 17 18

I -1.59 -1.63 -1.67 -1.70 -1.74 -1.77 -1.79 -1.82
2 -1.06 -1.12 -1.16 -1.21 -1.25 -1.28 -1.32 -1.35
3 -0.73 -0.79 -0.85 -0.90 -0.95 -0.99 -1.03 -1.07
4 -0.46 -0.54 -0.60 -0.66 -0.71 -0.76 -0.81 -0.85
5 -0.22 -0.31 -0.39 -0.46 -0.52 -0.57 -0.62 -0.66
6 0.00 -0.10 -0.19 -0.27 -0.34 -0.40 -0.45 -0.50
7 0.00 -0.09 -0.17 -0.23 -0.30 -0.35
8 0.00 -0.08 -0.15 -0.21
9 0.00 -0.07

19 20 21 22 23 24 25 26

I -1.84 -1.87 -1.89 -1.91 -1.93 -1.95 -1.97 -1.98
2 -1.38 -1.41 -1.43 -1.46 -1.48 -1.50 -1.52 -1.54
3 -1,10 -1.13 -1.16 -1.19 -1.21 -1.24 -1.26 -1.29
4 -0.89 -0.92 -0.95 -0.98 -1.01 -1.04 -1.07 -1.09
5 -0.71 -0.75 -0.78 -0.82 -0.85 -0.88 -0.91 -0.93
6 -0.55 -0.59 -0.63 -0.67 -0.70 -0.73 -0.76 -0.79
7 -0.40 -0.45 -0.49 -0.53 -0.57 -0.60 -0.64 -0.67
8 -0.26 -0.31 -0.36 -0.41 -0.45 -0.48 -0.52 -0.55
9 -0.13 -0.19 -0.24 -0.29 -0.33 -0.37 -0.41 -0.44

10 0.00 -0.06 -0.12 -0.17 -0.22 -0.26 -0.30 -0.34
11 0.00 -0.06 -0.11 -0.16 -0.20 -0.24
12 0.00 -0.05 -0.10 -0.14
13 0.00 -0.05

*z for order statistic where i > n/2 is -z  of order statistic where 
j = n + I -  i.

(continued)



TABLE 2.3 (continued)

i\n 27 28 29 30 31 32 33 34

I -2.00 -2.01 -2.03 -2.04 -2.06 -2.07 -2.08 -2.09
2 -1.56 -1.58 -1.60 -1.62 -1.63 -1.65 -1.66 -1.68
3 -1.31 -1.33 -1.35 -1.36 -1.38 -1.40 -1.42 -1.43
4 -1.11 -1.14 -1.16 -1.18 -1.20 -1.22 -1.23 -1.25
5 -0.96 -0.98 -1.00 -1.03 -1.05 -1.07 -1.09 -1.11
6 -0.82 -0.85 -0.87 -0.89 -0.92 -0.94 -0.96 -0.98

7 -0.70 -0.73 -0.75 -0.78 -0.80 -0.82 -0.85 -0.87
8 -0.58 -0.61 -0.64 -0.67 -0.69 -0.72 -0.74 -0.76
9 -0.48 -0.51 -0.54 -0.57 -0.60 -0.62 -0.65 -0.67

10 -0.38 -0.41 -0.44 -0.47 -0.50 -0.53 -0.56 -0.58
11 -0.28 -0.32 -0.35 -0.38 -0.41 -0.44 -0.47 -0.50
12 -0.19 -0.22 -0.26 -0.29 -0.33 —0.36 -0.39 -0.41

13 0.09 -0.13 -0.17 -0.21 -0.24 -0.28 -0.31 -0.34
14 0.00 -0.04 -0.09 -0.12 -0.16 -0.20 -0.23 -0.26
15 0.00 -0.04 -0.08 -0.12 -0.15 -0.18
16 0.00 -0.04 -0.08 -0.11
17 0.00 -0.04

35 36 37 38 39 40 41 42

I -2.11 -2.12 -2.13 -2.14 -2.15 -2.16 -2.17 -2.18
2 -1.69 -1.70 -1.72 -1.73 -1.74 -1.75 -1.76 -1.78
3 -1.45 -1.46 -1.48 -1.49 -1.50 -1.52 -1.53 -1.54
4 -1.27 -1.28 -1.30 -1.32 -1.33 -1.34 -1.36 -1.37
5 -1.13 -1.14 -1.16 -1.17 -1.19 -1.20 -1.22 -1.23
6 -1.00 -1.02 -1.03 -1.05 -1.07 -1.08 -1.10 -1.11
7 -0.87 -0.91 -0.92 -0.94 -0.96 -0.98 -0.99 -1.01

8 -0.79 -0.81 -0.83 -0.85 -0.86 -0.88 -0.90 -0.91
9 -0.69 -0.71 -0.73 -0.75 -0.77 -0.79 -0.81 -0.83

10 -0.60 -0.63 -0.65 -0.67 -0.69 -0.71 -0.73 -0.75
11 -0.52 -0.54 -0.57 -0.59 -0.61 -0.63 -0.65 -0.67
12 -0.44 -0.47 -0.49 -0.51 -0.54 -0.56 -0.58 -0.60
13 -0.36 -0.39 -0.42 -0.44 -0.46 -0.49 -0.51 -0.53
14 -0.29 -0.32 -0.34 -0.37 -0.39 -0.42 -0.44 -0.46

15 -0.22 -0.24 -0.27 -0.30 -0.33 -0.35 -0.37 -0.40
16 -0.14 -0.17 -0.20 -0.23 -0.26 -0.28 -0.31 -0.33
17 -0.07 -0.10 -0.14 -0.16 -0.19 -0.22 -0.25 -0.27
18 0.00 -0.03 -0.07 -0.10 -0.13 -0.16 -0.18 -0.21
19 0.00 -0.03 -0.06 -0.09 -0.12 -0.14
20 0.00 -0.03 -0.06 -0.09
21 0.00 -0.03

*z for order statistic where i > n/2 is -z of order statistic where 
j = n + I -  i.
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TABLE 2.3 (continued)

i\n 43 44 45 46 47 48 49 50

I -2.19 -2.20 -2.21 -2.22 -2.22 -2.23 -2.24 -2.25
2 -1.79 -1.80 -1.81 -1.82 -1.83 -1.84 -1.85 -1.85
3 -1.55 -1.57 -1.58 -1.59 -1.60 -1.61 -1.62 -1.63
4 -1.38 -1.40 -1.41 -1.42 -1.43 -1.44 -1.45 -1.46
5 -1.25 -1.26 -1.27 -1.28 -1.30 -1.31 -1.32 -1.33
6 -1.13 -1 .14 -1.16 -1.17 -1.18 -1.19 -1.21 -1.22

7 -1.02 -1.04 -1.05 -1.07 -1.08 -1.09 -1.11 -1.12
8 -0.93 -0.95 -0.96 -0.98 -0.99 -1.00 -1.02 -1.03
9 -0.84 -0.86 -0.88 -0.89 -0.91 -0.92 -0.94 -0.95

10 -0.76 -0.78 -0.80 -0.81 -0.83 -0.84 -0.86 -0.87
11 -0.69 -0.71 -0.72 -0.74 -0.76 -0.77 -0.79 -0.80
12 -0.62 -0.64 -0.65 -0.67 -0.69 -0.70 -0.72 -0.74

13 -0.55 -0.57 -0.59 -0.60 -0.62 -0.64 -0.66 -0.67
14 -0.48 -0.50 -0.52 -0.54 -0.56 -0.58 -0.59 -0.61
15 -0.42 -0.44 -0.46 -0.48 -0.50 -0.52 -0.53 -0.55
16 -0.36 -0.38 -0.40 -0.42 -0.44 -0.46 -0.48 -0.49
17 -0.29 -0.32 -0.34 -0.36 -0.38 -0.40 -0.42 -0.44
18 -0.23 -0.26 -0.28 -0.30 -0.32 -0.34 -0.36 -0.38

19 -0.17 -0.20 -0.22 -0.25 -0.27 -0.29 -0.31 -0.33
20 -0.12 -0.14 -0.17 -0.19 -0.21 -0.24 -0.26 -0.28
21 -0.06 -0.09 -0.11 -0.14 -0.16 -0.18 -0.21 -0.23
22 0.00 -0.03 -0.06 -0.08 -0.11 -0.13 -0.15 -0.18
23 0.00 -0.03 -0.05 -0.08 -0.10 -0.13
24 0.00 -0.03 -0.05 -0.07
25 0.00 -0.02

*z for order statistic where i > n/2 is -z  of order statistic X/ where
j = n + I

( j )

This plotting can be achieved by using already prepared normal probability 
paper such as shown in Figure 2.14 or by using arithmetic paper where the 
Z of (2.19) is approximated by

sign(F (X) -  . 5)(1.238t(l + 0.0262t)) 
n

(2 .22)

Here

t = {-In [4F  (X )(I  -  F (X ) ) ] }  
n n

(2.23)

and
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FIGURE 2.15 Normal probability plots, (a) NOR data set.
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(b) Dosimeter data set.
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sign (F^(X) -  .5) =
+1 if F (X) -  .5 > О 

n

- I  if F (X) -  . 5 < О 
n' '

(2.24)

This approximation to z is given in Hamaker (1978) and appears to be of suf
ficient accuracy for plotting. Notice this z function defined by (2.22) and 
(2.24) can be programmed easily and so permits the use of simple computer 
graphics for performing normal probability plotting (see Section 2.3.6 for 
further details).

For small samples (say less than 50 observations) the z of (2.22) should 
be replaced with the expected values of the order statistics from the standard 
normal distribution—i . e . , the distribution with M = O and cr = I (Harter,
1961). Table 2.3 contains these for sample sizes up to 50. The normal prob
ability plots for samples sm aller than 25 can show substantial variation and 
nonlinearity even if the underlying distribution is normal (see, for example, 
Daniel and Wood, 1971, and Hahn and Shapiro, 1967). We caution the reader 
against placing too much reliance upon a plot in these situations. Remember, 
in general and especially for these situations, graphs should be used for 
informal preliminary judgments and/or as adjuncts to formal numerical 
techniques. Chapter 9 contains the formal techniques for testing for normality.

E 2 .4 .1.1 Examples

Figure 2.15 contains two normal probability plots. Figure 2 .15a is a plot of 
the NOR data set already extensively discussed in Section 2.2. Figure 2 .15b 
is a plot from a sample of 20 dosimeter readings of benzene (D'Agostino and 
Gillespie, 1978). A dosimeter is a portable device for measuring a person's 
exposure to various gases. The dosimeter data are in parts per million 
(ppm). The frequency distribution and plotting points z are:

Dosimeter Data for Measuring Benzene

Data
values
(ppm) Frequencies

Expected values 
order statistics 

(Z)

.93 3 -1.47

.95 6 -.53

.97 3 .06

.98 I .32

.99 I .45
1.01 4 .85
1.05 I 1.41
1.07 I 1.87

20
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Notice in Figure 2 .15b we plotted only 8 points since only eight different 
values appeared in the sample. The z values are averaged in the case of the 
ties. The line drawn in Figure 2.15b is the line x + zs, where x = .98 and 
S = .04.

For grouped data ( i . e . , data grouped into frequency classes) only one 
value per class should be plotted. This plotted value should be the true upper 
limit of the class (see Section 2.2.1 for an illustration of true upper limits 
and Section 2.3.5 for more details).

2.4.2 Deviations from Normality

2.4.2.1 Unimodal Distributions

A useful way to distinguish unimodal non-normal distributions from the 
normal is in terms of the skewness and kurtosis measures defined as

Skewness : 4 ß ^ = -
_3________ E (X  -  M)-
3/2

(2.25)

and

Kurtosis:
“  2

E (X -H )

{ E ( X - ß ) Y
(2.26)

For the normal distribution = 0 and /?2 = 3. The sample estimators of 
these and the tests of fit based on them are discussed in Chapters 7 and 9. 
Figure 2.16 contains normal probability plots of four data sets of the appen
dix which represent various combinations of and • Figure 2 .16a and 
2 .16b are plots of symmetric distributions. Notice for ß 2 <  ^ (UNI data, 
ß 2 = 1.80) the plot is, within sampling error, antisymmetric about the 
median, being concave for x < median and convex for x > median. For 
/?2 > 3 (SU(0,2) data, /З2 = 4.51) the plot is again, within sampling error, 
antisymmetric about the median. Now, however, it is convex for x < median 
and concave for x > median. (See Figure 2.18 for further illustrations.) 
Notice also for skewed distributions (Figures 2 .16c and 2 .16d) the plots are 
either convex or concave throughout.

2 . 4^2.2  Outliers, Mixtures and Contamination

Figure 2.17 illustrates the use of normal probability plotting for the detection 
of outliers and the presence of mixtures (or contamination). For previous 
discussions see Sections 2.2.3 and 2.2.4, respectively. Figure 2.17a is a 
plot of the data whose ecdf is given in Figure 2.5b ( i . e . , first nine observa
tions of the NOR data set plus one outlier equal to 140). Notice how the point
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FIGURE 2. 16 Normal probability plots for normormal unimodal distributions. 
Symmetrlcdistributions {^Ißi = 0 ). (a) UNIdata /32 = 1.80. (b) SU(0,2),
/З2 =4 .51 . Skewed distributions {\Tßi Ф 0). (c) SU(1,2) data = -.87 ,
/?2 = 5.59. (d) EXP data = 2, /З2 = 9,
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FIGURE 2.17 Normal analysis for outliers and mixtures (or contamination), 
(a) NOR data (n = 10) detection of outlier.

corresponding to the observation 140 is clearly out of line with the rest of 
the data. In practice the techniques of Chapter 12 should now be used to con
firm  that this point is an outlier.

Figures 2.17b and 2 .17c are normal probability plots of the contami
nated normal data sets LCN(. 10,3) and LCN(.20,3) whose ecdfs are given, 
respectively, in Figures 2.7a and 2.7b. The reader should note two impor
tant related points concerning both Figures 2 .17b and 2.17c. First, both 
reveal the presence of two straight lines. This is seen, for example, in 
Figure 2.17b [LC N (. 1,3) data set] where one straight line can be fit nicely 
through the data below the 80th percentile of the sample and a second straight 
line can be fit through the data from about the 92nd percentile up. The points
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from the 80th to the 92nd percentiles represent a contaminated or transition 
zone where the two distributions cannot be clearly separated. Second, neither 
plot displays a convex nor a concave pattern throughout. One of these pat
terns would be the case if we had simply skewed distributions under analysis 
here as we did in Figures 2.16c and 2 .16d. Recall the ecdfs of the LCN (. 10,
3 and LCN(.20,3) data sets could not be distinguished from those of skewed 
distributions. With probability plotting the underlying components can sur
face as straight line segments in the plot, and so do produce a completely 
different effect than what is produced by a unimodal skewed distribution (see 
Figure 2.18 for further illustration). Once it is established that there are 
two or more components in the data, the next step is to estimate the param -
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FIGURE 2.17 (continued) (c) LCN(.20,3) data, contaminated normal.

eters of the components. The reader is referred to Bliss (1967) and Johnson 
and Kotz (1970) for further details.

2 .4 .2.3 Recognizing and Responding to Nonnormality

Figure 2.18 provides guidelines to aid the user in interpreting normal prob
ability plots. Notice in the drawings of Figure 2.18 the empirical cumulative 
distribution function and/or z scale is on the vertical axis. Some graphs 
have these on the horizontal axis. The resulting configurations will be differ
ent if this is done.
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indication \Ув  =  О 1
ß < Z  

2

Symmetric  
Tails  Thinner 
Than Normal

VjS =  01
ß > Ъ

2

Symmetric  
Tails Thicker  
Than Normal

J
indication Vjff < 0

Skewed to  
Left

ViS, > 0

Skewed to  
R ight

indication M ix ture  Truncated Truncated Outlier 
of Normal at Left at R igh t

FIGURE 2.18 Indications of nonnormality from the normal probability plots.

2.5 LOGNORMAL PROBABILITY PLOTTING

2 .5 .1 Probability Plotting for Two Parameter Lognormal

The two parameter lognormal distribution has density

_1  -(In Х-Д)V 2o^f(x) =
XÖ*

X  > 0 (2.27)

The random variable Y  = In X  has a normal distribution with mean д and 
standard deviation <r. Probability plotting for this distribution can be achieved 
in a number of ways: (I) on already prepared lognormal probability paper 
(Figure 2.19), (2) on normal probability paper such as shown in Figure 2.14 
where x of the horizontal axis is replaced by log x, (3) on arithmetic graph 
paper where z of (2.22) to (2.24) is the variable of the vertical axis and 
log X is the variable of the horizontal axis, or (4) on sem i-log graph paper
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FIGURE 2.20 Lognormal probability plots, (a) Total suspended particu
lates. (b) CHEN data set.
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where the data x is the variable of the log axis and z of (2.22) to (2.24) is 
the variable of the equal interval scale axis. In selecting graph paper with a 
log scale, the user should select one with enough cycles to accommodate the 
data. Graph papers with one to five cycles on the log axis are readily avail
able. For samples of less than 50 the z of (2.22) to (2.24) should be replaced 
with the expected values of the standardized order statistics of Table 2.3.

Figure 2.20 contains lognormal probability plots. Figure 2.20a contains 
three plots of TSP (total suspended particulates) data from three a ir quality 
monitoring sites near Boston, Massachusetts. Notice this figure uses log 
normal paper. Figure 2.20b is a plot on arithmetic graph paper of the CHEN 
data set given in the Appendix. These data are taken from Bliss (1967) and 
they are the lethal doses of the drug cinobrifagln in 10 (mg/kg), as deter
mined by titration to cardiac arrest in individual etherized cats. The loses. 
In (doses), frequencies and plotting position z values are:

Dose In (Dose) f Z Dose In (Dose) f Z

1.26 .231 I -1.97 2.34 .850 I .10
1.37 .315 I -1.52 2.41 .880 I .20
1.55 .438 I -1.26 2.56 .940 I .30
1.71 .536 I -1.07 2.63 .967 2 .46
1.77 .571 I -.91 2.67 .982 I .64
1.81 .593 I -.76 2.82 1.037 2 .84
1.89 .637 2 -.58 2.84 1.044 I 1.07
1.98 .683 I -.41 2.99 1.095 I 1.26
2.03 .708 3 -.20 3.65 1.295 I 1.52
2.07 .728 I .0 3.83 1.343 I 1.97

25

The straight line drawn in Figure 2.20b is the line 

In(Dose) = Д + za = .7972 + z(.2790)

where Д and a  are the sample mean and standard deviation, respectively, of 
the logs of the data. For lognormal data the parameters of interest are  
usually the geometric mean and geometric standard deviation. For the model 
(2.27) these are, respectively,

e^ and e^

Estimates of these based on the data in Figure 2.20b are exp (. 7972) = 2.2193 
and exp (.2790) = 1.3218. For data plotted directly on log normal paper 
ехр(д) is estimated as the 50th percentile ( i . e . , x value corresponding to 
Z = O) and exp (cr) is estimated as the ratio of the 84th percentile to the 50th
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percentile ( i . e . , the ratio of the x value corresponding to z = I  to the x  
value corresponding to z = 0 ).

2 .5 .1.1 Zero Data Values

At times, when dealing with a set of data that appears to be Iognormally dis
tributed, there may be a subset of these observations that are all equal to 
zero. Before the data can be plotted these zeros must be "adjusted.** First, 
it is possible that they represent a contamination and simply should be re 
moved. Second, they may reflect a measurement limitation of the measure
ment instrument. In this case it may be justified to replace them with the 
**least detectable level** of the instrument. If this is not known then it may be 
possible to adjust the zeros by adding a small arbitrary constant to them or 
to all the data values before they are plotted. Careful consideration should 
be given before any of these suggestions are employed.

2.5.2 ThreeParam eterLognorm al

The three parameter lognormal distribution has density

f  (X) =
-(ln(x-X)-M )V2o^

ХСГ
x>  X (2.28)

FIGURE 2.21 Lognormal plot for three parameter lognormal. •  Original data; 
X D a ta -. I .  Line is In (Data -.1 ) = -1.7025 + 2.2781z; X = .1, M= -1.7025,
(T = 2.2781.
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A plot of data from this distribution for a lognormal analysis w ill not produce 
a straight line unless the Л value or an estimate of it is subtracted from all 
the data. The data in Figure 2.21 Illustrate the situation. These data come 
from Leidel, Busch and Lynch (1977) and represent readings of hydrogen 
ñuoride. The dots r^ re sen t  the unadjusted data. These data and the plotting 
positions for Z are given in the first four columns below:

Data (ppm)

.11

.12

.14.21

.33

.80

.91
1.30
2.60

10.00

2
1
2 
I 
I 
I 
I  
I 
I 
I

12

-1.38
-.79
-.42- .1 0

.10

.31

.54

.791.12
1.63

In (Data)

- 2.21
- 2.12
-1.97
-1.56
- 1.11

-.22
-.09

.26

.96
2.30

In (Data -  . I)

-4.61
-3.91
-3.22
- 2.21
-1.47
-.36
-.2 1

.18

.92
2.29

Notice how the dots at the lower end bend in a concave manner while those 
at the upper end do appear to follow a straight line.

There are many ways to obtain estimators of X  for this type of data 
(Aitchinson and Brown, 1957, and Johnson and Kotz, 1970, chapter 14). The 
author has found the following two simple informal procedures to be useful 
in the graphical stage of analysis. First, note in Figure 2.21 that the lower 
end dots do appear to be approaching asymptotically the log value of -2 .3 . 
The antilog of this asymptote (v iz ., exp (-2 .3 ) = . 10) can be used as an esti
mate of X .  Second, if we use Xp to represent the Pth sample quantile 
(0 < P  < 100) then the following should be approximately true

In (Xg^ -  X) (2.29)

for all P  (0 < P  < 50). From (2.29) we have as an estimator of X

X  =
^ lO O -P ^  ”

(2.30)
^ lO O -P  ^  "  ^ ^ 0  

The usually recommended value of P  is 5, and so the suggested estimator is
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X =
95 5 50

X « ,  + X^ 95 5
2X.

(2.31)
50

As a value for the Pth sample quantile, the user can use either the ith order 
statistics where

i = [n (.O lP )] + I (2.32)

(here [y] is the largest integer in y) or else obtain it directly from a graph. 
That is, draw a curve by hand through the data and use of the Pth quantile 
the X value on the horizontal axis corresponding to 100Гц(х) = Pth value on 
the vertical axis. Applying (2.31) to the data of Figure 2.21 we again obtain 
. I as a good approximation to X. Figure 2.21 also contains a plot of the data 
minus this . I value ( i . e . , In (Data -  . 1)). This plot is given as x values on 
the graph. A straight line now does fit reasonably well these values indicating 
the appropriateness of the lognormal distribution.

2.5.3 Responding to Lognormal Plots

Figure 2.22 provides guidelines to aid the user in interpreting lognormal 
probability plots. As with Figure 2.18 the drawings in Figure 2.22 have the

indicati on Normal Distribution 

Weibull Distribution
Weibull Distribution

indicati on Truncated Left 

Misclossified Doto Left
Truncated Right 

Misclassified Data Right 
Possibly Normol Distribution

Truncated Both Tails 

Finite Tailed Distribution 

Mixture of Distributions

i nd i Ca ti on Outlier Left Tail Outlier Right Toil Outliers Both Toils

FIGURE 2.22 Indications of non-lognormality from nonlinearity of lognormal 
probability plots.
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empirical cumulative distribution function and/or z scale on the vertical 
axis.

2.6 W EIBULL PROBABILITY PLOTTING

2.6.1 Probability Plotting for Two Parameter Weibull

The two parameter Weibull distribution has density

(2.33)

and cdf

F (t ) = I -  e< t / 0 Ÿ (2.34)

where 0, k, t > 0. This is a very versatile distribution and by varying the 
parameter к it can assume a large number of different shapes. For example, 
when к = I the Weibull distribution is the negative e?{ponential distribution, 
when к is in the neighborhood of 3.6 the Weibull distribution is sim ilar in 
shape to the normal distribution, when к < 3.6 the Weibull has positive 
skewness ( i .e . ,  n/ ^  > 0) and when к > 3.6 it has negative skewness ( i .e . ,

< 0). To illustrate this versatility we have in Figure 2.23a plots of the 
Weibull density for four different к values.

A large number of probability plotting papers are available for a \^ibull 
analysis (see Nelson and Thompson, 1971). However, Weibull probability 
plotting can be achieved also simply by plotting

Z = In (-In  (I  -  Fj^(t))) on In t (2.35)

FIGURE 2.23 Weibull analysis, (a) Weibull densities for different к values 
{0 =  I ) .



(b) Weibull analysis of WE2 data.

K)OF„(x)

55
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This follows immediately from the cdf given in (2.34) and the general proce
dure for probability plotting described in Section 2.3.1. In particular, from  
(2 .34) we obtain

I -  F (t ) =

In (I  -  F (t)) = -(t/0)

In (-In  (I  -  F (t ))) = k l n t - k l n 0

where

X = Int, /i = ln 0  and (T = l/ k (2.36)

Note with Weibull plotting the log of the data ( i . e . , log t) Is put on the hori
zontal axis rather than the data values directly. This is needed to obtain 
linearity in the plots. Now applying (2.11) or (2.19) we obtain (2.35). Further 
while small sample e^qpected values of order statistics are available (Mann, 
1968) Weibull probability plotting usually works well by simply employing 
(2.35) for all sample sizes. To illustrate Weibull plotting we present two 
plots. Figure 2.23b is a Weibull plot of the WE2 data set ( i . e . , 100 obser
vations from the Weibull distribution with к = 2 and 0 = 1 ) .  Figure 2.23c 
is a plot of eleven survival times in months of cancer patients who have had 
an adrenalectomy. This data set was obtained from a study by D r. Richard 
Oberfield of the Lahey Clinic, Boston. The data are:

(I )
Rank

(2)
t

(3)
X = In t

(4)
F (t) 

n'

(5)
z = ln ( - ln ( l -F ^ (t ) ) )

(6)
z; Plotting p<

I 6 1.79 .045 -3.07 -3.07
2 9 2.20 .136 -1.92 -1.92
3 13 2.56 .227 -1.36 -1.36
4 18 2.89 .318 -.96 -.96
5 22 3.09 .409 -.64 -.50
6 22 3.09 .500 -.37 -.50
7 36 3.58 .590 -.11 .02
8 36 3.58 .682 .14 .02
9 37 3.61 .773 .39 .39

10 41 3.71 .864 .69 .69
11 52 3.95 .955 1.13 1.13

Follov/ing our previous convention Figure 2.23c is a plot of the z ’s of 
column (6) on the x 's  of column (3).
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The straight line drawn in Figure 2.23b was drawn using the "by eye" 
technique described in Section 2 .3 .3 .1 . From the line we obtain

X = In t = Д + z i  = -.05  + z(.47)

Notice M and cr are location and scale parameters of the distribution of In T . 
However, they are not the mean and standard deviation. Using (2.36) we 
next obtain

9 = ехр(Д) = .95 and к = l / a  = 2.13

Recall the true parameter values are 9 =  1 and к = 2. The informal "by eye" 
technique did well in this case.

Because the sample size is small for the data in Figure 2.23c we use 
the unweighted least squares estimates of (2.17) to obtain the estimates of д 
and a  from this data (columns (3) and (5) of the data above were used for the 
x ’s and Z^S, respectively). The estimates are Д = 3.40 and a  =  .55. From  
these we obtain ff =  езф(3.40) = 29.96 and a  =  1/.55 = 1.82.

2 .6 .1 .1  ZeroD ata

As with the lognormal distribution there may be a subset of zero values in 
data that otherwise appears to have a Weibull distribution. For an example 
dealing with wind speed data see Takle and Brown (1978). The recommended 
procedures for dealing with these zero values are exactly those given for the 
lognormal in Section 2 .5 .1 .1 .

2.6.2 ThreeParam eterW eibu ll

The three parameter Weibull has density

(2.37)

Similar to the three parameter lognormal distribution the X  value must be 
subtracted from all the data before a Weibull plot w ill produce a straight 
line. In many cases a value close to the minimum t is adequate as an esti
mate of Л. Other more precise techniques can be employed (Johnson and 
Kotz, 1970).

2.7 OTHER TOPICS

There are a number of other topics, for which due to space limitation, we 
cannot give detail treatments. Some of these are:
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I . Analysis of Residuals from a Model. A ll of the above material 
applies directly if we are dealing with residuals from a model. That is, 
say we have a mathematical model

Y  = h(X,/3) + TJ (2.38)

where Y  represents a random variable, X  a vector of random variables or  
known constants, ß a vector of unknown parameters and rj an e rro r term. 
For example, (2.38) can represent a multiple regression model. If the ß  
vector is estimated from data, say estimator is then the estimator of Y  
is

Y  = h { X , ß )

and

7? = Y  - Y

(2.39)

(2.40)

is the residual. While the residuals comprise a dependent sample the graph
ical techniques described above can be used to analyze them. Chapter 12 on 
outliers discusses further the analysis of residuals.

2. Analysis of Censored Samples. There are no restrictions in the 
above which make it necessary for all the data to be available for plotting.
The above techniques can be used on censored data. There are, however, 
special concerns which arise with censored data (e .g . , see Nelson, 1972) 
that require careful and complete discussion. Chapter 11 is devoted solely 
to this problem.

3. Q -Q  Plots and P -P  Plots. Wilk and Gnanadesikan (1968) discuss in 
detail the quantile-quantile probability plots (Q -Q  plots) and the percentage- 
percentage probability plots (P -P  plots). A  Q -Q  plot is the plot of the quan
tiles (or, as we call them above, the percentiles) of one distribution on the 
quantiles of a second distribution. If one of these distributions is a hypothe
sized theoretical distribution a Q -Q  plot is just a probability plot as devel
oped in Section 2.3. A P -P  plot is the plot of the percentages of one distri
bution on the percentages of a second. Wilk and Gnanadesikan (1968) state 
that while the P -P  plots are limited in their usefulness, they are useful for 
detecting discrepancies in the middle of a distribution ( i . e . , about the median) 
and also may be useful for multivariate analysis.

4. Transformation to Normality. In some settings (e .g . , analysis of 
variance) it is suggested first to transform to normalily and then analyze 
the transformed data. Box and Cox (1964) suggest a power transformation for 
this. Their transformation is as follows:

: if  0 > 0

у = log X if Ö = 0 

-X  ̂ for 0 < 0

(2.41)
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Here X refers to the original data and в is the power exponent. Box and Cox 
develop a maximum likelihood estimator for в .  Once it is computed normal 
probability plotting as developed in Section 2.4 can be applied directly to the 
transformed data у of (2.41). The techniques of Chapter 9 can be used to 
test formally the normalily of the transformed data.

5. Probability Plotting for the Gamma Distribution. One important 
distribution that does not lend itself immediately to the probability plotting 
techniques described above is the Gamma distribution. Even with the aid of 
transformations it cannot be put in the simple form of a distribution depend
ent upon a location and scale parameter. W ilk , Gnanadesikan and Huyett 
(1962) present a technique and accompanying tables to handle this situation. 
See Chapter 11 for further comments on this.

6. Multivariate Normality. There has been much attention paid to the 
problem of probabilily plotting for the multivariate normal distribution and 
a number of techniques have been suggested (Gnanadesikan, 1973). The 
author has found the following technique to be very informative. F irst trans
form the data to principal components and then do univariate normal proba
bility plotting (Section 2.4) for each component. Each component can be con
sidered an independent variable. If the original data set is from a multivariate 
normal distribution then each component should produce a straight line in the 
univariate plots. More w ill be said about multivariate normality in Chapter 9.

2.8 CONCLUDING COMMENT

The aim of this chapter has been to present to the reader simple informal 
graphical techniques which can be used in conjunction with the formal tech
niques to be discussed in the following chapters. In performing an analysis 
we suggest that the reader should draw a graph, examine it and judge if 
other graphs are needed. As the formal numerical techniques are being 
applied use the graphs to interpret them and to gain insight into the phenom
enon under investigation.

REFERENCES

Aitchinson, J. and Brown, J. A. C. (1957). The Lognormal Distribution. 
Cambridge University P ress, London.

Andrews, D. F . (1972). Plots of high dimensional data. Biometrika 28, 
125-136.

Anscombe, F. J. (1973). Graphs in statistical analysis. The Am er. Statis
tician ^ (1 ) ,  17-21.

Barnett, V. (1975). Probability plotting methods and order statistics.
J. R. Statist. Soc. C 24, 95-108.



60 D'AGOSTINO

Box, G. E. P . and Cox, D. R. (1964). An analysis of transformations.
J. R. Statist. Soc■ B 211-252.

Bryson, M. C. (1974). Heavy-tailed distributions: properties and test. 
Technometrics 16, 61-68.

Chambers, J. M ., Cleveland, W . S ., Kleiner, B. and Tukey, P . A . (1983). 
Graphical Methods for Data Analysis. Duxbury Press, Boston.

Chemoff, H. and Lieberman, G. (1954). Use of normal probability paper. 
Jour. Amer. Stat. Assoc. 49, 778-785.

Chernoff, H. and Lieberman, G. (1956). The use of generalized probability 
paper for continuous distributions. Annals of Math. Stat. 27, 806-818.

Curran, T. C. and Frank, N. H. (1975). Assessing the validity of the log
normal and model when predicting maximum air pollution concentrations. 
Presented at the 68th Annual Meeting of the A ir  Pollution Control Asso
ciation, Boston, Mass.

D ’Agostino, R. B. and Lee, A. F . S. (1976). Linear estimation of the logis
tic parameters for complete or tail-censored samples. Jour. Am er.
Stat. Assoc. 71, 462-464.

D ’Agostino, R. B. and Gillespie, J. C. (1978). CommentsontheOSHA
accuracy of measurement requirement for monitoring employee exposure 
to benzene. Amer. Industrial Hygiene Assoc. Joum. 39, 510-513.

Daniel, C. (1959). Use of Rulf-normal plots in interpreting factorial two-  
level ejqjeriments. Technometrics Ĵ , 311-411.
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Tests of Chi-Squared Type
David S. Moore Purdue University, West Lafayette, Indiana

3.1 INTRODUCTION

In the course of his Mathematical Contributions to the Theory of Evolution, 
Karl Pearson abandoned the assumption that biological populations are 
normally distributed, introducing the Pearson system of distributions to 
provide other models. The need to test fit arose naturally in this context, 
and in 1900 Pearson invented his chi-squared test. This statistic and others 
related to it remain among the most used statistical procedures.

Pearson’s idea was to reduce the general problem of testing fit to a 
multinomial setting by basing a test on a comparison of observed cell counts 
with their expected values under the hypothesis to be tested. This reduction 
in general discards some information, so that tests of chi-squared type are  
often less powerful than other classes of tests of fit. But chi-squared tests 
apply to discrete or continuous, univariate or multivariate data. They are  
therefore the most generally applicable tests of fit.

Modem developments have increased the flexibility of chi-squared tests, 
especially when unknown parameters must be estimated in the hypothesized 
family. This chapter considers two classes of chi-squared procedures. One, 
called "classical” because it contains such fam iliar statistics as the log 
likelihood ratio, Neyman modified chi-squared, and Freeman-Tukey, is 
discussed in Section 3.2. The second, consisting of nonnegative definite 
quadratic forms in the standardized cell frequencies, is the main subject of 
Section 3.3. Other newer developments relevant to both classes of statistics, 
especially the use of data-dependent ce lls , are also treated primarily in 3.3, 
while such practical considerations as choice of cells and accuracy of asymp
totic approximate distributions appear in 3.2. Both sections contain a number 
of examples.

63
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Tests of the types considered here are also used in assessing the fit of 
models for categorical data. The scope of this volume forbids venturing into 
this closely related territory. Bishop, Fienberg, and Holland (1975) discuss 
the methods of categorical data analysis most closely related to the contents 
of this chapter.

3.2 CLASSICAL СШ-SQUARED STATISTICS

To test the simple hypothesis that a random sample X^, . . . ,  Xj  ̂ has the 
distribution function F (x ), Pearson partitioned the range of Xj into M cells, 
say E l, . . . ,  E]y[. If N i, . . . ,  Nm  are the observed number of Xj^s in these 
cells, then Ni has the binomial distribution with parameters n and

= P(X. falls to E.) = /  dF(x) (3.1)
E.

I

when the null hypothesis is true. Pearson reasoned that the differences 
Ni -  npi between observed and expected cell frequencies express lack of fit 
of the data to F, and he sought an appropriate function of these differences 
for use as a measure of fit.

Pearson’s argument here was in three stages: (i) The quantities N^-npi 
have in large samples approximately a multivariate normal distribution, and 
this distribution is nonsingular if only M -  I of the cells are considered.
(ii) If Y  = ( Y i , . .  • , Yp )’ has a nonsingular p-variate normal distribution 
Np(M, Z ) ,  then the quadratic form (Y  -  /i)’Z ”^(Y -  /x) appearing in the expo
nent of the density function has the (P) distribution as a function of Y . Here 
of course /u is the p-vector of means, and Z  is the p x p covariance matrix 
of Y . (iii) Computation shows that if Y  = (N^ -  np^, . .  • ,N m » i  -  
this quadratic form is

M (N -np.)2
X" .  Z  ‘ *

1¾ ”P1

which therefore has approximately the x^ (M -  I) null distribution in large  
samples. This is the Pearson chi-squared statistic.

This elegant argument will reappear in our survey of recent advances 
in chi-squared tests. Pearson reduced the problem of testing fit to the prob
lem of testing whether a multinomial distribution has cell probabilities pj 
given by (3.1). This problem, and the statistic X^, do not depend on whether 
F is univariate or multivariate, discrete or continuous. But if F is continu
ous, consideration of only the cell frequencies Nj does not fully use the 
information available in the observations . Thus the flexibility and relative 
lack of power of X^ stem from the same source.
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3.2.2 Composite Hypothesis

It is common to wish to test the composite hypothesis that the distribution 
function of the observations Xj is a member of a parametric family { F ( *  10) ¡ 
0 in Q }, where fí is a p-dimensional parameter space. Pearson recom
mended estimating 0 by an estimator 0ĵ  (a function of , . . . ,  ^ ) ,  and 
testing fit to the distribution F(* 10̂ )̂. Thus the estimated cell probabilities 
become

Ei

and the Pearson statistic is

M [ N - n p ( 0 ) ] ^

i=l

Pearson did not think that estimating 0 changes the large sample distribution 
of X^, at least when 0^ is consistent. In this he was wrong. It was not until 
1924 that Fisher showed that the limiting null distribution of X ^ (^ ) is not 

(M -  I ) , and that this distribution depends on the method of estimation 
used.

Fisher argued that the appropriate method of estimation is maximum 
likelihood estimation based on the cell frequencies This grouped data 
M LE is the solution of the equations

M N. ap.(0)
= 0, к = I, (3.2)

obtained by differentiating the logarithm of the multinomial likelihood func
tion. Fisher noted that the log likelihood ratio statistic

M N
= 2 X  N. log —  

I ^ np.
1=1

is asymptotically equivalent to X^. He further observed that an estimator 
asymptotically equivalent to the grouped data M LE can be obtained by choos
ing 0 to minimize X^ (0) for the observed N j. This minimum chi-squared 
estimator is the solution of

M ( N
i_

(9 )

dp^(9)

дв.
= 0, к = I ......... ... (3.3)
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Let US denote either estimator by Then (0^^) is conceptually the 
Pearson statistic for testing fit to F(« I the member of the family {F (x 10)} 
which is closest to the data if the Pearson statistic is used as a measure of 
distance. Fisher showed that the Pearson-Fisher statistic X^(0^) has the 

(M -  P -  I) distribution under the null ЬзфоШее1е, no matter what 0 in Í2 
is the true value. This is the famous ^4ose one degree of freedom for each 
parameter estimated” result.

Ne3nnan (1949) noted that another estimator asymptotically equivalent to 
0ĵ  can be obtained by minimizing the modified chi-squared statistic

M [N  -  np (в)]2

This minimum modified chi-squared estimator is the solution of 

= 0. к = I ,  P
M  Pj (O )  8 P j (0 )

i= l ^ i Э0,
(3.4)

Since for the purposes of large sample theor}»  ̂under the null hypothesis this 
estimator is Interchangeable with the previous two, call it also to mini
mize notation. Neyman’s remark is important because equations (3.4) are 
more often solvable in closed form than are (3.3) and (3.2).

3.2.2.1 Example

Consider a chi-squared test of fit to the family of density functions

i(xl0) = 2 (I  ÖX) , - I  < x <  I (3.5)

with Q  = ( -1 ,1). This family has been used as a model for the distribution of 
the cosine of the scattering angle in some beam-scattering experiments in 
physics. For cells E^ = (a|_^, aj] with

- I  = ao <

we have

Pj(ö) = /  f(x|0) dx

i-1

_  в ,  2  2 ^ ^ 1 ,
4 ^̂ 1 “ ^1-1^ 2 ^̂ 1 "  ®i-l^
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It Is easily seen that neither (3.2) nor (3.3) has a closed solution, while 
((3.4) has solution

M

0 =  -2  
n M

Substituting this value in the Pearson statistic produces an easily computed 
test of fit for the family (3.5) using (M -  2) critical points.

But even the minimum modified chi-squared estimator must often be 
obtained by numerical solution of its defining equations. If cells 
Ei = (a^ .i, a j  are used in a chi-squared test of fit to the normal family

F(xl/x, a) = , - «  < X <
\  (7 ^

(Ф is the standard normal distribution function), then

A - I  ” ^
P.(ix, a ) =  ф ( - 4 “ )  -  ------ )

It takes only a moment to see that none of the three versions of can be 
obtained algebraically, so that recourse to numerical solution is required. 
Most computer libraries contain efficient routines using (for example) 
Newton’s method to accomplish the solution.

This circumstance calls to mind Fisher’s warning that his ’’lose one 
degree of freedom for each parameter estimated” result is not true when 
estimators not asymptotically the same as are used. For example, in 
testing univariate normality we may not simply use the raw data M LE ’s

X  = ^ Z x .  

“ j=l  ^

in the Pearson statistic. Chernoff and Lehmann (1954) studied the conse
quences of using the raw data MLE 0̂  ̂in the Pearson statistic. They found 
that (¾ ) has as its limiting distribution under F(* |0) the distribution of
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X ^ ( M - P - I ) +  ^  \{е)х1Л1) (3.6)

Here (М -  P -  I) and x^(^) ^.re Independent chi-squared random variables 
with the indicated numbers of degrees of freedom. The numbers Aj^(ö) satisfy 
0 < < I. So the large sample distribution of (^ ) is not x^ and depends
on the true value of 0. A ll that can be said in general is that the correct crit
ical points fall between those of x^ (M -  p -  I) and those of x^ (M -  I ) . These 
bounds often make usable in practice, especially when the number of
cells M is large and the number of parameters p is small.

3.2.3 A Family of Stàtistics

We have already mentioned the Pearson chi-squared, modified chi-squared, 
and log likelihood ratio statistics. Another statistic recommended by some 
statisticians is the Freeman-Tukey statistic

M I I
FT^ = 4 2  {N f  -  (np )2 }"  

1=1

Cressie and Read (1984) have systematized the theory of classical chi-squared 
procedures by introducing a class of test statistics based on measures of 
divergence between discrete distributions on M points. If q = (qi* • • • , q]y[) 
and P = (p^, . . .  ,P]y[) are such probability distributions, the directed diver
gence of order Л. of q from p is

:p) =
M

Ë  чЛ (ч/р .) - I )\ (X+ * r  *i ‘ i-

is a metric only for A. = -1/2, but is a useful generalized information 
measure of ^Mistance" for all real X. If N  is the vector of cell frequencies N¿, 
and p (0) the vector of probabilities p j(0 ), the Cressie-Read statistics are  
the divergences of the empiric distribution N/n from the estimated hypothe
sized distribution p (^ ) ,

) = 2n А н / п :р (0  ))

If I^ is defined by continuity at X = - I ,  0, this class includes X^(X = I),
G2(X = 0), FT^ (X = -1/2) and X^(X  = -Д^.

These statistics are all asymptotically equivalent to under
F(* |0o) for any estimator ^  such that -  0 )̂ is bounded in probabil
ity. Moreover, the "minimum distance" estimators of 0 derived from the
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statistics are all as5anptotically equivalent under the null hyjKjthesis to 
the grouped data MLE and minimum chi-squared estimators. So if is any 
of these estimators and Л is any real number, R^0n) has the x^(M -  p -  I) 
limiting null distribution. The Cressie-Read statistics remain asymptotically 
equivalent under contiguous alternative distributions, but not under alter
natives distant from the hypothesized family.

If the Cressie-Read fámily is taken as a completion of the class of statis
tics equivalent to in large samples, there remain the practical problems 
of use for finite n. How large must n be before the asymptotic distribution 
theory is trustworthy? How many cells should be used, and how should they 
be chosen? What of these statistics should be used? We now turn to these 
questions.

3.2.4 Choosing Cells

An objection to the use of chi-squared tests has been the arbitrariness intro
duced by the necessity to choose cells. This choice is guided by two consid
erations: the power of the resulting test, and the desire to use the asymptotic 
distribution of the statistic as an approximation to the exact distribution for 
sample size n. These issues have been studied in detail for the case of a 
simple hypothesis, i . e . , the case of testing fit to a completely specified dis
tribution F . Recommendations can be made in this case which may reasonably 
be extended to the case of testing fit to a parametric family { F (-\ $ )}.

Mann and Wald (1942) initiated the study of the choice of cells in the 
Pearson test of fit to a continuous distribution F . They recommended, first, 
that the cells be chosen to have equal probabilities imder the hypothesized 
distribution F . The advantages of such a choice are: (I ) The Pearson test 
is unbiased. (Mann and Wald proved only local unbiasedness, but Cohen and 
Sackrowitz (1975) establish unbiasedness of both and G^. This is not true 
when the cells have unequal probabilities under F .) (2) The distance 
sup I F j(X) -  F(X) I to the nearest alternative Fj indistinguishable from F by X^ 
is maximized (Mann-Wald), and X^ maximizes the determinant of the matrix 
of second partial derivatives of the power function among all locally unbiased 
tests of the same size (Cohen-Sackrowitz). (3) Empirical studies have shown 
that the distribution is a more accurate approximation to the exact null 
distribution of X^, and FT^ when équiprobable cells are employed (see 
Section 3.2.5 for references).

Шпп and Wald then made recommendations on the number M of équi
probable cells to be used. Their work rests on large-sam ple approximations 
and on a somewhat complex mlnimax criterion, so that it is at best a rough 
guide in practice. Mann and Wald found that for a sample of size n (large) 
and significance level a ,  one should use approximately

M
1/5

(3.7)
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where c { a )  is the upper a-point of the standard normal distribution. The 
optimum is quite broad. In particular, the M o f (3.7) can be halved with 
little effect on power. Retracing the Mann-Wald calculations using better 
approximations, as in Schorr (1974), confirms that the ”optimum” M is 
smaller than the value given by (3.7). Since the exact optimum depends on 
the criterion, a choice of error probabilities, and of course on the assump
tion that the hypothesized F contains no unknown parameters, the practi
tioner need not go beyond the following recommendation: Choose a number M  
of équiprobable cells falling between the value (3.7) for oi = 0.05 and half

2 /5  2 /5
that value. Since half the value (3.7) is 1.88n , the choice M = 2n ' is
convenient. This recommendation is not an endorsement of the use of 
a  = 0.05 (or any fixed a ) in tests of fit. Because (3.7) increases slowly 
with a , but overstates the number of cells required, the value for o' = 0.05 
can also be used when larger significance levels are in mind.

For small n, accuracy of the approximation to the exact null distri
bution becomes of paramount concern. We shall see (Section 3.2.5) that the 
recommendations above, especially that of équiprobable cells, are sustained 
by this concern. When parameters must be estimated, cells équiprobable 
under the estimated parameter value can be employed. This requires data- 
dependent cells, a major modern innovation to be discussed in Section 3.3.1  
below. Since an ^objective" procedure for choosing cells is desirable, all 
examples in this chapter will use equlprobable cells with (3.7) for a  = 0.05 
as a guide to choosing M.

3.2.5 Small-Sample Distributions

The distribution theory of chi-squared statistics (and most other formal 
tests of fit) is a large-sample theory. Indeed, Pearson^s discovery of 
rested on the normal limiting distribution of the cell frequencies. How usable 
in practice are critical points or P-values for or R^ obtained from the 
chi-squared distribution? Cochran (1954) gave a commonly accepted rule of 
thumb: all expected cell frequencies npj should be at least I , with at least 
80 percent being at least 5. The availability of inexpensive computing has 
led to extensive study of this issue in recent years. Several recommended 
papers summarizing this work are Roscoe and Byars (1971), Lamtz (1978) 
and Koehler and Larntz (1980), and Read (1984).

Each of these papers has a different emphasis. Roscoe and Byars pre
sent a simulation study of the Pearson test of fit to a simple hypothesis and 
summarize much earlier work. Lam tz (1978) compares the Pearson, log 
likelihood ratio and Freeman-Tukey statistics with regard to the accuracy 
of the chi-squared approximation. He includes the simple hypothesis case 
and four cases in which parameters must be estimated. Koehler and Lamtz
(1980) study X^ and when the number of cells M increases with n rather 
than remaining fixed. In this case the limiting distribution is normal rather 
than chi-squared when a simple hyxюthesis is being tested (see Section 3.3.4
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below. Read (1984) investigates the family of statistics for testing fit to 
the simple hypothesis of équiprobable cells, and considers the usefulness of 
two improved approximations to the exact distribution.

The consensus of these and other studies is that the traditional rule of 
thumb is very conservative, especially when the estimated cell probabilities 
are not too unequal. Here are the recommendations of Roscoe and Byars for 
the Pearson X^, which may serve as a guide for practitioners.

1. With équiprobable cells, the average eзфected cell frequency should 
be at least I (that is, n > M) when testing fit at the a  = 0.05 level; for
a  = 0.01, the average expected frequency should be at least 2 (that is, 
n > 2M).

2. When cells are not approximately équiprobable, the average e^>ected 
frequencies in (I) should be doubled.

3. These recommendations apply when M > 3. For M = 2 (I  degree of 
freedom), the chi-squared test should be replaced by the test based on the 
exact binomial distribution.

Note that the Roscoe-Byars recommendations are based on the average 
rather than the minimum cell expectation. Any such rule may be defeated, 
as Koehler and Lamtz (1980) remark, by a sufficiently skewed assignment 
of cell probabilities. They suggest the guidelines M > 3, n > 10, nVM  > 10 
as adequate for use of the approximation to the Pearson statistic. These 
are somewhat conservative when, as we recommend, cell probabilities are  
approximately equal. The Mann-Wald suggestion (3.7) meets both the Roscoe- 
Byars and Koehler-Larntz guidelines. Simulations suggest that when these 
guidelines are met, the true oi for is usually slightly less than the nom
inal CL given by X̂  • But the true a  generally exceeds the nominal a. for R^ 
with X not close to I, often substantially, when approximately équiprobable 
cells are employed.

Though these recommendations rest on study of the simple Hq case, 
Lam tz (1978) gives some grounds for adopting them when parameters must 
be estimated.

The comparative studies of Lamtz (1978) and Read (1984) establish 
clearly that the x^ approximation is notably more accurate for X^ than for 
such common competitors as and FT^. Read, for équiprobable cells, 
finds close agreement between the exact and approximate critical levels of R^ 
for 1/3 < X < 1 .5 when n < 20 and 2 < M < 6. Only X^ (X = I) among the more 
common members of the R^ family falls in this class. Moreover, although 
increasing n for fixed M enlarges the class of X for which the approximation 
is reasonable. Read finds that as M increases for fixed n, the error in this 
approximation ”increases dramatically” for values of X outside the recom
mended interval.

Statisticians, including the authors of the papers we have cited, differ 
on criteria for an ”adequate” large sample approximation. Readers may 
therefore want to examine these papers in detail for additional information, 
particularly if the use of R^ statistics other than X^ is contemplated.
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3.2.6 Choosing a Statistic

Since both hypotheses and alternatives of interest for an omnibus test of fit 
are very general, it is difficult to give comprehensive recommendations 
based on power for choosing among a class of such tests. Asymptotic results 
(for the simple Hq case) are ambiguous. When M is held fixed as n increases, 
all are equivalent against local alternatives, and is favored against 
distant alternatives (Hoeffding, 1965). But if M increases with n, the limiting 
distributions of R^ vary with X under both hypothesis and local alternatives, 
and appears to be favored (Holst 1972, M orris 1975, Cressie and Read 
1984).

In many practical situations, power considerations are secondary to the 
accuracy of the approximation to the exact null distribution. In such cases, 
the Pearson is the statistic of choice. Some quite limited computations of 
exact power by Koehler and Larntz (1980) and Read (1984) shed some light on 
the dependence of power on the alternative hypothesis and on the choice of X. 
Read suggests 1/3 < X < 2/3 as a compromise with reasonable power against 
the alternatives he considers. Again X^ fáres better than its common com
petitors , X|n and FT^ .

A different approach that may aid the choosing of a statistic is to exam
ine the type of lack of fit measured by each statistic. The sample measure 
of the degree of lack of fit accompanying R ^ (^ ) (which measures the signif
icance of lack of fit) is R ^ (^ )/n . If G is the true distribution of the obser
vations Xj, all common estimators converge under G to a Öq such that 
F(* 10q) is ’^closest” to G in some sense. When G is a member of the hypoth
esized family {F (*  10) : 0 in Í2}, this is iust consistencv of When G is 
not in this family and 0ĵ  is the minimum-R^ estimator, 0q is the point 
such that p (0 q) is closest to the vector ttq of cell probabilities under G by 
the discrepancy measure i\7Tq : p ( 0)). Moreover, R ^ ^ )/ n  converges w .p . I  
to 2I^(7Tq  :p (0o )). For example, X^(0j^)/n converges to

M  (7Г - p ) 2

2I^V'P(̂ o)) = L „ '
i= l ^i

where 0 is the minimum chi-squared estimator, 0q is the point closest to G 
by the Î  measure, and Pj = Pi(^o)* See Moore (1984) for details of these 
results.

A choice of X can be based on a choice of distance measure, and power 
against an alternative of interest w ill depend on the distance of that alterna
tive from the hj^pothesis under the given measure. For a specific alternative, 
X can be chosen to maximize the distance of this alternative from {F (-10 ) }• 
This generalizes the conclusions of Read (1984). For general alternatives, 
we recommend (pending further study) that the Pearson X^ statistic be em
ployed in practice when a choice is made among the statistics R^. We will 
see below that consideration of a broader class of chi-squared-like statistics
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will modify this recommendation. But w ill remain the statistic of choice 
when the null hзфothesis is simple or when minimum chi-squared estimation 
is used.

E 3. 2. 7 Examples of the Pearson Test

Because of its relative lack of power, cannot be recommended for testing 
fit to standard distributions for which special-purpose tests are available, 
or for which the special tables of critical points needed to apply tests based 
on the empirical distribution function (EDF) when parameters are estimated 
have been computed. Testing fit to the family (3.5) is, on the other hand, a 
realistic application of the Pearson-Flsher statistic X^ (¾ ) • The examples 
below of X^ applied to the NOR data set are Intended only as illustrations of 
the mechanics of applying the test.

3 .2 .7 .1 Example

Since NOR purports to be data simulating a normal sample with ix = 100 and 
Cr = 10, let US first assess the simulation by testing fit to this specific distri
bution. The Mann-Wald recipe (3.7) with o; = 0.05 and n = 100 gives M = 24. 
For computational convenience, we use M = 25 cells chosen to be équi
probable under N(100,100). The cell boundaries are 100 + 10zj, where zj 
Is the 0.04Í point from the standard normal table, i = I, 2, . . . ,  24. For 
example, the 0.04 point is -1.75, so the upper boundary of the leftmost cell 
is 100 + (10)(-1.75) = 82.5. Table 3.1 shows the cells and their observed 
frequencies. The expected frequencies are all (100)(0.04) = 4. When p  ̂= l/M  
for all i, we have

n .4,  ̂ I 1=1

So in this example.

I 25
X" = 4 E (Nj -4 )

i= l 

112
= 28

The appropriate distribution is x^(24), and the P-value (attained significance 
level) of X^ = 28 is 0.260.

To test the NOR data for fit to the family of univariate normal distribu
tions, an intuitively reasonable procedure is to estimate /i, o* by X, $  and 
use cells with boundaries X +  zjœ, where are as before. These cells are



74 MOORE

TABLE 3.1 Chi-squared Tests for Normality of the NOR Data

Fitto  N(100,100) Fit to normal family

Cell
Upper

boundary Frequency
Upper

boundary Frequency

I 82.5 3 81.2 3
2 85.9 8 84.8 5
3 88.3 5 87.3 5
4 90.1 8 89.2 5
5 91.6 4 90.7 6
6 92.9 2 92.1 4
7 94.2 I 93.5 3
8 95.3 5 94.6 I
9 96.4 6 95.8 4

10 97.5 I 96.9 6
11 98.5 3 98.0 3
12 99.5 3 99.0 3
13 100.5 4 100.1 2
14 101.5 2 101.1 5
15 102.5 2 102.2 2
16 103.6 7 103.3 5
17 104.7 7 104.5 9
18 105.8 3 105.6 3
19 107.1 I 107.0 I
20 108.4 2 108.3 I
21 109.9 4 109.9 5
22 111.7 6 111.8 6
23 114.1 6 114.3 6
24 117.5 4 117.8 4
25 OO 3 OO 3

équiprobable under the normal distribution with ß  =  X  and cr =  a  • I t  w ill be 
remarked in Section 3.3.1 that the Pearson statistic with these data-depend- 
ent cells has the same large sample distribution as if the fixed cell bound
aries 100 + IOz^ to which the random boundaries converge were used. This 
distribution is not (24), since д and a  were estimated by their raw data 
M LE ’s X  and i  in computing the cell probabilities pi(X,a*) = 0.04. The 
appropriate distribution has the form (3. 6), so that its critical points fall 
between those of X^(24) and x^(22). Calculation shows that X  = 99.54 and 
a- = 10.46. The cell boundaries X + and the observed cell frequencies 
are given at the right of Table 3.1. The observed chi-squared value is 
X^ = 22, reflecting the somewhat better fit when parameters are estimated
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from the data. The P-value falls between 0.460 (from (22)) and 0.579 
(from (24)).

For comparison, the same procedure was applied to test the LOG data 
set for normality. In this case, X =  99.84 and a  = 16.51, and the observed 
chi-squared value using cell boundaries X +  is X^ = 31.5. The corre
sponding P-value lies between 0.086 (from X^(22)) and 0.140 (from x^(24)). 
Thus this test has correctly concluded that NOR fits the normal family well, 
while the fit of LOG is marginal. Since the logistic distributions are difficult 
to distinguish from the normal family, this is a pleasing performance. In 
contrast, the samé procedure with M = 10 has X^ = 9.4 for the IXXl data, 
so that the P-value lies between 0.225 (from X^(T)) and 0.402 (from X^(¾)* 
Using three cells gives X^ = 0.98 and again fails to suggest that the LOG  
data set is not normally distributed. Thus for these particular data, the 
larger M suggested by (3.7) produces a more sensitive test.

3 .2 .7 .2  Example

The same procedure can be applied to the EMEA data, but a glance shows 
that these data as given are discrete and therefore not normal. Indeed, with 
15 cells équiprobable under the N (X ,o ) distribution for these data, X^ = 554. 
Since the data are grouped in classes centered at integers, a more intelligent 
procedure is to use fixed cells of unit width centered at the integers, with 
cell probabilities computed from N (X ,a ).  Of course, X  and î  from the 
grouped data are only approximate. Sheppard^s correction for a  improves 
the approximation, and gives X =  14.540 and a  = 2.216. Calculatingthe 
cell probabilities and computing the Pearson statistic, we obtain X^ = 7.56. 
The P-value lies between 0.819 (from X^(12)) and 0.911 (from x^(14)), so 
that the EMEA data fit the normal family very well indeed. The applicability 
of X^ to grouped data such as these is an advantage of chi-squared methods.

3.3 GENERAL СШ -SQUARED STATISTICS

3.3.1 Data-Dependent Cells

As already noted in Section 3.2.7, the use of data-dependent cells increases 
the flexibility of chi-squared tests, fortunately without increasing their com
plexity in practice. The essential requirement is that as the sample size 
increases, the random cell boundaries must converge in probability to a set 
of fixed boundaries. The limiting cells w ill usually be unknown, since they 
depend on the true parameter value 9q . Random cells are used in chi-squared 
tests by ^forgetting” that the cells are data-dependent and proceeding as if 
fixed cells had been chosen. Since the cell frequencies are no longer multi
nomial, the theory of such tests is mathematically difficult. But in practice, 
the limiting distribution of R^ with random cells is exactly the same as if the 
limiting fixed cells had been used. This is true even when parameters are
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estimated. Details and regularity conditions appear in Section 4 of Moore 
and Spruill (1975) for k-dimensional rectangular cells. Pollard (1979) has 
extended the theory to cells of very general shape. Therefore, any statistic, 
such as the Pearson-Fisher (¾ ,  that has a 0q -free limiting null distri
bution with fixed cells has that same distribution for any choice of converging 
random cells .

A statistic such as the Chemoff-Lehmann X^ (0̂ )̂ which has a 
ent limiting null distribution for fixed cells, has in general this same defi
ciency with random cells. But if the hypothesized family {F (-1 0 )}  is a 
location-scale family, a proper choice of random cells eliminates this Oq -  
dependency and also allows cells to be chosen équiprobable under the esti
mated 9 , thus matching the recommended practice in the simple hypothesis 
case. Such cell choices should be made whenever possible. Theorem 4.3 of 
Moore and Spruill (1975) is a general account of this. Let us here illustrate 
it by returning to the X^ statistic for testing univariate normality.

When the parameter 9 =  (ß , cr)  i s  estimated by = ( X , a )  and cell 
boundaries X + z ji  are used, the estimated cell probabilities are

/ V  - Ч  / o  - Z s - i  -(t-3QV2â='P.(X,<r) = J (2iro- )̂ •‘ e '
X+z.

1-1

,O- .-5  -u V 2 ^= J  (2тг) e du

" i - i

dt

These are not dependent on (X , î ) ,  and are équiprobable if z  ̂are the suc
cessive i/M points of the standard normal distribution. Since this choice 
of cells leaves both Nj and pj unchanged when any location-scale transfor
mation is applied to all observations X j, the Pearson statistic (and indeed, 
any R^) has the same distribution for all (/^,(г). The limiting null distribution 
has the form (3.6) but the are now free of any unknown parameter. Crit
ical points may therefore be computed. Two methods for doing so, and tables 
for testing normality, appear in Dahiya and Gurland (1972) and Moore (1971). 
Dahiya and Gurland (1973) study the power of this test. The idea of using 
random cells in this fashion is due to A. R. Roy (1956) and G. S. Watson 
(1957, 1958, 1959). We will refer to the Pearson statistic using the raw data 
MLE and random cells as the Watson-Roy statistic. Section 3 .2 .7 .1 , an 
example in Section 3.2.7, Illustrated its use.

Note that the Watson-Roy statistic has 0-free limiting null distribution 
only for location-scale families, that this distribution is not a standard 
tabled distribution, and that a separate calculation of critical points is re 
quired for testing fit to each location-scale family. These statements are 
also true for EDF tests of fit. Since the latter are more powerful, the Watson- 
Roy statistic has few advantages when F ( - 10) is univariate and continuous.
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Nonetheless, data-dependent cells move the cells to the data without essen
tially changing the asymptotic distribution theory of the chl-squared statistic. 
They should be routinely employed in practice, and this is done in most of 
the examples in this chapter.

3.3.2 General Quadratic Forms

Some of the most useful recent work on chi-squared tests involves the study 
of quadratic forms in the standardized cell frequencies other than the sum 
of squares used by Pearson. Random cells are commonly recommended in 
these statistics, for the reasons outlined in Section 3.3.1, and do not affect 
the theory. A statement of the nature and behavior of thèse general statistics 
of chi-squared type is necessarily somewhat complex. Practitioners may 
find it helpful to study the examples computed in Section 3.3.3 and in Rao 
and Robson (1974) before approaching the summary treatment below.

Random cells should be denoted by ^  ^ precise notation,
but here the notation E  ̂ for cells and for cell frequencies will be con
tinued. The ”cell probabilities” under F (-|ö) are

p (ö )  = J d F (X ie ),
Ei

1 = 1. M

Denote by Vn(0) the M -vector of standardized cell frequencies having ith 
component

[Nj -npj(e)]/(np.(e))^

If Qn = Q n (^ »  • • • * ^ )  is ^ possibly data-dependent M x M  symmetric 
nonnegative definite matrix, the general form of statistic to be considered is

V  Jn n n n n (3.8)

when в is estimated by The Pearson statistic is the special case for 
which Qn = ^M » M x M  identity matrix. The large-sample theory of 
these statistics is given in Moore and Spruill (1975). The basic idea is that 
of Pearson’s proof: Show that V n (^ ) is asymptotically multivariate normal 
(even with random cells) and then apply the distribution theory of quadratic 
forms in multivariate normal random variables. A ll statistics of form (3.8) 
have as their limiting null distribution that of a linear combination of inde
pendent chi-squared random variables. References on the calculation of such 
distributions may be found in Davis (1977).

To avoid the necessity to compute special critical points, it is advan
tageous to seek statistics (3.8) which have a chi-squared limiting null distri
bution. This idea is due to D. S. Robson. Rao and Robson (1974) treat the
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important case of raw data M LE s. They give the quadratic form in Vn(§n) 
having the (M -  I) limiting null distribution. The appropriate matrix is 
Q(ôjj), where

Q(0) = + B(6)[J(Ö ) - В ( 0 ) ’В (0 )Г *В (0 )’

J(0) is the P X P Fisher information matrix for F(* |0), and B(0 ) is the 
M X p  matrix with (i, j)th entry

i  Эр (0)

P i<^> " - э Г -

The Rao-Robson statistic is 

n n n n n n

This test can be used whenever J -  is positive definite. Since nJ 
is the information matrix from the raw data and nB'B the information matrix 
from the cell frequencies, J -  B 'B  is always nonnegative definite. Notice 
that Rn is just the Pearson statistic (¾ ) plus a term that conceptually 
builds up the distribution (3.6) to term simplifies consider
ably, since Эр./Э0. = O implies that

I / M N Эр. M JN. öp. \

.... Ш )

M N. Эр,
V ’ B =

and

R^ = {$^) + (V^B)(J -  B*B)-^ (V^B)'

(3.9)

(3.10)

all terms being evaluated at  ̂= Further simplification can be achieved 
in location-scale cases by the use of random cells for which P i (^ )  = l/M .
Rao and Robson (1974) give several examples of the use of this statistic, 
using random cells iñ some cases.

Simulations by Rao and Robson show that Rn has generally greater 
power than either the Pearson-Fisher or Watson-Roy statistics. Spruill 
(1976) gives a theoretical treatment showing that Rndominates the Watson- 
Roy statistic for any location-scale family {F (*  10) }• Since Rn is powerful, 
has tabled critical points, and is easy to compute whenever the MLE ^  can 
be obtained, it is recommended as a standard chi-squared test of fit.

Moore (1977) gives a general recipe for the quadratic form having the 
chi-squared limiting null distribution with maximum degrees of freedom when
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nearly arbitrary estimators are used. First compute the limiting multi
variate normal law of ^ ) ,  which under F(* 10q) ^̂ .̂s covariance matrix 
2 (¾ ) whose form depends on the large-sam ple properties of the estimators 
S ^ .  If 2¿̂  is a consistent estimator of the generalized inverse 2 (¾ )" , the 
desired statistic is V jj(^ )*2 "V^ (ö jj). The derivation of this Waldos method 
statistic clearly follows the lines of Pearson*s original proof. The statistic 
can be computed in closed form more often than might be eзфected. It is the 
Pearson statistic when ^  = the Rao-Robson statistic when ^  = and 
can even in some cases be used when the Xj are dependent (Moore, 1982). 
LeCam , Mahan and Singh (1983) have studied these statistics in depth, and 
show that they have certain asymptotic optimality properties given the choice 
of estimator This strengthens the case for use of the Rao-Robson statistic 
when raw data MLEs are chosen.

If (3.6) can be built up to (M -  I ) , it can also be chopped down to 
X^(M -  P -  I ). Dzhaparidze and Nikulin (1974) point out that the appropriate 
statistic is

= V’ a ., -  B(B'B)-iB*)V n n n M n

where and B are evaluated a t  в =  Zjj has the x^(M -  p -  I) limiting 
distribution whenever ^  approaches at the usual n^/2 rate, and can there
fore be used with any reasonable estimator of Ö. Computation of is again 
simplified by (3.9). As might be expected, simulations suggest that Z n (^ )  
is inferior in power to both the Watson-Roy and Rao-Robson statistics.

E 3.3.3 Examples of General Chi-Squared Tests

3.3.3 .1  Example

It is desired to test fit to the negative exponential family

r/ 1/.Ч “X/9f(xl0) =  в e  , O < X <  «>

where ß = { 0 : O < 0 < « : . } .  Since the M LE of 0, ^  = X, is available, the 
Rao-Robson statistic is the recommended chi-squared test. When p = I, 
(3 . 9) and (3. 10) reduce to

^ M (N ,-n p^ )^  M ^

n np  ̂ nD V de /

where

M dp ^
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and J, Pi, dpi/dö are all evaluated at 0 = For a sample of size n = 100, 
we will once more use M = 25 équiprobable cells. In this scale-parameter 
family, équiprobable cells are achieved by the use of random cell boundaries
of the form zjX. From

P (в) = (3.11)

the condition = 1/25 gives Zo = 0, = «> and

Ẑ  = - l o g ( l 1 = 1 , . . . , 2 4

Differentiating (3.11) under the Integral sign, then substituting 0 = X, gives

^  -  * " [ ( '  - è )  '»>(> - 4 )  -(■  - 4 r )  - i r ) ]  ■ I

Because of their Iterative nature, the quantities v  ̂are easily computed on a 
programmable calculator. The Fisher information is J(0) = 0"^ so that

25
D = Jr^Fl -25 Z  v[l

Finally

251 -^  (251  ̂ ( S p N  v )Z

100 4 я /  i 100 I -25 Z p  V?1=1 * I

Table 3.2 records zj and vj, from which 

25

E
I

I -  25 Z  = 0. 04255

For the WE2 data set, X = 0.878. The resulting cell boundaries and cell fre 
quencies appear in Table 3.2, and

R -  I (25)Z (-0.0519)Z
^lOO 4^®  ̂ 100 0.04255

= 87.75 + 0.40 = 88.15
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TABLE 3.2 The Rao-Robson Test for the Negative Exponential Family,
with 25 Equiprobable Cells

i z.
I

V.
I

WE2

ZjX N.
I

EXP

Z^x N.
I

I .0408 -.0392 0.036 I 0.221 6
2 .0834 -.0375 0.073 0 0.451 5
3 .1278 -.0358 0.112 I 0.692 3
4 .1743 -.0340 0.153 I 0.944 2
5 .2231 -.0321 0.196 3 1.208 5
6 .2744 -.0301 0.241 I 1.486 5
7 .3285 -.0279 0.288 2 1.779 7
8 .3857 -.0257 0.338 3 2.088 2
9 .4463 -.0234 0.392 5 2.416 4

10 .5108 -.0209 0.448 5 2.766 3
11 .5798 -.0182 0.509 I 3.140 3
12 .6539 -.0153 0.574 5 3.541 4
13 .7340 -.0123 0.644 3 3.974 6
14 .8210 -.0089 0.721 5 4.445 3
15 .9163 -.0053 0.804 8 4.962 4
16 1.0216 -.0013 0.897 4 5.532 4
17 1.1394 .0032 1.000 16 6.170 3
18 1.2730 .0082 1.118 9 6.893 3
19 1.4271 .0139 1.253 11 7.728 4
20 1.6094 .0206 1.413 7 8.715 2
21 1.8326 .0287 1.609 5 9.923 7
22 2.1203 .0388 1.861 I 11.481 3
23 2.5257 .0524 2.217 3 13.676 3
24 3.2189 .0733 2.826 0 17.430 6
25 OO .1288 ÜO 0 OO 3

This gives a P-value of 3 x lO“’ using the (24) distribution. In contrast, 
the EXP data set has X = 5.415, cell boundaries and frequencies given at 
the right of Table 3. 2, and

100
i(54) ^ (25)^ (-0.1231)^ 

100 0.04255

= 13.5 + 2.23 = 15.73 

The P-value from (24) is 0.898.
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Table 3.2 reveals an important practical advantage of chi-squared tests, 
especially when équiprobable cells are employed: examination of the devi
ations of the cell frequencies from their common expected value (here 4) 
shows clearly the nature of the lack of fit detected by the test. In this case, 
the Welbull with power parameter к = 2 has far too few observations in the 
lower tall, too many in the middle slope of the density function, and too few 
in the extreme upper tall. A glance at graphs of the Weibull and exponential 
density functions (e .g . , on pp. 379-380 of Derman, G leser, and Olkin 1973) 
shows how accurately the m irror the differences between the two distri
butions .

As these examples suggest, the Pearson statistic Х^(0д), which is the 
first component of Rn, is usually adequate for drawing conclusions when M 
is large and p is small, hi this example, the critical points of (¾ ) fall 
between those of (22) and those of X̂  (24). A reasonable strategy is to 
compute X^(Sjo) first, completing the computation of Rn only if the results 
after the first stage are ambiguous.

3 .3.3.2 Example

The BAEN data are to be tested for fit to the double-exponential family 

f(x|0) = e  ̂ 2, - « < x < «

^  = { (^1, Ö2) : 0 < 02 < «>}

The MLE 0JJ = 02n̂  from a random sample Xj ,̂ . . . ,  Xj  ̂ is

0, = median (X^, . . . ,  X  )
In ' I ’ n

Kr. =  i l  I X , - e ,

In this location-scale setting, équiprobable cells with boundaries 0̂ ^̂  + ^^2n  
will again be employed. Using an even number of ceils, say M =  2 v ,  and 
choosing the a¿ symmetrically as aj^-i = = c¿, where

¢. = - l o g ( l  , i = 0, V

(in particular, ap = a^ = 0, ам = “ ) gives Pi(öjj) = l/M.
Computations similar to those shown in Section 3.3.3.1 yield
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Эр.

Ц < ^  = - 1 / Ч п  1 = 1 .

= 1/Мв
2n

i = + I , . . . ,  M

^ I< V ■ k-1

(3.12)

- C^e ) 1 = p+k, v - k + 1

к = 1, ► , I'

T- , “\ - l  "^k then

- P . 2
» ' V i

Since the information matrix is 0 ^^ 12 ,  the matrix J (^ )  -  has
rank I and the Rao-Robson statistic is not defined. (The reason for this 
unusual situation is that for this choice of ce lls , the median is both the raw  
data MLE and the grouped data M LE for .) The Dzhaparidze-Nikulin sta
tistic is

V V  ■ f  I  ( " i  - ñ f - f  ¡ ^ ¡ ^ 1  " I ' V i  * "v -in )]i= l

This computation was simplified by the fact that B 'B  is diagonal and the first 
term of (3.9) is O by (3.12) and the definition of the median.

The BAEN data contain n = 33 observations, for which = 13 and
^ n  = ^ .36. Table 3.3 contains cj, upper cell boundaries + ^ i^n *  
cell frequencies for these data. The statistic is, after some arithmetic.

10
Z = ^  ^  (N  -  3.3)2 

n 33 ' I 33

= 7.30 -  1.59 = 5.71

(2)(.1574)
[-1.2828)2

The P-value from (7) is 0.426. The Pearson statistic = 7.30 has crit
ical points falling between those of x^(7) and x^(8), taking advantage of the 
fact that the grouped data MLE was used to estimate one of the two unknown 
parameters. The corresponding bounds on the P-value are 0.398 and 0.505. 
The double exponential model clearly fits the BAEN data very well. Even
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TABLE 3.3 Testing the Fit of the BAEN Data 
to the Double Exponential Family

Cell 0- +  C .0 .In I 2n
N.

1
2
3
4
5
6
7
8 
9

10

-1.609
-0.916
-0.511
-0.223

0
0.223
0.511
0.916
1.609

4.722
7.051
8.414
9.380

10.130
10.880
11.846
13.209
15.538

4
7
3
2
1
3
4
3
4
2

though an anomaly reduced from 2 to I the difference in the degrees of free
dom of the distributions bounding , there is a considerable spread in 
the corresponding P -values. This is typical when n (and therefore M) is 
small. In examples where the goodness of fit is less clear than here, use of 
Rji or Zn can be essential to a clear conclusion.

3.3.3.3 Example

In testing for multivariate normality, a natural choice of cell boundaries are  
the concentric hyperellipses centered at the sample mean and with shape 
determined by the inverse of the sample covariance matrix. These are level 
surfaces of the multivariate normal density function with parameters esti
mated. Equiprobable cells of this form have the advantage of revealing by 
the observed cell counts the presence of such common types of departure 
from normality as peakedness or heavy tails. Chi-squared statistics in this 
setting are computed and applied by Moore and Stubblebine (1981). Here we 
consider the special case of testing fit to the circular bivariate normal fam
ily, a common model for *4argeting" problems. It represents the effect of 
independent normal horizontal and vertical components with equal variances. 
The density function is

f(x,y|0) = -7—
27ГСГ̂  '

^ { (X - í* i )^ + (y - Í Í2 )^ }
-°o <  X ,y  <  »

n = {e = (/Í1 ,iij.cT) : - »  < j«i ,ÍÍ2 < » ,  0 < (T< » }

The MLE of в from a random sample (X^, Y j), . . . ,  (X^, Y^) is = (Дх » 
Д2*?)» where
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Ml = X  Мг = Ÿ

In constructing a test of fit to this family, Jit is natural to use as cells annuli 
centered at (X ,Y ) with successive radii cjor for

O = C < c  < * * * < c  < c  = 
O l  M - I  M

Thus

Ej = {(x ,y ) ; < (X -  + (y -  f ) ^  < CjCt ^

The cell probabilities are

= S I  f(x,yl0)dxdy  
Ei

and calculation shows that P i (^ )  -  1/M when

= | -2  1 o g ( l - ¿ ) |  , i = l ,  . . . , M - I

The recommended test is based on the Rao-Robson statistic. Differentiating 
P i(0 ) under the integral sign, then substituting O = gives

д а

= ^  
в ~

= О
в

1 2  1 2
— 1, 2 ■ 2 ® i - l  2 " 2 ° i .

= о- (Cj jC -  с. e )

= v./o-
I

Hence

a
O O O

M 2
0 0 Z j V j
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The Fisher information matrix for the circular bivariate normal family is 
also diagonal,

J(0) = 2
<T

0

I

0

so that (J -  is trivially obtained. Moreover, from (3.9) it follows that

JL туг
V B  = n * (0 ,0 ,2 , N v 7 î )  

n I i i '

The Rao-Robson statistic is therefore

_  M y  / n 

1=1

( s f  N .d ./

, 2 
I - M S ^  d^

where

. , . V , / .  = O - y  . 0 . ( : 4 ) . O ^ ( I - V )

The limiting null distribution is (М -  I ) , while that of the Pearson statistic 
X^(á‘n) has critical points falling between those of X̂  (M -  I) and x^(M -  4). 
The Rao-Robson correction term will often be necessary for a clear picture 
of the fit of this three-parameter family.

3.3.3.4 Example

The negative exponential distribution with density function

r/ I /.-I -x / 9f(x l^ ) =  O e  ,

í2 = { 0 : O < 0 < o o }

O < X < «

is often assumed in life testing situations. Such studies may involve not a full 
sample, but rather Type II censored data. That is, order statistics are 
observed up to the sample a-quantile.

^(1) ^ ^(2) ^
< X

( [ na] )

where [no:] is the greatest integer in na and O < a < I. It is natural to make
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use of random cells with sample quantiles = as cell boundaries.
Here ¢0 =

o = ôo<ô^< <  Ô,-. - =  O' <  =  IM -I  M

so that the n -  [nof] unobserved Xj fall in the rightmost cell. Although the 
cell frequencies Ni are now fixed, the general theory of Moore and Spruill 
(1975) applies to this choice of cells. A full treatment of this type of problem  
is given in Mlhalko and Moore (1980). Chi-squared tests are Immediately 
applicable to data censored at fixed points. We now see that allowing random 
cells allows Type П censored data to be handled as well.

The Pearson-Fisher Statistic. Estimate в b y  the grouped data M LE  
found as the solution of (3 .2 ). That equation becomes in this case

M

Z
i= l
Ё N j

«i-1®

- i j _ / e  -ij/0

- ¥
/в

=  O

-  e

which is easily solved Iteratively to obtain ^  = . . . ,  í m -I^*
statistic is

M [N  -n p  (5 )]^

where

= [nôj] -  [nôj (nonrandom)

- Í / “
Pj(e> = e -  e (random)

The limiting null distribution Is (M -  2 ).
The Waldos Method Statistic. A more powerful chi-squared test can be 

obtained by use of the raw data M LE of в from the censored sample, namely 
(Epstein and Sobel, 1953),

^ = T j X,,, + (n -  [пог])Х , )n [nû'JVj^^ (i) ' ([nû'l)/([no'])>

By obtaining the limiting distribution of Vjj(öj^) and then finding the appro
priate quadratic form, a generalization of the Rao-Robson statistic to cen
sored samples can be obtained. This is done in Mihalko and Moore (1980).
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The resulting statistic for the present example is

: z
1=1

M  2

\  = x^ (e ;) + ( n D ) - ^ ^  v)

where Щ  and pj(0) are as above, and

, -1 , ,  -h - Л  .

“Í tv/t- ^M -I n V  2/ 
^  =  I  -  e  -  2i1=1

In the full sample case, a  = I, = Njyj = 0, ^  = X and the statistic
Rn reduces to the Rao-Robson statistic of Section 3.3 .3 .1  (with M - I  cells 
bounded by the .

The motivation for using censored data when lifetimes or survival times 
are being measured is apparent from the EXP data set. The sample 80th per
centile is 9.46, while the maximum of the 100 observations is 39.12. The 
MLE of 9 from the data censored at o f= 0 .8  is = 5.471, compared with 
the full sample M L E , X = 5.415. Experience shows that the Roscoe-Byars 
guidelines are adequate to ensure accurate critical points from the 
distribution in the present situation, where the npj are random and unequal. 
Tests of the EXP data will therefore be made with (a) the full sample using 
10 cells having the sample deciles as boundaries; and (b) the data censored 
at 0 = 0.8 using 9 cells with the first 8 sample deciles as boundaries. A ll 
cells except the rightmost in case (b) contain 10 observations. The results 
are, for the full sample,

R = 6.132 + 0.0220 = 6.352 
n

with a P-value of 0.704 from X^(9)« For the censored sample,

R = 5.153 + 0.0G5 = 5.218 
n

with a P-value of 0.734 from X^(S)* These results are comparable to those 
obtained for the same data in Section 3.3 .3. 1.

3.3.4 Nonstandard Chi-Squared Statistics

We have considered two classes of ^standard” chi-squared statistics, the 
Cressle-Read class based on measures of divergence and the Moore-Sprulll
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class of nonnegative definite quadratic forms. The Pearson is the only 
common member of these classes. A ll of the Cressie-Read statistics are  
asymptotically equivalent to under the null hypothesis when the same 
(possibly random) cells and the same estimators are used. But different 
divergence measures may be sensitive to different types of divergence of Nj 
from npj, and this fact can be used to choose a statistic when a specific type 
of alternative is to be guarded against. The Moore-Spruill statistics differ 
in asymptotic behavior under the null hypothesis. The choice o f statistics 
within this class is most often made to obtain a limiting null distribution 
for given estimator (The Cressie-Read statistics have a x^ limiting null 
distribution only for estimators equivalent to the grouped-data M L E , a class 
that includes all minimum-R^ estimators.)

The theory of these standard chi-squared statistics assumes Independent 
observations and a fixed number of cells M. Relaxing these assumptions 
leads to situations that are incompletely explored, and some other statistics 
have also been suggested. In this section we mention a few of these nonstand
ard cases.

1. Increasing M with n. Usual practice is to increase the number of 
cells M as the sample size n increases (recall the Mann-Wald recommenda
tion (3 .7)). This practice is not explicitly recognized in the standard theory. 
The large-sample theory of the usual chi-squared statistics for increasing 
M is available in the case of a simple null hypothesis (Holst 1972, Morris 
1975, Cressie and Read, 1984). The limiting null distributions of the R^ are 
normal, with mean and variance depending on X. The statistics are therefore 
no longer asymptotically equivalent, and X^ is the optimal member of the 
class in terms of Pitman efficiency. The behavior of these statistics when 
parameters are estimated has not been explored.

Two possible variations in practice suggest themselves. (I) Allow M to 
Increase with n at a rate faster than the Mann-Wald suggestion n^/S. Kemp- 
thorne (1968) proposed the use of the Pearson statistic with M = n équiprob
able ce lls . Simulation studies suggest that standard statistics with fewer 
cells have superior power except against very short-tailed alternatives.
(2) Use a normal rather than a X̂  approximation for the distribution of stand
ard statistics. For X^, the x^ approximation is generally both adequate in 
practice and superior to the normal. The x^ is also easier to use, since it 
does not require computing the asymptotic mean and variance. For other R^ 
(such as G^), the y }  approximation is much less good, and the normal approx
imation may be superior. See Koehler and Larntz (1980). But Read (1984) 
gives an adjustment of the approximation that is easier to use than the 
normal and should also be considered.

2. Dependent observations. Since many data are collected as time 
series, tests of fit that assume Independence may often be applied to data 
that are in fact dependent. Positive dependence among the observations will 
cause omnibus tests of fit to reject a true hypothesis about the distribution of
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the individual observations too often. That is, positive dependence is con
founded with lack of fit. This is shown in considerable generality for both 
chi-squared and EDF tests by G leser and Moore (1983). If a model for the 
dependence is assumed, it may be possible to compute the effect of depend
ence or even to construct a valid chi-squared test using the distributional 
results in IVbore (1982). But in general, data should be checked for serial 
dependence before testing fit, as the tests are sensitive to dependence as 
well as to lack of fit.

3. Sequentially adjusted cells . By use of the conditional probability
integral transformation (see Chapter 6), O^Reilly and Quesenberry (1973) 
obtain particular members of the following class of nonstandard chi-squared 
tests. Rather than base cell frequencies on cells E^ (fixed) or (X^^,. . .  ,¾ )  
(data-dependent) into which all of . . . ,  are classified, the cells used 
to classify each successive Xj are functions Eij of X^, . .  ♦ , Xj only. Thus 
additional observations do not require reclassification of earlier observa
tions, as in the usual random cell case. No general theory of chi-squared 
statistics based on such sequentially adjusted cells is known. O ’Reilly and 
Quesenberry obtain by their transformation approach specific functions Ey  
such that the cell frequencies are multinomially distributed and the Pearson 
statistic has the “ I) limiting null distribution. The transformation
approach requires the computation of the minimum variance unbiased esti
mator of F ( - 10) • Testing fit to an uncommon family thus requires the prac
titioner to do a hard calculation. Moreover, any test using sequentially 
adjusted cells has the disadvantage that the value of the statistic depends on 
the order in which the observations were obtained. These are serious bar
riers to use.

4 . Easterling’s approach. Easterling (1976) provides an interesting 
approach to parameter estimation based on tests of fit. Roughly speaking, 
he advocates replacing the usual confidence Intervals for в in F(* |0) based 
on the acceptance regions of a test of

Hq I O =  Oq

Hj : 0 Ф  Oo

with Intervals based on the acceptance regions of tests of fit to completely 
specified distributions,

hJ: G (-) = F(-|0o)

H f: G (.) ^ F(.|0o)

In the course of his discussion, Easterling suggests rejecting the family 
{F (x I0) : 0 in n }  as a model for the data if the (say) 50% confidence Interval 
for в based on acceptance regions for H* is empty. This ’’imolicit test of fit”
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deserves comment, using the chi-squared case to make some observations 
that apply as well when other tests of H j are employed.

Taking then the standard chi-squared statistic for h J,

M [N  -np (0 )]2

2 — = V V -i= l

and denoting by XaiM -  I) the upper a-point of the X̂  (M -  I) distribution, 
the (I  -  Of)-confidence interval is empty if and only if

(Ö) > Xa(M -  I) for all Ö in n (3.13)

But if 0J1 is the minimum chi-squared estimator, (3.13) holds if and only if

x ^ ( ^ >  X ^ (M - I )  (3.14)

When any F(x|ö) is true, (5^) has the X̂  (M -  p -  I) distribution, and the 
probability of the event (3.14) can be explicitly computed. It is less than oj, 
but close to a  when M is large. Thus Easterling’s suggestion essentially 
reduces to the use of standard tests of fit with parameters estimated by the 
minimum distance method corresponding to the test statistic employed. 
Moreover, his method by-passes a proper consideration of the distributional 
effects of estimating unknown parameters.

3.4 RECOMMENDATIONS ON USE OF 
СШ -SQUARED TESTS

Chi-squared tests are generally less powerful than EDF tests and special- 
purpose tests of fit. It is difficult to assess the seriousness of this lack of 
power from published sources. Comparative studies have generally used the 
Pearson statistic rather than the more powerful Watson-Roy and Rao-Robson 
statistics. Moreover, such studies have often dealt with problems of param
eter estimation in ways which tend to understate the power of general purpose 
tests such as chi-squared and Kolmogorov-Smimov tests. This is true of the 
study by Shapiro, Wilk and Chen (1968), for example. Reliable information 
about the power of chi-squared tests for normality can be gained from Table 
IV  of Rao and Robson (1974) and from Tables I and 2 of Dahiya and Gurland 
(1973). The former demonstrates strikingly the gain in power (always at 
least 40% in the cases considered, and usually much greater) obtained by 
abandoning the Pearson-Fisher statistic for more modem chi-squared statis
tics. Nonetheless, chi-squared tests cannot in general match EDF and spe
cial purpose tests of fit in power.
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This relative lack of power Implies three theses on the practical use of 
chi-squared techniques. First, chi-squared tests of fit must compete for use 
primarily on the basis of flexibility and ease of use. Discrete and/or multi
variate data do not discomfit chi-squared methods, and the necessity to esti
mate unknown parameters Is more easily dealt with by chi-squared tests 
than by other tests of fit.

Second, chi-squared statistics actually having a (limiting) chl-squared 
null distribution have a much stronger claim to practical usefulness. Ease 
of use requires the ability to obtain (I) the observed value of the test statis
tic , and (2) critical points for the test statistic. The calculations required 
for (I) in chl-squared statistics are at most Iterative solutions of nonlinear 
equations and evaluation of quadratic forms, perhaps with matrix expressed 
as the Inverse of a given symmetric pd matrix. These are not serious bar
riers to practical use, given the current availability of computer library  
routines. Computation of critical points of an untabled distribution is a much 
harder task for a user of statistical methods. Chi-squared and EDF statistics 
both have as their limiting null distributions the distributions of linear combi
nations of central chi-squared random variables. General statistics of both 
classes require a separate table of critical points for each hзфothesized 
family. The effort needed is justified when the hypothesized family is com
mon, but should be expended on a test more powerful than chi-squared tests. 
In less common cases, or when no more powerful test with 0-free null dis
tribution is available, there are several chi-squared tests requiring only 
tables of the distribution. These include the Pearson-Fisher, Rao-Robson, 
and Dzhaparidze-Nikulin tests, and others which can be constructed by Wald’s 
method. Among the chi-squared statistics proposed and studied to date, the 
Rao-Robson statistic R^ of (3.10) appears to have generally superior power 
and is therefore the statistic of choice for protection against general alterna
tives. Computation of R^ in the nonstandard cases most appropriate for chi- 
squared tests of fit does require some mathematical work. However, the 
Pearson statistic {0^) with raw-data MLEs is the first and usually domi
nant component of Rjj. If Х^(0д) itself lies in the upper tail of the X̂  (M -  I) 
distribution, the fit can be rejected without computing R^.

The third thesis rests on the exposition and examples in this chapter. 
Chi-squared tests are the most practical tests of fit in many situations. When 
parameters must be estimated in non-location-scale families or in uncommon 
distributions, when the data are discrete, multivariate, or even censored, 
chi-squared tests remain easily applicable.
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Tests Based on EDF Statistics

Michael A. Stephens Sim onFraserUniversity, Burnaby, B .C .,  Canada

4.1 INTRODUCTION

Graphical methods have a wide appeal in deciding if a random sample appears 
to come from a given distributional form. Some of these methods have a l
ready been considered in Chapter 2. In this chapter we consider tests of fit 
based on the empirical distribution function (E D F ). The EDF is a step func
tion, calculated from the sample, which estimates the population distribution 
function. EDF statistics are measures of the discrepancy between the EDF 
and a given distribution function, and are used for testing the fit of the sample 
to the distribution; this may be completely specified (Case O below) or may 
contain parameters which must be estimated from the sample.

4 . 2 EMPIRICAL DISTRIBUTION FUNCTION STATISTICS 

4.2.1 The Empirical Distribution Function (EDF)

Suppose a given random sample of size n is . . . ,  and let < X^2) 
< • • • < X(n) be the order statistics; simpóse further that the distribution of 
X is F(X ). For the present and in most of this chapter we assume this distri
bution to be continuous. The empirical distribution function (EDF) is Fjj(x) 
defined by

F^(X) = number of observations S. x
-OO < X <  OO

97
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TABLE 4. I Leghorn Chick Data

Z,b

156 0.104 0.040
162 0.139 0.060
168 0.180 0.087
182 0.304 0.184
186 0.345 0.221
190 0.388 0.261
190 0.388 0.261
196 0.455 0.329
202 0.523 0.402
210 0.612 0.505
214 0.655 0.557
220 0.716 0.633
226 0.771 0.704
230 0.804 0.747
230 0.804 0.747
236 0.848 0.805
236 0.848 0.805
242 0.885 0.855
246 0.906 0.883
270 0.977 0.976

S-Orlginal values X of weights of
20 chicks; in gram s.
’̂Values Z I are given by the Proba-

bllity Integral Transformation for a 
test for normality, with given mean 
200 and given standard deviation 35
for use in a Case 0 test.
^Values Z 2 are given by the P roba-
bllity Integral Transformation using 
sample mean 209.6 and sample 
standard deviation 30.65 for use in
а Case 3 test.
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More precisely, the definition Is

F^(X) = 0, X < X
(I)

^n^*̂  n ’ ^(1) -  *  ^(1+1) ’  ̂ ■

= V ) - *

., n -  I (4.1)

Thus Fji(X) I s  a step function, calculated from the data; as x increases 
It takes a step up of height l/n as each sample observation is reached. For 
any X , Fji(x) records the proportion of observations less than or equal to x, 
while F(x) is the probability of an observation less than or equal to x. We 
can expect F^(X) to estimate F (x), and it is in fact a consistent estimator of 
F(X); as n — » ,  I Fjj(x) -  F(x)| decreases to zero with probability one.

E 4 .2 .1  Example

Table 4.1 gives the weight X  in grams of twenty 21-day-old leghorn chicks, 
given by Bliss (1967) and taken from Appendix A. Figure 4.1 gives the EDF

FIGURE 4 .1 EDF of X. Also drawn is the normal distribution, mean 200,
variance 1225.
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of these sample data. It is clear that the weights have been rounded to the 
nearest gram, so that strictly the parent population is discrete, but with 
these large numbers this approximation will make negligible difference. The 
Fjj(x) suggests that F(x) will have the characteristic S-shape of many distri
butions, including the normal distribution. A tзфlcal normal distribution, 
with mean д = 200 and variance = 1225, has also been drawn in F ig
ure 4.1; this w ill be used in later work to illustrate tests that the sample of 
weights comes from this distribution.

4.2.2 EDF Statistics

A statistic measuring the difference between Fjj(x) and F(x) will be called an 
EDF statistic; we shall concentrate on seven which have attracted most atten
tion. They are based on the vertical differences between Fjj(x) and F (x ), and 
are conveniently divided into two classes, the supremum class and the 
quadratic class.

The supremum statistics. The first two EDF statistics, D*̂  and D “, are, 
respectively, the largest vertical difference when F^(X) is greater than F (x), 
and the largest vertical difference when F^(X) is sm aller than F (x); formally, 
D^ =  supx{ Fn(X) -  F (X ) }  and D ’  = supx{F (x ) -  Fn(X)}. The most well-known 
EDF statistic is D, introduced by Kolmogorov (1933):

D = sup IF (X) 
^x n'

+
F(X)I = max(D ,D )

A closely related statistic V, given by Kuiper (1960), is useful for obser
vations on a circle (see Section 4.5.3 ):

V = d "̂  + d “

The quadratic statistics. A second and wide class of measures of dis
crepancy is given by the Cramer-von Mises family

Q = n /  {F  (X) -  F (x)}z^(x)dF(x)

where ф{х) is a suitable function which gives weights to the squared differ
ence { Fn(X) -  F (X ) }^. When ip{x) = I the statistic is the Cramár-von Mises 
statistic, now usually called W^, and when ip(x) = [ { F ( x ) } { ( i  -  F (x ) } ] “  ̂ the 
statistic is the Anderson-Darling (1954) statistic, called A^. A modification 
of also devised originally for the circle (see Section 4.5.3),  is the Watson 
(1961) statistic defined by

= n /  I F^(X) F(X) -  /  [F^(X) -  F(X)] dF(x) I^dF(X)
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4.2.3 Computing Formulas

From the basic definitions of the supremum statistics and the quadratic sta
tistics given above, suitable computing formulas must be found. This is done 
by using the Probability Integral Transformation (PIT ), Z = F(X ); when F(x) 
is the true distribution of X, the new random variable Z is uniformly distrib
uted between 0 and I. Then Z has distribution function F*(z) = z, 0 < z < I. 
Suppose that a sample X^, . . . ,  X^ gives values Z^ = F (X j), i = I, . , n,
and let F J (z ) be the EDF of the values Z j .

EDF statistics can now be calculated from a comparison of F *(z) with 
the uniform distribution for Z . It is easily shown that, for values z and x 
related by z = F (x ), the corresponding vertical differences in the EDF dia
grams for X and for Z are equal; that is,

F^(X) -  F(X) = F*(z) -  F *(z ) = F*(z) -  z ;

consequently EDF statistics calculated from the EDF of the Z j compared 
with the uniform distribution will take the same values as If they were calcu
lated from the EDF of the X j, compared with F (x ). This leads to the following 
formulas for calculating EDF statistics from the Z -values.

The formulas Involve the Z -values arranged in ascending order, Z < 
Z (2) < • •• < Then, with Z = 2 jZ j/ n , ' '

D^ = max^{i/n -  Z^.^} ;D ” = max.{Z^^^ - ( 1 -  l )/ n };  D = m ax(D^,D*)

V  = d "̂  + D“

W * = -  (21 -  l ) / ( 2 n ) Ÿ  + l/(12n) ; = W * -  n(Z -  0.5)*

A* = -n -  (1/n) 2^(21 -  l)[lo g  Z^j^ + log {1  -  

Another formula for A^ is

A* = -n -  (1/n) Z j[(2 i -  I) log Z^j^ -b (2n + I  -  21) log {1  -

In these eg ress ion s, log x means loge x, and the sums and maxima are 
over I < I < n. A ll these formulas are very straightforward to calculate, 
particularly with a modem computer, or programmable desk calculator.
Note that statistic D“ can be easily miscalculated, using 1/n instead of 
(i -  l)/n.

(4.2)
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4.3 GOODNESS-OF-Frr TESTS BASED ON THE EDF
(EDF TESTS)

4.3.1 General Comments 

The general test of fit is a test of

B q I a random sample of n X-values comes from F(x;0)

where Y { x ; 0 )  is a (continuous) distribution and 0 is a vector of parameters. 
For example, for a normal distribution under test, в = (At,(7̂ ), and for a 
Gamma distribution defined as in Section 4.12, в = (a,/3,m). When 9 is 
fully specified, we call the situation Case 0. Then = F(X^j^;d) gives a 
set Z(I) which, on Hq , are ordered uniforms and equations (4.2) are used to 
give EDF statistics. On the other hand, F(x;ô ) may be defined only as a 
member of a family of distributions such as the normal or Gamma, but all 
or part of the vector в may be unknown. As an example of Case 0, the data 
in Table 4 . 1 might be tested to be normal with mean = 200 and variance 
0*2 = 1225, and as an example of the second situation it would be tested only 
to be normal, with unknown mean and variance. For the second case it would 
be natural to use the sample mean and variance as estimates of the compo
nents o f  в =  (M,cr^).

For Case 0, distribution theory of EDF statistics is well-developed, 
even for finite samples, and tables have been available for some time. When 
9 contains one or more unknown parameters, these parameters may be re 
placed by estimates, to give ê  as the estimate of 9 . Then formulas (4 • 2) 
may still be used to calculate EDF statistics, with Z(^) = F (X (y ;0 ). However, 
even when Hq is true, the Z(i) will now not be an ordered uniform sample, 
and the distributions of EDF statistics will be very different from those for 
Case 0; they will depend on the distribution tested, the parameters estimated, 
and the method of estimation, as well as on the sample size. New points 
should then be used for the appropriate test, even for large samples, other
wise a serious error in significance level will result.

4-3.2 Unknown Location and Scale Parameters

When the unknown components of 9 are location or scale parameters, and if 
these are estimated by appropriate methods, the distributions of EDF statis
tics will not depend on the true values of the unknown parameters. Thus per
centage points for EDF tests for such distributions, for example, the normal, 
exponential, extreme-value, and logistic distributions, depend only on the 
family tested and on the sample size n. Nevertheless, the exact distributions 
of EDF statistics are very difficult to find and except for the exponential dis
tribution, Monte Carlo studies have been extensively used to find points for 
finite n. Fortunately, for the quadratic statistics W^, U^, and A^, asymptotic 
theory is available; furthermore, the percentage points of these statistics for
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finite n converge rapidly to the asymptotic points. For the statistics D" ,̂ D", 
D, and V, there is no general asymptotic theory (except for Case 0), and 
even asymptotic points must be estimated. This may be done by plotting, for 
a fixed a ,  the Monte Carlo points for samples of size n against m = l/n, 
and then extrapolating to m = 0; alternatively, since the statistics are func
tions of a process which is asymptotically Gaussian, points may be found by 
simulating the Gaussian process. Serfling and Wood (1975) and Wood (1978a) 
have obtained asymptotic points by this method. Both techniques are of 
course subject to sampling variation and errors due to extrapolation; Chandra, 
Singpurwalla, and Stephens (1981) have given some comparisons of the two 
methods in obtaining points for tests for the extreme value distribution.

For the tests corresponding to many distributional fam ilies, Stephens 
(1970, 1974b, 1977, 1979) has given modifications of the test statistics; if 
the statistic is, say, T , the modification is a function of n and T which is 
then referred to the asymptotic points of T or of Т *Л . Asymptotic theory 
depends on using asymptotically efficient estimators for the estimates of 
unknown components of Э ; the asymptotic points given w ill then be valid for 
any ,such estimators. Points for finite n will depend on which estimators are 
used; usually these are maximum likelihood estimators although an exception 
is the Cauchy distribution below. In the test situations in following sections, 
percentage points for finite n, using the estimators given, were found from  
extensive Monte Carlo studies, often done by the author, although other 
studies referenced have also been used. The modifications are then derived 
from an examination of how these points, for a  = 0.05 say, converge to the 
asymptotic point. A feature of the modifications is that, at least in the appro
priate tall, they do not depend on o; thus when such modifications have been 
found, the usual tables of percentage points, with entries for n and a , can 
be reduced to one line for each test situation. The modifications hold only if 
the estimators given are used. They have been calculated to be most accurate 
at about a  = 0.05, but usually give good results, for practical purposes, 
for Oi less than about 0.2.

4.3.3 Unknown Shape Parameters

When unknown parameters are not location or scale parameters, for example 
when the shape parameter of a Gamma or a Welbull distribution is unknown, 
null distribution theory, even asymptotic, when the parameters are esti
mated, will depend on the true values of these parameters. However, if this 
dependence is very slight, a set of tables, to be used with the estimated 
value of the shape parameter, can still be valuable (see, for example. Sec
tion 4.12, concerning tests for the Gamma distribution). Other methods of 
dealing with unknown parameters are discussed in Section 4 . 16. 3 .

There is now a vast literature on EDF statistics and tests, and only the 
principal references related directly to the tests and tables are included 
here. Surveys have been given by Sahler (1968) and by Neuhaus (1979); a com
prehensive review of the theory, and many references, is given by Durbin 
(1973).
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We next give tests and applications of EDF statistics for Case 0, and in 
subsequent sections give tests for the major distributions.

4.4 EDF TESTS FOR A FU LLY  SPECIFIED  
DISTRIBUTION (CASE 0)

The following procedure can now be set out for EDF tests for Case 0, that 
is, for the null hypothesis

H : a random sample X_, . . . ,  X comes from F (x ;0 ), a completely 
0 I n

specified continuous distribution

(a) Put the Xj in ascending order, X (i) < X^2) < • • * < ^(n )-
(b) Calculate = F ( X ^ ^ ÿ $ ) ,  i = I, .. , n.
(о) Calculate the appropriate test statistic using (4.2).
(d) Modify the test statistic as in Table 4 . 2 using the modifications for the 

upper tail, and compare with the appropriate line of percentage points. 
If the statistic exceeds the value in the upper tall given at level a , Hq is 
rejected at significance level Oi.

E 4.4 . 1 Example

Suppose the data in Table 4 . 1 are to be tested to come from a normal distri
bution with mean /u = 200 and standard deviation (j = 35. This is the distri
bution drawn in Figure 4.1. The Probability Integral Transformation gives 
the values in column Z j of Table 4 . 1. These have then been used to draw the 
EDF in Figure 4.2. The calculation of D+ and D” is also illustrated in the 
figure. Formulas (4.2) give, t o S d .p . :  D"*̂  =0.044, D =0.171, D = 0.171,
V = 0.216, for the supremum statistics, and = Ó.187, U^ = 0.051, and 
A^ = 1.019 for the quadratic class. From Table 4.2 the modified value D* 
is found from D* = D(n/ii +0 .12  + 0. l l / ’sTn) and the value is 0.790. Refer
ence to the percentage points on the same line as the modification (the asymp
totic percentage points of iWn) shows D to be not significant at the 15% level. 
The modified values of the other statistics (using, for example, W * for mod- 
lfled W^) are: D+* = 0.203, D "*  = 0.790, V * = 1.011, V ,*  = . 177, U* = .048, 
A* = 1.019. These give levels of significance a  (or p-levels) well below the 
25% point for all the statistics, so that the hypothesis Hq will not be rejected.

It will be observed from the modifications in Table 4 . 2 that the percent
age points of and U^ for finite n converge rapidly in the upper tail to the 
asymptotic points, and even if the modifications were not included in the 
table, the use of the asymptotic percentage points for n > 20 would give 
negligible error in a . Even more striking is the fact that, for n > 3, the 
distribution of A^ is accurately given by the asymptotic distribution. This



TABLE 4.2 Modifications and Percentage Points for EDF Statistics for Testing a Completely Specified Distribution 
(Case 0; Section 4.4)

Statistic
T Modified form T* .25 .15 .10

Significance level a  
.05 .025 .01 .005 .001

H
И
HW

W
И
ö
о

и
ö
4

H

ей
й
5

Upper tail percentage points

d ‘̂ (D “) {^Гп + 0.12 + O .I I/ n/п)

D

V

W2

А2

D

V

W2

A^

0.828

1.019

1.420

0.973

1.138

1.537

1.073

1.224

1.620

1.224

1.358

1.747

1.358

1.480

1.862

1.518

1.628

2.001

D('s/n + 0.12 + O .I I/ n/п)

V(N/h+ 0.155 + 0 . 2 4 / ^Tn)

(W2 -  0.4/n + 0.6/n2)(1.0 + 1.0/n) 0.209 0.284 0.347 0.461 0.581 0.743

(U^ -  0.1/n + O.l/n^Hl.O + 0.8/n) 0.105 0.131 0.152 0.187 0.222 0.268

F o ra ll  n >  5 1.248 1.610 1.933 2.492 3.070 3.880

1.628

1.731

2.098

0.869

0.304

4.500

Lower tall percentage points

0 ( - ^ +  0.275 -  0 .04/-^ ) 

V(*/n + 0.41 - 0 . 2 6 / ^Tn)

(W^ -  0.03/n)(1.0 + 0.05/n) 

(U* -0 .0 2 /n )(l + 0.35/n) 

For all n > 5

0.610 0.571 

0.976 0.928 

0.054 0.046 

0.038 0.033 

0.399 0.346

0.520

0.861

0.037

0.028

0.283

0.481 0.441 

0.810 0.755 

0.030 0.025 

0.024 0.020 

0.240 0.201

1.859

1.950

2.303

1.167

0.385

6.000

Adapted from Stephens (1970), with permission of the Royal Statistical Society. O
СЛ
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FIGURE 4.2 E D F o fZ j .

was demonstrated by Lewis (1961), and is valid all along the distribution. 
The modified forms are taken from Stephens (1970) where references to 
original sources of tables for EDF statistics are given.

4.5 COMMENTS ON EDF TESTS FOR CASE 0

4.5.1 Use of the Lower Tail

The test as described above is a one-tail test, using only the upper tail of 
the test statistics. This is because, in general, we should expect the differ
ence between Fjj(x) and F(x) or between F^(Z) and F(z) to be large when Ho 
is not true. If a test statistic appears to be significant in the lower tail it 
suggests that the Z -sample is too regular to be a random uniform sample, 
and perhaps the original X-data have been tampered with. Such Z -values are 
called superuniform; tests for superuniformity can be made using the modi
fications and lower tail points also given in Table 4.2. Superuniform obser
vations can arise in other ways also, particularly in connection with tests for 
the exponential distribution, or for randomness of points in time. An inter
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esting data set which appears to be superuniform is the dates of the kings 
and queens of England (Pearson, 1963). Further comments on superuniform
ity are in Chapters 8 and 10.

4.5.2 Calculation of Significance Levels (p-Levels) 
for Given Statistics

Suppose a test statistic T takes the value t; the significance level, or p-value, 
of the statistic w ill then be the value p = P (T  > t ). In some contexts the term  
is also applied to the lower tail probability P (T  < t) but here q, or q-level, 
will be used for this quantity; thus q = I -  p. It is useful (especially in com
bining several independent tests, see Sections 4.18 and 8.15) to be able to 
calculate the significance level all along the distribution of T, and not merely 
in the tails. For A^, Case 0, the table of q-values of the as3rmptotic distri
bution given by Lewis (1961) is reproduced in Table 4.3. Since A^ needs no 
modification for sample size greater than three. Table 4.3 may be used to 
give q-values for all n > 3. Tables to find p or q in the tails were given for 
other EDF statistics by Stephens (1970).

E 4.5.2 Example

In example E4 .4 .1 , A^ = 1.019; from Table 4.3 the q-value is approximately 
0.653, so that P = 0.347.

4.5.3 Observations on a Circle

A special problem arises if the observations X are measurements recording 
points on a circle. For example, suppose the circumference is of length I, 
and let X be the arc length around the circumference, measured clockwise 
from an origin O. Clearly the value of F (x;0) at a given point x varies with 
the choice of O, and the EDF statistics D" ,̂ D ", D, W^, and A^ take different 
values with different choices of origin. However, statistics V  and do not; 
they were Introduced by Kulper and Watson to adapt the statistics D and 
for this problem, and V  and should be used for observations recorded on 
a circle.

E 4.5.3 Example

Consider a small sample of four values, which are to be tested for uniformity 
around a circle of unit circumference. With North as origin, and positive 
direction clockwise, suppose the Xvalues are 0.3, 0.4, 0.5, 0.9. If East 
were regarded as origin, these values would change to 0.05, 0.15, 0.35, 
and 0.65. When the EDF are drawn for these two cases, the values of D”̂ ,
D ", and D are, respectively, 0.15, 0.30, 0.30 and 0.40, 0.05, 0.40, butin  
both cases V  is 0.45. The corresponding values of W^, A^, and are
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TABLE 4.3 Distribution of A^, Case 0: The Table Gives q = P (A  ̂ < z)

.025

.050

.075

.100

.125

.150

.175

.200

.225

.250

.275

.300

.325

.350

.375

.400

.425

.450

.475

.500

.525

.550

.575

.600

.625

.650

.675

.700

.750

.800

.850

.900

.950
1.000
1.050
1.100
1.150
1.200

0.0000
0.0000
0.0000
0.0000
0.0003
0.0014
0.0042
0.0096
0.0180
0.0296
0.0443
0.0618
0.0817
0.1036
0.1269
0.1513
0.1764
0.2019
0.2276
0.2532
0.2786
0.3036
0.3281
0.3520
0.3753
0.3930
0.4199
0.4412
0.4815
0.5190
0.5537
0.5858
0.6154
0.6427
0.6680
0.6912
0.7127
0.7324

1.250
1.300
1.350
1.400
1.450
1.500
1.550 
1.600
1.650
1.700
1.750 
1.800
1.850
1.900
1.950 
2.000
2.050 
2.100 
2.150 
2.200
2.250
2.300
2.350
2.400
2.450
2.500
2.550 
2.600
2.650
2.700
2.750 
2.800
2.850
2.900
2.950 
3.000
3.050

0.7503
0.7677
0.7833
0.7973
0.8111
0.8235
0.8350
0.8457
0.8556
0.8648
0.8734
0.8814
0.8888
0.8957
0.9021
0.9082
0.9138
0.9190
0.9239
0.9285
0.9328
0.9368
0.9405
0.9441
0.9474
0.9504
0.9534
0.9561
0.9586
0.9610
0.9633
0.9654
0.9674
0.9692
0.9710
0.9726
0.9742

3.100
3.150
3.200
3.250
3.300
3.350
3.400 
3.450
3.500 
3.550
3.600 
3.650
3.700 
3.750
3.800 
3.850
3.900 
3.950
4.000 
4.050
4.100
4.150
4.200
4.250
4.300
4.350
4.400
4.500
4.600
4.700
4.800
4.900
5.000
5.500
6.000
7.000
8.000

0.9756
0.9770
0.9783
0.9795
0.9807
0.9818
0.9828
0.9837
0.9846
0.9855
0.9863
0.9870
0.9878
0.9884
0.9891
0.9897
0.9902
0.9908
0.9913
0.9917
0.9922
0.9926
0.9930
0.9934
0.9938
0.9941
0.9944
0.9950
0.9955
0.9960
0.9964
0.9968
0.9971
0.9983
0.9990
0.9997
0.9999

Adapted from Lewis (1961), with permission of the author and of the Institute 
of Mathematical Statistics.
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0.053, 0.337, 0.043 for North as origin, and 0.203, 1.116, 0.043 for East; 
and A^ change in value but U^, like V, remains constant.

4.5.4 Use of D to Give Confidence Intervals 
for a Distribution

The ED F, with statistic D, may also be used to provide confidence Intervals 
for the true distribution function. This is done as follows. Let the critical 
value of D, for given n and a , be D q,, and draw a band of vertical height Dq, 
on either side of F^(x) ; this gives a confidence band for the true distribution 
function, with confidence level 100(1 -  a ) % .  (Strictly speaking, there should 
be a slight modification of the band at the lower and upper tails, because 
otherwise the band contains negative values for the distribution, or values 
greater than I, but the modifications are very small for a sample of reason
able size, say n = 20.)

4 .5 .5  Use of EDF Statistics to Give Confidence Sets 
for Parameters

When parameters are not known in F (x ;ö ), confidence sets may be provided 
for them by the following device. Suppose 0 is a vector of unknown param
eters, which need not be only location or scale parameters, and suppose 
values are given to unknown components of 0 to give vector Oq ; then F(x;0o) 
is completely specified and EDF statistics can be calculated. Suppose T is 
such a statistic. The confidence set for 0, derived from T , and with level 
100(1 -  oi)% , includes all those values of Oq which make T not significant at 
level 0?. The confidence set is sometimes called a consonance set or region. 
Easterling (1976) and Littelland Rao (1978) have investigated the use of A^ 
and D for finding consonance sets for parameters. The technique affords an 
interesting mixture of goodness-of-fit and parameter estimation methods.

4.5.6 Other EDF Statistics for Case 0

Many other statistics have been proposed to measure the discrepancy between 
F jj(X) and F (x ;0 ); they are often closely related to the seven statistics dis
cussed above, and have sim ilar properties.

(a) Anderson and Darling (1952) suggested using a variance-weighted D, 
obtained by incorporating a weight function into the definition of D, much 
as it is included in A ^ . Asymptotics for this statistic have been given by 
Doksum, Fenstad and Aaberge (1977), and tables for finite n by 
Niederhausen (1981).

(b) Suppose SI = F-^(i/n), and let Ц  = i/n -  Fjj(Sj), where Fjj(x) is the EDF 
of the original sample X; Riedwyl (1967) suggested the test statistic •

• On the Z -diagram , this statistic is based on the discrepancy
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between F^(Z) and F(z) at equal Intervals along the z-axis between 0 
and I; the statistic has a discrete distribution.

(C ) Let Ô1 = m axi{ I -  (i -  l)/n|, I -  i/n|}; the Kolmogorov statistic 
D is then max ôj. Finkelsteln and Schafer (1971) have proposed the sta
tistic S = Z i ôi and have given a table of percentage points for n up to 
30.

(d) Hegazy and Green (1975) and Green and Hegazy (1976) have discussed 
several statistics calculated from slight modifications of the computing 
formulas in Section 4.2. Berk and Jones (1979) gave other statistics 
based on F^(x) and sim ilar to the Kolmogorov statistics. Hegazy and 
Green (1975) have demonstrated that their modified statistics can in
crease power against certain alternatives, and Berk and Jones showed 
certain optimal properties in the sense of Bahadur efficiency for their 
statistics.

(e) A set of statistics closely related to EDF statistics, although not derived 
from the EDF, is the C and K set, described in Section 8.8.

4.6 POWER OF EDF STATISTICS FOR CASE 0

In Case 0, as we have seen, the final test is that a set of variables Z is uni
formly distributed U (0 ,1), and a discussion of power properties of EDF 
statistics is therefore deferred to Chapter 8, where tests for uniformity are 
discussed in detail. However, for later comparisons in this chapter, we 
summarize certain properties of EDF statistics in Case 0 situations.

(a) EDF statistics are usually much more powerful than the Pearson chi- 
square statistic; this might be explained by the fact that for the chi-square 
statistic the data must be grouped, with a resulting loss of information, 
especially for small samples.

(b) The most well-known EDF statistic is D, but it is often much less power
ful than the quadratic statistics and A^.

(C ) Statistics D"*" and D“ will be powerful in detecting whether or not the 
Z -set tends to be close to 0 or to I, respectively; A^, W^, and D will 
detect either of these two alternatives, and and V are powerful in 
detecting a clustering of Z values at one point, or a division into two 
groups near 0 and I . In terms of the original observations X, statistics 
D" ,̂ D “ , A^, W^, and D will detect an error in mean in F (x;d) as speci
fied, and and V  will detect an error in variance.

(d) A^ often behaves similarly to , but is on the whole more powerful for 
tests when F(x;0) departs from the true distribution in the tails, espe
cially when there appears to be too many outlying X-values for the F(x;ö ) 
as specified. In goodness-of-flt work, departure in the tails is often im
portant to detect, and A^ is the recommended statistic.
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4.7 EDF TESTS FOR CENSORED DATA: CASE 0

4.7.1 Introduction

If some of the observations X2 , . . . ,  X^ of a random sample are m iss
ing, the sample is said to be censored. If all observations less than X^gj are  
missing the sample is left-censored, and if all observations greater than 
are missing, it is right-censored; in either case, the sample is said to be 
singly-censored. If observations are missing at both ends, the sample is 
doubly-censored.

Censoring may occur for random values of s or r  (Type I  censoring) or 
for fixed values (Type 2 censoring). These may be illustrated by lifetime 
measurements X  ̂of equipment. If the experiment is continued for a fixed 
time t, the number of items which fail in that time would be a random vari
able and the censoring would be Type I; if, on the other hand, it is decided 
to follow the eiqjeriment until 20 items have failed, then r  is fixed at 20 and 
we have Type 2 censoring. Another form of censoring is random censoring, 
where, for example, observation X^ may not be known, but it is known that 
Xi > Ti, where Ti is another random variable. In the lifetesting experiment, 
this could occur if items were removed from the test for reasons other than 
because they failed in the manner investigated in the experiment.

EDF statistics have been adapted for all these forms of censoring. Con
sider Case 0, where the distribution under test, say F (x ), is fully specified. 
Then the Probability Integral Transformation may be made for the observa
tions available, giving a set Zi = F(Xi) which is Itself censored. Suppose 
the X-set is right-censored, of Type I; the values of X are known to be less 
than the fixed value X*, and the available Zi are then < Z^2) < • • • < Z (r) 
< t, where t = F (X *). If the censoring is T y p e  2, there are again r  values 
Z (i), with Z (r) the largest and r  fixed.

4 . 7 .2  The Kolmogorov-Smirnov Statistics D“**, D“ , and D

The Kolmogorov-Smirnov statistic, modified for Type I censored data, is 
lD t,n , calculated from the EDF F^(Z) of the r  ordered Z -values:

D = sup I F ( Z ) - Z l
I t,n Л . n 0< z< t

For Type 2 censored data, the Kolmogorov-Smirnov statistic is

= max 
1< 1< r  '
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TABLE 4.4 Upper Tall As5rmptotic Percentage Points for n/iiD, and A^, 
for Type I or Type 2 Censored Data from U (0 ,1) (Section 4.7)

Significance level ot

P 0.50 0.25 0.15 0.10 0.05 0.025 0.01 0.005

Statistic
^ЛlD
.2 .4923 .6465 .7443 .8155 .9268 1.0282 1.1505 1.2361
.3 .5889 .7663 .8784 .9597 1.0868 1.2024 1.3419 1.4394
.4 .6627 .8544 .9746 1.0616 1.1975 1.3209 1.4696 1.5735
.5 .7204 .9196 1.0438 1.1334 1.2731 1.3997 1.5520 1.6583
.6 .7649 .9666 1.0914 1.1813 1.3211 1.4476 1.5996 1.7056
.7 .7975 .9976 1.1208 1.2094 1.3471 1.4717 1.6214 1.7258
.8 .8183 1.0142 1.1348 1.2216 1.3568 1.4794 1.6272 1.7306
.9 .8270 1.0190 1.1379 1.2238 1.3581 1.4802 1.6276 1.7308

1.0 .8276 1.0192 1.1379 1.2238 1.3581 1.4802 1.6276 1.7308

Statistic

.2 .010 .025 .033 .041 .057 .074 .094 .110

.3 .022 .046 .066 • 083 .115 .147 .194 .227

.4 .037 .076 .105 .136 .184 .231 .295 .353

.5 .054 .105 .153 .186 .258 .330 .427 .488

.6 .070 .136 .192 .241 .327 .417 .543 .621

.7 .088 .165 .231 .286 .386 .491 .633 .742
• 8 .103 .188 .259 .321 .430 .544 .696 .816
.9 .115 .204 .278 .341 .455 .573 .735 .865

1.0 .119 .209 .284 .347 .461 .581 .743 .869

Statistic
A^
.2 .135 .252 .333 .436 .588 .747 .962 1.129
.3 .204 .378 .528 .649 .872 1.106 1.425 1.731
.4 .275 .504 .700 .857 1.150 1.455 1.872 2.194
.5 .349 .630 .875 1.062 1.419 1.792 2.301 -

.6 .425 .756 1.028 1.260 1.676 2.112 2.707 -

.7 .504 .882 1.184 1.451 1.920 2.421 3.083 -

.8 .588 1.007 1.322 1.623 2.146 2.684 3.419 -

.9 .676 1.131 1.467 1.798 2.344 2.915 3.698 -

1.0 .779 1.248 1.610 1.933 2.492 3.070 3. 880 4.500

Table for »N/nD adapted from Koziol and Byar (1975), with permission of the 
authors and of the American Statistical Association. Tables for and A^ 
adapted from Pettltt and Stephens (1976), with permission of the author and 
of the Biometrika Trustees.
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2 ^ . n =  ""P0<z<Z(p)

, { ; - V
= max 

K i < r
(4.4)

The one-sided versions of these statistics are denoted by iDt,n* Tables 
of percentage points of the null distribution of ĵ D̂  ^  and 2l>r,n given by 
B arr and Davidson (1973). For both types of censoring, these converge to 
one asymptotic distribution, given by Koziol and Byar (1975); points from  
this distribution are in the first part of Table 4.4. Dufour and Maag (1978) 
gave useful formulas so that the as5onptotic distributions could be used with 
finite samples. The technique is as follows.

Suppose the sample is right-censored, and Hq is

Ho: the censored sample < X^2) < • * • < X^j.) comes from the fully 
specified continuous distribution F(x)

The values = F (X (j)), i = I, . . . ,  r , are calculated. The steps in testing 
Hq are then the following.

For Type I censoring;

(a) Calculate ĵ D̂  ^ from formula (4.3).
(b) Modify iD t,n  *^ ^ t calculated from

D* = \ T n ^ D  + 0.19/N/n, for n > 25 and t > 0.25 t I t,n  — —

(c) Refer to Table 4.4 and reject Hq at significance level a  if D * exceeds 
the tabulated value for a .

For Type 2 censoring;

(a) Calculate 2^^r,n f^cm formula (4.4).
(b) Modify 2^r,n  ^  ^ r  calculated from

D * = n/Û D + 0.24/\/n, for n > 25 and r/n > 0.4 
r  2 r ,n  -  -

(C ) Refer to Table 4.4 and reject H q at significance level a  if D * exceeds 
the tabulated value at level o'.

For values of n < 25 or for censoring more extreme than the ranges 
given above, refer to tables of B arr and Davidson (1973) or Dufour and Maag
(1978).
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In order to approximate the tail areas of the finite sample distribution, 
that is, to obtain p-values of test statistics, a relationship between the 
asymptotic distributions of one and two-sided statistics can be used.

The as5nnptotic distribution for the one-sided test statistic n/Îi (^d | 
has beèn given by Schey (1977) as ’

Iim Р{\Гп( ) < у)} = G (у) 
I t,n -  tn-*oo

2у2
ф (А^) -  ф (В^) е •" , у > О

where At = (t -  t^)^ and Bt = (2t -  l)At* The tall area for the two-sided 
statistic is approximated well for significance levels less than 0.20 by dou
bling the one-sided value. Thus to obtain a p-value, the test statistic iDt^n 
or 2l^r,n Is first adapted to obtain D f or D* as described above, and then 
the p-value, for a two-sided test, is well-approximated by p  ̂= 2 { l  -  G^(D*)} 
or Pr = 2 { l  -  G t (D ^ }. Examples of calculations of Kolmogorov-Smirnov 
statistics for censored data are given in Section 11 .3 .1.

4.7.3 Cramár-von Mises Statistics

A second group of statistics for censored samples is of the general C ram ^r-
von Mises tyi>e. Pettitt and Stephens (1976) introduced versions of the
Cram^r-von Mises W^, Watson U^, and Anderson-Darling A^ statistics,
obtained (for right-censored data) by modifying the upper limit of integration
in the definitions of these statistics; would then become ,W? for Type I

2  ̂
censoring, and 2W^ ^  for Tjrpe 2 censoring. The computing formulas differ
slightly for the two t5̂ es  of censoring. The formulas for Тзгре 2 censoring,
given < • • • < Z (r ), are

= У  ( z
2 r .n  (i) 2n ^ 3V (r) n/

= -  nZ2 r ,n  2 r ,n  (r)

where Z = ^
i= i W

(4.5)

2 < .  ■
1=1

i[(r -n)̂  log{l - Ẑ̂ }̂ -
i= l

r " l o g Z ^ r ) ^ “" V
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For Type I right-censored data, suppose t (t < I) Is the fixed censoring 
value of Z . This value is added to the sample set, and the statistics are now 
calculated by using the above formulas with r  replaced by r  + I , and with

and A? . Note that it isthey W lllbe  called ^w2 

possible to have r  = n observations less than t, so that when the value t is
added, the new sample has size n + I. Statistics and W2 

2 r ,n
have the

I t,n
same asymptotic distributions for the two typ>es of censoring; sim ilarly for 
the other statistics. Asymptotic points for and A^ are given in Table4.4. 

Thus the steps in making a test, for right-censored data, are:

(a) Calculate the statistic required as described above.
(b) Refer to Table 4.4 for Type I data, and Table 4.5 for Type 2 data.

For Type I censored data. Table 4.4 is entered at p = t, for all n. For 
Type 2 censoring. Table 4.5 is entered at p = r/n, with appropriate n. Hq 
is rejected at significance level a  if the statistic is greater than the point 
given for level a .

The as5miptotlc points in Tables 4.4 and 4 . 5 are those given by Pettitt 
and Stephens (1976), with some additions. Points for finite n have been ob
tained by extensive Monte Carlo studies, which showed that points for Type I 
censoring converge so rapidly to the as5onptotic distribution that a new table 
is not needed. Tables for are probably not so valuable for censored data 
and have been omitted. More extensive tables, including tables for U^, are 
in Stephens (1986).

Smith and Baln (1976) have suggested another version of for use with 
Type 2 right-censored data from the uniform distribution; the statistic, say

, is z f  Л  -  (2i -  l)/2n }^  + l/(12n). w ill have the same
2 r ,n  i= l^  (i) ' 2 2 r ,n
asymptotic distribution as and Smith and Bain (1976) have given
Monte Carlo points for finite n.’ Some comparisons of statistics for censored
data. Including ,

r  , n oW2 .2 r ,n
and ^A^ were made by Michael and 

2 r ,n
Schucany (1979). For the alternatives and censoring factors which were
studied, there were noticeable differences in the sensitivity of ^jad

2 2 2 r ,n
2^г,п* general, the statistic 2Ar,n  displayed the best power. Examples 
of calculations of Cramár-von Mises statistics for censored data are given 
in Section 11..3.1.

4 .7 .3 .1  Left-Censored Data

For left-censored data, the values zTjx = I 1 = 1, . . . ,  r  may be 
calculated from the r  largest observations and the set Z *  used in tests for 
right-censored data. In Type I censoring, the left-censoring value t converts 
to t* = I -  t, to be used as the right-censoring point with the Z * values.
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TABLE 4.5 Upper Tail Percentage Points for 2^ ^  n and 2 ^ x  n 
Type 2 Right-Censored Data from the Uniform U (0 ,1) Distribution 
(Section 4 .7 .3 ). The table should be entered at n and at p = r/n.

Significance level a

Statistic n 0.50 0.25 0.15 0.10 0.05 0.025 0.01

2 r ,n

P = 0.2

P = 0.4

P = 0.6

P = 0.8

P = 0.9

20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100

0.006
0.008
0.009
0.009
0.009
0.010

0.022
0.029
0.033
0.034
0.035
0.035
0.037

0.053
0.062
0.067
0.068
0.068
0.069
0.070

0.085
0.094
0.099
0.100
0.101
0.101
0.103

0.094
0.109
0.112
0.113
0.114
0.114
0.115

0.018
0.018
0.020
0.021
0.022
0.025

0.056
0.062
0.067
0.070
0.071
0.072
0.076

0.107
0.122
0.128
0.131
0.132
0.133
0.136

0.158
0.172
0.180
0.183
0.184
0.185
0.188

0.183
0.194
0.199
0.201
0.202
0.202
0.204

0.038
0.032
0.031
0.031
0.031
0.031

0.101
0.095
0.100
0.102
0.103
0.103
0.105

0.159
0.172
0.180
0.184
0.186
0.187
0.192

0.217
0.235
0.247
0.251
0.253
0.254
0.259

0.246
0.263
0.271
0.273
0.274
0.275
0.278

0.058
0.046
0.044
0.043
0.043
0.041

0.144
0.132
0.128
0.130
0.132
0.132
0.135

0.205
0.216
0.226
0.231
0.233
0.235
0.241

0.266
0.289
0.303
0.308
0.311
0.313
0.320

0.301
0.322
0.330
0.333
0.335
0.336
0.341

0.099
0.084
0.074
0.069
0.066
0.057

0.229
0.209
0.191
0.189
0.187
0.187
0.184

0.297
0.302
0.306
0.313
0.316
0.318
0.327

0.354
0.389
0.401
0.410
0.415
0.418
0.430

0.410
0.431
0.437
0.442
0.445
0.447
0.455

0.152
0.128
0.107
0.097
0.092
0.074

0.313
0.297
0.267
0.256
0.251
0.248
0.236

0.408
0.408
0.398
0.404
0.407
0.409
0.417

0.453
0.489
0.508
0.520
0.526
0.529
0.544

0.502
0.536
0.546
0.553
0.558
0.561
0.573

0.243
0.198
0.154
0.136
0.127
0.094

0.458
0.419
0.381
0.354
0.342
0.335
0.307

0.547
0.538
0.522
0.528
0.531
0.532
0.539

0.593
0.623
0.651
0.667
0.675
0.680
0.700

0.645
0.675
0.701
0.713
0.718
0.722
0.735

(continued)
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TABLE 4.5 (continued)

Significance level a

Statistic n 0.50 0.25 0.15 0.10 0.05 0.025 0.01

2 r ,n

P = 0.95

P = 1.0

/ r , n  
P = 0.2

P = 0.4

P = 0.6

10 0.103 0.198 0.266 0.324 0.430 0.534 0.676
20 0.115 0.201 0.275 0.322 0.444 0.551 0.692
40 0.115 0.205 0.280 0.329 0.448 0.557 0.715
60 0.116 0.207 0.280 0.338 0.451 0.562 0.724
80 0.117 0.208 0.281 0.340 0.453 0.566 0.729

100 0.117 0.208 0.282 0.341 0.454 0.569 0.735
OO 0.118 0.208 0.283 0.346 0.460 0.579 0.742

10 0.117 0.212 0.288 0.349 0.456 0.564 0.709
20 0.116 0.212 0.288 0.350 0.459 0.572 0.724
40 0.115 0.211 0.288 0.350 0.461 0.576 0.731

100 0.115 0.211 0.288 0.351 0.462 0.578 0.736

OO 0.119 0.209 0.284 0.347 0.461 0.581 0.743
20 0.107 0.218 0.337 0.435 0.626 0.887 1.278
40 0.119 0.235 0.337 0.430 0.607 0.804 1.111
60 0.124 0.241 0.341 0.432 0.601 0.785 1.059
80 0.127 0.243 0.344 0.433 0.598 0.775 1.034

100 0.128 0.245 0.345 0.434 0.596 0.769 1.019
OO 0.135 0.252 0.351 0.436 0.588 0.747 0.962

10 0.214 0.431 0.627 0.803 1.127 1.483 2.080
20 0.241 0.462 0.653 0.824 1.133 1.513 2.011
40 0.261 0.487 0.681 0.843 1.138 1.460 1.903
60 0.265 0.493 0.686 0.848 1.142 1.458 1.892
80 0.268 0.496 0.688 0.850 1.144 1.457 1.887

100 0.269 0.497 0.689 0.851 1.145 1.457 1.884
OO 0.275 0.504 0.695 0.857 1.150 1.455 1.872

10 0.354 0.673 0.944 1.174 1.577 2.055 2.774
20 0.390 0.713 0.984 1.207 1.650 2.098 2.688
40 0.408 0.730 1.001 1.229 1.635 2.071 2.671
60 0.413 0.739 1.011 1.239 1.649 2.084 2.683
80 0.416 0.743 1.017 1.244 1.655 2.091 2.689

100 0.418 0.746 1.020 1.248 1.659 2.095 2.693
OO 0.425 0.756 1.033 1.260 1.676 2.112 2.707

(continued)



118 STEPHENS

TABLE 4. 5 (continued)

Statistic n

Significance level a

0.50 0.25 0.15 0.10 0.05 0.025 0.01

10 0.503 0.913 1.237 1.498 2.021 2.587 3.254
2 r ,n

20 0.547 0.952 1.280 1.558 2.068 2.570 3.420
40 0.568 0.983 1.321 1.583 2.088 2.574 3.270

P = 0.8 60 0.574 0.991 1.330 1.596 2.107 2.610 3.319
80 0.578 0.995 1.335 1.603 2.117 2.629 3.344

100 0.580 0.997 1.338 1.607 2.123 2.640 3.359
OO 0.588 1.007 1.350 1.623 2.146 2.684 3.419

10 0.639 1.089 1.435 1.721 2.281 2.867 3.614
20 0.656 1.109 1.457 1.765 2.295 2.858 3.650
40 0.666 1.124 1.478 1.778 2.315 2.860 3.628

p = 0.9 60 0.670 1.128 1.482 1.784 2.325 2.878 3.648
80 0.671 1.130 1.485 1.788 2.330 2.888 3.661

100 0.673 1.131 1.486 1.790 2.332 2.893 3.668
OO 0.676 1.136 1.492 1.798 2.344 2.915 3.698

10 0.707 1.170 1.525 1.842 2.390 2.961 3.745
20 0.710 1.177 1.533 1.853 2.406 2.965 3.750
40 0.715 1.184 1.543 1.860 2.416 2.968 3.743

P  = 0.95 60 0.717 1.186 1.545 1.263 2.421 2.977 3.753
80 0.718 1.187 1.546 1.865 2.423 2.982 3.760

100 0.719 1.188 1.547 1.866 2.424 2.984 3.763
CO 0.720 1.190 1.550 1.870 2.430 2.995 3.778

P  = 1.0 a lln 0.775 1.248 1.610 1.933 2.492 3.070 3. 880

4.7 .3 .2  Doubly-Censored Data

For doubly-censored data, suppose the values to are available,
S < r . Pettitt and Stephens (1976) defined Cram^r-von Mises statistics for 
such data; in terms of the definitions above, the Cram^r-von Mises statistic 
is, for Тзфе 2 censoring,

= i
2 s r ,n  2 r ,n  2 s,n

similar definitions hold for Type I censoring and for and . Pettltt and
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Stephens have given as5onptotic percentage points for S3rmmetric double- 
censoring, where limits of r/n and s/n are p and q, and p = I -  q.

4.7.4 Random Censoring

An important type of censoring is random censoring, which can occur as 
follows. Suppose a full random sample consists of the values Xj , , . . . ,
Xn from a distribution F°(x) and consider a set of censoring variables 
T j , Т з , . . . ,  Tjj drawn, independently of each other and of the X? -set, from  
a censoring distribution Fc(t). Whenever X^ > T j, x j  is replaced by T j, so 
that the available observations are the pairs (X^.ô^) defined as follows, for 
i = I ......... ....

X, = m in (X ? ,T ) and 0 = 1  if X =X? 
I M  i' i i l

= 0 if X  ̂= T j

Such data could occur when X?̂  are lifetimes of patients who enter a study of 
a certain disease; then if the patient dies from the disease before the study 
ends, is recorded, but if the patient is still alive at the end of the study, 
or withdraws, or dies of another cause, the time T j is recorded for which 
he or she was observed. The distribution function F(x) of X is then given by 
I -  F(X) = { I -  F° (X)} { I -  Fc(X)} .  There has been much recent Interest in 
testing fit in the presence of random censoring, o r in estimating and giving 
confidence Intervals for F° (x) or the related survival function S® (x) =
I -  F °(x ).

4 .7 .4 .1  Estimation of the Distribution Function

An estimate of F °(x ) for randomly censored data, analogous to the ED F, is 
the Kaplan-Meier (1958) estimate. This is formed from the pairs (Xj,ó¿) as 
follows. F irst place the pairs in ascending order of the Xj; if Xj = Xq ), de
fine Rx = j ( i * e . , the rank of Xj in the ordering). The estimate of F°(x) is 
then F® (X) defined by

0
F (X) = 0, 

C n '  '

n -  R

i:X^< X  f I

löi

Ь й 4 т  ■

X  < X
(I)

X  < X
(n)

= I X  > X
(n)

If no observation is censored, the estimate F^(x) becomes the EDF
C n

F^(X). 
n
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Clearly EDF statistics may be defined using c^nW  instead of Fjj{x), 
when random censoring is present. For Case 0, to test Hq : that F® (x) is a 
completely specified distribution, suppose = F°(X^^^), and let

be the Kaplan-Meier estimate of the distribution of Z : suppose also that

I (3)̂
The statistic corresponding to is then given by

2
W  = n E  -  {Z^.^ -  Z^._^^}, .  I

(Koziol and Green, 1976). If there is no censoring, becomes W^. In 
general, the null distribution of will depend on the censoring distribu
tion, although the tested distribution is completely specified. Koziol and 
Green (1976) have given asymptotic percentage points of for the specific 
censoring model with I -  F^(X) = { I -  F °(x )}^  , ß a positive constant, ß  must 
be estimated from the proportion censored.

Koziol (1980) and Cs6rg6 and Horvath (1981) have also given tests for 
Case 0 with random censoring. Gillespie and Fisher (1979) and Hall and 
Wellner (1980) have shown how confidence bands for F®(x) may be constructed 
from the Kaplan-Meler estimate; the Hall-Wellner bands reduce to those 
given by D (Section 4.5.4) when no censoring is present. The articles quoted 
give many references to related work.

4.7.4 .2  Replacement of Censored Values

Another possible technique for randomly censored data (Case 0) is to make 
the Probability Integral Transformation on the observations above and 
then to replace those values which come from the T j by new ones so that, 
on Ho, the final set of transformed values is U (0 ,1). Let Ho be, as before, 
that the x j  come from F®(x), completely specified. The PIT is applied using 
F®(x), on the values x j  and T^; then let Ui = F °(X j), and let ti = F^(Ti).

Suppose Ft(t) is the distribution of the ti, and let G^(t) = F^(s)ds. Then

replace ti by Ui given.by Gt(Uf) = (I  -  tj) Ft(ti) + Gt(ti); it may be shown 
that the resulting combined set consisting of the values U and U * is distrib
uted, on Ho, as U (0 ,1). Then any of the many tests for Case 0 above may be 
applied to the combined set. Here the censoring distribution of t must be 
known to make the transformation; however, it may be possible to replace 
Fi(t) and Gi(t) by the EDF of the t-values and its integral (Stephens and 
Wagner, 1986). Other methods of analyzing randomly censored data, using, 
for example, probability plots, are given in Chapter 11.
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4.7 .5  Renyl Statistics

Renyi (1953) discussed a number of statistics based on the difference between 
Fji(x) and F(X), or on the ratio of F^(X) to F(x) over a restricted range. These 
include

R  = sup {F  (X) -  F(X)}
a< Fn(X)

R = sup
a<Fn(x)

F^(X) -  F(X)  ̂

F(X) I

R - = sup
a< F (x )<b

IFJx) -F(X)I

F W

R = sup { F  (X) -  F (X )}
^ F (x )<b  ”

F^(X)

« 5  = 7 - i w

F (X)

°  "F W

where P  is the interval 0 < F^(X) < r/n, with r  an Integer in the range 
I < r  < n. Birnbaum and Lientz (1969a,b) have given exact and asymptotic 
theory for some of these statistics for Case 0, and have produced tables of 
percentage points for R j , R2 , and R^ ; they also gave examples of the use of 
the statistics, particularly in giving confidence limits for F(x) over a re 
stricted range. Niederhausen (1981) has given tables of points for variance-  
weighted Kolmogorov-Smimov D, that is, R3 above but with denominator 
[F(X) { I -  F (x ) } ]  Instead of F(x) (see Section 4 .5 .6 ), and for the analogues 
of D"*” and D” . Other statistics of Renyi type, or closely related, have been 
discussed by a number of authors but, despite the potential applications for 
censored data, they have not been much developed for practical use.

4 . 7 .6  Transformation to Complete Samples

Before leaving the subject of censored data, we point out that, for Case O in 
particular, several techniques are available to transform a censored sample 
of uniforms to a complete sample of uniforms. Then Case O tests for uniform
ity, for complete samples, or any of the methods of Chapter 8 may be used 
to test Hq . These methods can even be applied when there are blocks of 
missing observations. This is essentially a procedure which does not employ
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statistics specially adapted for censored data, and it is discussed more fully 
in Section 11. 3. 3.

4.8 EDF TESTS FOR THE NORMAL DISTRIBUTION 
WITH UNKNOWN PARAMETERS

We now turn to EDF tests for distributions with one or more parameters 
unknown, beginning with the normal distribution.

4.8.1 Tests for Normality, Cases I, 2, and 3 

The null hypothesis is

H^: a random sample . . . ,  X^ comes from F(x, 0 ) ,  the normal dis
tribution N(Ai,cr^), with one or both of в =  (Ц,(т^) unknown

Following Stephens (1974b, 1976a), three cases are distinguished accord
ing to which parameter or parameters are unknown.

Case I: The variance cr  ̂ is known and ß  is unknown, estimated by X, the 
sample mean.

Case 2: The mean ß  is known and is unknown, estimated by 2|(Xj -^ )V n  
(= s? , say).

Case 3: Both (i and are unkno^vn, and are estimated by X and 
=X i(X i - X )V (n  -  I ) .

TABLE 4 . 6 Upper-Tail As3rmptotic Percentage Points for Tests 
for Normality with ß  Unknown (Section 4.8.1, Case I) or  
CT̂  Unknown (Section 4 .8 .1 , Case 2)

Statistic

Signiflcancelevel a

.25 .15 .10 .05 .025 .01 .005 .0025

W^ Case I .094 .117 .134 .165 .197 .238 .270 .302

W^ Case 2 .190 .263 .327 .442 .562 .725 .851 .978

U^ Case I .088 .110 .127 .157 .187 .228 .259 .291

U^ Case 2 .085 .105 .122 .151 .180 .221 .252 .284

A^ Case I .644 .782 .894 1.087 1.285 1.551 1.756 1.964

A^ Case 2 1.072 1.430 1.743 2.308 2.898 3.702 4.324 4.954

Adapted from Stephens (1974b), with permission of the American Statistical 
Association.



TABLE 4 .7 Modifications and Percentage Points for a Test for Normality with /л and <т̂ Unknown 
(Section 4.8.1, Case 3)

Statistic

Significance level a

Modified statistic .50 .25 . 15 . 10 .05 .025 .01 .005

H
CA
H
CO
W
>
CO
W
Ö

i
Ö

H
>
ä

d
O
CO

Upper tail

D D(^Гn -  0.01 + О.вЗ/'Л) - 0.775 0.819 0.895 0.995 1.035

V V(NÍñ + 0.05 + 0.82/nTii) - 1.320 1.386 1.489 1.585 1.693

W2 (1.0 + 0.5/n) .051 .074 .091 .104 .126 .148 .179 .201

U* U^(1.0 + 0.5/n) .048 .070 .085 .096 .117 . 136 . 164 .183

A* A*(1.0 + 0.75/n+ 2.25/n*) .341 .470 .561 .631 .752 .873 1.035 1.159

Lower tail

W2 W *(1.0 + 0.5/n) .051 .036 .029 .026 .022 .019 .017

u* (1.0 + 0.5/n) .048 .033 .027 .025 .021 .018 .016

A^(1.0 + 0.75/n+ 2.25/n*) .341 .249 .226 .188 .160 .139 .119

Adapted, with additions, from Table 54 of Pearson and Hartley (1972) and from Stephens (1974b), with permission 
of the Biometrika Trustees and of the American Statistical Association.

CO
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Of these three cases. Case 3 is the most Important in most practical 
situations. For the three cases, the steps in making the substitution 
Z(i) = F (X (y ; 0 ) are:

(a) Calculate w^, for i = I, • . . ,  n, from  

Wf = (X^.j -X)/(T (Case I)

Wi = (X^i  ̂ -  ß ) / s ^ (Case 2)

Wi = (X .̂  ̂ -  X )/s (Case 3)

(b)

(C)
(à)

Calculate Z ( i )  = Ф (W i ) (I = I , . . .  ,n ), where Ф (х ) denotes the cumulative 
probability of a standard normal distribution N (0 ,1) to the value x, 
found from tables or computer routines.
Calculate the test statistics from the formulas (4. 2 ).
For Cases I or 2, use Table 4.6. For Case 3, use Table 4.7 and calcu
late the modified statistic. If the value of the statistic used, or, in 
Case 3, its modified value, exceeds the appropriate percentage point at 
level O', Ho is rejected with significance level a .

The percentage points given for statistics , , and are those of
their asymptotic distributions, and can be found theoretically. The points 
for D and V  (Case 3) are the asymptotic points of n/п times the statistic; 
these have so far not been found theoretically (but see Nesenko and 
Tjurln, 1978) and those given have been obtained by extrapolation of points 
for finite n obtained by Monte Carlo studies. The modifications for all the 
statistics were calculated from points for finite n obtained by Monte Carlo 
methods. The tables now given are extended and revised from previous tables, 
for example, those given in Stephens (1974b), quoted also in Pearson and 
Hartley (1972). Percentage points for W^, U^, and were calculated by 
Stephens (1971, 1974b, 1976a), by Durbin, Knott, and Taylor (1975), and by 
Martynov (1976); Monte Carlo studies for D, Case 3, were given by van Soest 
(1967), by Lilliefors (1967), and by Stephens (1974b); for D, Cases I and 2, 
similar studies have been made by van Tilmann-Deutler, Griesenbrock, and 
Schwensfeier (1975), for V, Case 3, by Louter and Koerts (1970), and for W^, 
Case 3, by van Soest (1967). Asymptotic results were also given by Wood 
(1978) and by Nesenko and Tjurin (1978).

No modifications have been calculated for W^, U^, and A^, Cases I  and 2. 
The percentage points for finite n converge rapidly to the asymptotic points, 
so that the points given could be used with good accuracy for n > 20. For 
other references see Durbin (1973), Stephens (1974b), and Neuhaus (1979).



TESTS BASED ON EDF STATISTICS 125

E 4 .8 .1 Example

We return to the data on weights of chickens given in Table 4 . 1, and now 
suppose that the tests is for

Ho : the sample is from a normal distribution but with mean and variance 
unknown

The situation is therefore Case 3, and the appropriate estimates for ц  and 
are given by x = 209.6, and s^ = 939.25. The transformations give the val
ues in column Z 2 of Table 4.1, and Figure 4.3 shows their ED F . Equations
(4.2) give for the test statistics the values: D^ = 0.089, D~ = 0.104, D = 
0.104, V = 0.192, = 0.034, = 0.034, A^ =0.214. Themodifiedvalues
are D* = 0.483, V * = 0.906, W * = 0.035, U* = 0.034, A * = 0.223. Itcan be  
seen from Table 4.7, using Case 3 percentage points, that these are not 
nearly significant at the 15% level, so that at this level the sample would not 
be rejected as coming from a normal population.

FIGURE 4.3 E D F o fZ 2 -
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Tables 4 . 8 and 4 . 9 can be used to find the p-level of a test statistic in an 
EDF test for normality (Case 3). Table 4.8 Is adapted from Pettltt (1977a) 
and gives formulas to give the percentage point of , for a sample of size n, 
corresponding to a given q-value. The value a for which P(A^ < a) = q is 
given by a = a ^ i l  + Ъ ^ / п  + bj/n^), where bo , b^, and aoo are given in the 
table against the value of q. Table 4.9 gives formulas for log p in the upper 
tail, or log q in the lower tail, for Case 3 tests and for modified values of 

, , A ^ . They are more accurate in the upper tall (where the modifica
tions of Table 4 . 7 are more accurate) but also give good approximations in the 
lower tail; these are useful for combining several test results (Section 4.18).

4.8.2 Significance Levels for Tests of Normality (Case 3)

TABLE 4 . 8 Constants for Calculating the Significance Level 
of a Value of A^ in a Test for Normality with 
Parameters Unknown (Case 3, Section 4.8.2)

bo bi
Asymptotic 

percentage point a «

.05 -.512 2.10 .1674

.10 -.552 1.25 .1938

.15 -.608 1.07 .2147

.20 -.643 .93 .2333

.25 -.707 1.03 .2509

.30 -.735 1.02 .2681

.35 -.772 1.04 .2853

.40 -.770 .90 .3030

.45 -.778 .80 .3213

.50 -.779 .67 .3405

.55 -.803 .70 .3612

.60 -.818 .58 .3836

.65 -.818 .42 .4085

.70 -.801 .12 .4367

.75 -.800 -.09 .4695

.80 -.756 -.39 .5091

.85 -.749 -.59 .5597

.90 -.750 -.80 .6305

.95 -.795 -.89 .7514

.975 -.881 -.94 .8728

.99 -1.013 -.93 1.0348

.995 -1.063 -1.34 1.1578

Adapted from Pettitt (1977a), with permission of the author 
and of the Royal Statistical Society.



Statistic

TABLE 4.9 Formulas for Significance Levels, Tests for Normality with Parameters Unknown (Case 3, Section 4.8.2)

, Case 3 , Case 3 , Case 3

Z < Zi log q =  -13.953 + 775.5z -  12542.eiz^ log q = -13.642 + 766.31z -  12432.74z^ log q = -13.436 + 101.14z -  223.73z^

Zj 0.0275 0.0262 0.200

Z i < z < Z 2 Io g q =  -5.903 + 179.546z-1515.29z^ Io g q =  -6.3328+214.57z-2022.28z2 Io g q =  -8.318 + 42.796z-5 9 .938z^

Z2 0.051 0.048 0.340

Z2 < Z < Z3 Io g p =  0.886 -  31.62z + 10.897z^ Io g p =  0.8510 -  32.006z -  3.45z^ Io g p =  0.9177 -  4.279z -  1.38z^

Z3 0.092 0.094 0.600

z > Z 3 Io g p =  1.111 -  34.242z + 12.832z2 Io g p =  1.325 -  38.918z + 16.45z2 Io g p =  1.2937 -  5 .709z + 0.0186z2

Suppose Z is a modified value of W^, or A^ (see Table 4.7). For a given z, find the interval in which z lies. The formula 
gives the value of log q (q = lower tail significance level) or log p (p = upper tail significance level).
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E 4.8.2 Example

Suppose, for n = 20, were 0.435. Reference to Table 4.8 suggests a 
q-level near 0.70. The percentage point for n = 20, q = 0.70 is given approxi
mately by Z = 0.4367(1 -  .801/20 + .12/400) = .419. Similar calculations 
give the percentage point for n = 20, q = 0.75 tobe z «  0.4506. Interpolation 
between these values gives q for = 0.435 to be about 0.725. To use 
Table 4.9 we first calculate modified A^ (from Table 4.7) to be 0.454; then 
Table 4.9 gives log p «  0.9177 -  4.279(.454) -  1 . 38 ( . 454)^ = -1.309; then 
P «  0.270, and q = .730.

4.8.3 Related Tests for Normality

Green and Hegazy (1976) have shown that slight modifications of the basic 
EDF statistics can improve power in tests for normality against selected 
alternatives. Hegazy and Green (1975) have discussed tests based on values 
Vi = {(X (i ) -  X )/ s } -  mi, where mi Is the expected value of the i-th order 
statistic of a sample of size n from N (0 ,1).

4.8.4 Tests for Normality with Censored Data

Pettitt (1976) has given percentage points for modified versions of W^, U^, 
and A ^, for use in tests of normality with singly- or doubly-censored data. 
The parameters and o* can be estimated by maximum likelihood or by esti
mates given by Gupta (1952). Maximum likelihood estimates are complicated 
to calculate and percentage points of the test statistics for finite n appear to 
converge more slowly to the asymptotic points when these estimates are 
used, so Gupta^s estimates are suggested. These are linear combinations of

the available order statistics, for example, ß *  =

a *  = n < 10 Gupta gives coefficients c  ̂and b  ̂ (there called

ß i and ) for the most efficient estimates. For n > 10, which would be the 
situation most needed in practice, Gupta gives the easily calculated coeffi
cients

 ̂ m(m^ -  m)
and

m. -  m
I

^ l= I ^^i "

where m^ is the expected value of the i-th order statistic of a sample of size

n from N (0 ,1) and where m = m^/r. Values of m  ̂are tabulated or can

be well approximated (see Section 5.7.2), and the estimates and o *  have 
been shown to be asymptotically efficient (A ll and Chan, 1964). These esti
mates are the same as those obtained by least squares when is regressed
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TABLE 4.10 Upper Tall Percentage Points for Statistics and A^ for i 
Test for Normality (Parameters Unknown) with Complete or Type 2 
Right-Censored Data (Section 4 .8 .4 ). p = r/n is the censoring ratio.

Significance level ol

Statistic n 0.5 0.25 0.15 0.10 0.05 0.025 0.01

W2

P  = 0.2

P  = 0.4

P  = 0.6

P  = 0.8

P  = 0.9

20
40
60
80

100
CO

10
20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100

0.001
0.002
0.0020.001
0.001
0.000

0.007
0.009
0.009
0.010
0.010
0.010
0.009

0.017
0.019
0.0200.0200.0210.021
0.025

0.030
0.032
0.033
0.033
0.034
0.035
0.039

0.037
0.039
0.040
0.040
0.041
0.042
0.045

0.002
0.004
0.004
0.004
0.004
0.004

0.011
0.014
0.015
0.015
0.016
0.016
0.019

0.026
0.029
0.031
0.031
0.032
0.032
0.032

0.044
0.046
0.049
0.049
0.050
0.050
0.051

0.054
0.056
0.058
0.058
0.059
0.060
0.067

0.004
0.006
0.006
0.006
0.006
0.006

0.014
0.019
0.0200.0210.0210.0210.021
0.033
0.037
0.040
0.040
0.040
0.040
0.044

0.054
0.057
0.060
0.060
0.061
0.062
0.069

0.066
0.069
0.072
0.072
0.073
0.074
0.082

0.006
0.008
0.008
0.008
0.008
0.008

0.017
0.024
0.026
0.026
0.026
0.026
0.026

0.040
0.044
0.047
0.047
0.048
0.048
0.052

0.062
0.067
0.070
0.070
0.071
0.072
0.080

0.076
0.079
0.082
0.082
0.084
0.085
0.094

0.010
0.013
0.014
0.013
0.013
0.009

0.028
0.037
0.038
0.036
0.036
0.035
0.034

0.054
0.060
0.061
0.060
0.061
0.061
0.064

0.078
0.083
0.084
0.086
0.087
0.089
0.098

0.093
0.097
0.0990.100
0.102
0.103
0.114

0.016
0.0210.0210.021
0.020
0.017

0.041
0.055
0.057
0.052
0.049
0.047
0.038

0.075
0.080
0.077
0.077
0.077
0.076
0.074

0.094
0.1000.101
0.103
0.105
0.106
0.1140.110
0.113
0.116
0.1180.120
0.122
0.135

0.024
0.041
0.039
0.035
0.032
0.020

0.057
0.090
0.089
0.077
0.073
0.071
0.066

0.109
0.113
0.106
0.105
0.1030.101
0.092

0.115
0.122
0.124
0.125
0.127
0.129
0.140

0.137
0.137
0.142
0.141
0.144
0.146
0.163

(continued)
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TABLE 4.10 (continued)

Significance level a

Statistic 0.5 0.25 0.15 0.10 0.05 0.025 0.01

W2

P  = 0.95

P  = 1.0

10
20
40
60
80

100
OO

10
20
40
60
80

100

0.042
0.043
0.044
0.044
0.045
0.045
0.049

0.049
0.049
0.050
0.050
0.050
0.050
0.051

0.061
0.062
0.064
0.064
0.065
0.066
0.072

0.070
0.071
0.073
0.073
0.073
0.073
0.074

0.074
0.076
0.078
0.078
0.079
0.080
0.087

0.086
0.087
0.088
0.088
0.089
0.089
0.091

0.084
0.087
0.089
0.089
0.090
0.091
0.099

0.0980.1000.1010.101
0.101
0.102
0.104

0.103
0.106
0.108
0.109
0.1100.1120.120
0.119
0.121
0.122
0.123
0.124
0.125
0.126

0.122
0.124
0.126
0.128
0.130
0.132
0.142

0.141
0.142
0.141
0.144
0.146
0.146
0.148

0.145
0.147
0.154
0.152
0.154
0.156
0.172

0.167
0.171
0.169
0.171
0.173
0.174
0.179

A2

P  = 0.2

P  = 0.4

P  = 0 .6

20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100

0.015
0.028
0.035
0.036
0.036
0.030

0.063
0.072
0.078
0.079
0.082
0.085
0.106

0.111
0.122
0.130
0.132
0.134
0.136
0.151

0.043
0.053
0.053
0.056
0.059
0.077

0.090
0.107
0.117
0.119
0.121
0.123
0.134

0.158
0.178
0.191
0.193
0.196
0.198
0.212

0.054
0.067
0.069
0.073
0.075
0.094

0.108
0.135
0.150
0.148
0.153
0.157
0.190

0.198
0.222
0.238
0.239
0.241
0.244
0.261

0.061
0.079
0.084
0.087
0.089
0.0990.121
0.162
0.177
0.174
0.178
0.182
0.215

0.233
0.259
0.278
0.275
0.278
0.280
0.300

0.0920.112
0.114
0.116
0.119
0.133

0.172
0.220
0.236
0.228
0.229
0.231
0.250

0.304
0.339
0.348
0.348
0.350
0.351
0.359

0.131
0.158
0.160
0.159
0.158
0.149

0.236
0.297
0.316
0.299
0.292
0.288
0.279

0.405
0.437
0.430
0.430
0.429
0.429
0.426

0.182
0.253
0.246
0.236
0.228
0.185

0.319
0.439
0.433
0.410
0.395
0.385
0.340

0.592
0.607
0.570
0.557
0.548
0.541
0.512

(continued)
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TABLE 4.10 (continued)

Significance level a

Statistic n 0.50 0.25 0.15 0.10 0.05 0.025 0.01

A^

P  = 0.8

P  = 0.9

P  = 0.95

10
20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100

P  = 1.0

10
20
40
60
80

100

0.172
0.185
0.197
0.197
0.200
0.202
0.220

0.214
0.229
0.242
0.243
0.245
0.248
0.265

0.243
0.257
0.273
0.272
0.276
0.279
0.301

0.309
0..323
0.330
0.331
0.333
0.334
0.341

0.246
0.267
0.282
0.284
0.288
0.291
0.311

0.303
0.326
0.342
0.343
0.348
0.352
0.380

0.344
0.366
0.382
0.383
0.388
0.392
0.420

0.425
0.446
0.456
0.458
0.460
0.461
0.470

0.302
.330

0.344
0.345
0.349
0.353
0.380

0.368
0.397
0.414
0.415
0.420
0.425
0.456

0.414
0.440
0.456
0.459
0.465
0.470
0.502

0.511
0.530
0.541
0.545
0.548
0.550
0.561

0.352
0.380
0.394
0.396
0.401
0.405
0.432

0.425
0.453
0.473
0.472
0.478
0.483
0.517

0.474
0.500
0.519
0.520
0.528
0.534
0.580

0.578
0.601
0.611
0.614
0.616
0.618
0.631

0.440
0.473
0.478
0.482
0.489
0.494
0.528

0.530
0.549
0.566
0.571
0.579
0.585
0.623

0.584
0.600
0.624
0.626
0.633
0.640
0.686

0.700
0.714
0.723
0.734
0.740
0.742
0.752

0.542
0.574
0.575
0.574
0.580
0.585
0.619

0.642
0.654
0.669
0.675
0.683
0.689
0.729

0.696
0.708
0.721
0.733
0.744
0.753
0.802

0.818
0.831
0.833
0.847
0.853
0.857
0.873

0.698
0.743
0.711
0.705
0.707
0.709
0.732

0.825
0.807
0.814
0.805
0.811
0.818
0.871

0.840
0.853
0.865
0.874
0.885
0.893
0.942

0.964
0.993
0.981
0.993
1.000
1.005
1.035

Some as3miptotic points taken from Pettitt (1976), with permission of the 
author and of the Biometrika Trustees.
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against mt, i = I , . . . ,  г, as, for example, in Section 5.7.3. The steps in 
making a test, with right-censored data, are then:

(a)
(b)
(C)
(d)

(e)

Calculate ß *  and cr*.
Find Wi = {X (i) -  ß * } / ( T * ,  i = I, . . . ,  r .
Calculate = <&(wi) as in Section 4.8.1, step (b), above.
For Type 2 censored data use the Z i, i = I , . . . ,  r ,  in the formulas of
Section 4.7.3 to obtain statistics , _A^ , and .

2 2  ̂  ̂ ^
Refer r  n 2-^r n ^  percentage points in Tables 4.10. The
table is entered at p = r/n and at n. The points for finite n were found
by extensive Monte Carlo sampling, using 10,000 samples for each
sample size n, and some as3Tnptotic points were taken from Pettitt
(1976). The test is easily adapted for left-censored data by changing
the sign of all values given and observing that the sample is now right-
censored. Tables for

2 r ,
are in Stephens (1986).

An example of these tests is given in Example E 11.4 .1.1.1; the same 
data set is used, with the correlation test described in Section 5.7, in 
E 11 .4 .1 .2 .1. For these data, the EDF statistics are the more sensitive.

It is possible to make a rough test for, say, large outliers, mixed with 
an otherwise normal sample, by first testing the whole sample and then the 
sample with suspect values removed. This procedure would be difficult to 
formalize since the two tests would be correlated, and also the censoring 
fraction will probably be chosen after observing the data.

For Type I right-censored data, test statistics ,W? ,U? andI t ,n ’ I t ,n ’ ““ '‘ Г Ч .п  
can be found as follows. Suppose the upper censoring value of X is t*, and 
let P = Ф {(t *  -  д*)/<^}* The procedure of Section 4.7.3 is followed, for 
Type I censored data; that is, set = p, consider the sample to be
now of size r  + 1, and use the formulas of that section to calculate the statis
tics. Tables can be constructed, by taking Monte Carlo samples from N (0 ,1), 
censoring at t = Ф"^(р), for given p, and calculating the test statistics just 
described; however, a correct test caimot be made, since for any given re a l-  
life sample, only p w ill be known, and not the correct p to enter the table.
As the points vary considerably with p, entering the table at an estimate of p 
could produce substantial errors. However, Table 4.10 can be used to give 
an approximate test, especially for large samples; the asymptotic points are 
the same for both types of censoring, and tables for Type I , produced as 
described above, have values close to those for Type 2 censored data. The 
same problem will arise for Type I censored data from other distributions.

4.8.5 Tests for Normality of Residuals in Regression

Mukantseva (1977), Pierce and Kopecky (1978), and Lo3mes (1980) have 
studied the asymptotic behavior of the EDF of the residuals when a regression
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model has been fitted, with the intention of testing these residuals for normal
ity. If the model, of any order, is correct, the residuals w ill be normal, 
with known mean equal to zero, but with unknown variance. At first sight 
this situation would appear to be Case 2 of Section 4.8.1 above, but this is 
not so, because the residuals are not Independent. However, the above 
authors have shown that if EDF statistics are calculated from the residuals 
their asymptotic distributions are the same as for Case 3 above.

As an example, consider simple linear regression using the model 
У1 = /̂ 0 + ^i, i = I, • • • , n, with = N(0,cr2). Let Д, and be the
usual least squares estimators, and let be the usual estimate of <r̂  ob
tained from the erro r sum of squares in the ANOVA table; if y  ̂= ^  + ß i X i ,

У1 "  ^  ^  = Z4 e f / ( n - 2). The studentized residuals are (Pierce
and Gray, 1982, with slight change in notation)

Wj = € j/ [a { l  -  1/n ( X , -x )2 /S  } * ]
'  i '  x x ‘ ‘

where Sxx = 2¾ (^i -  x) ̂ . Let = Ф(W(i)); for an approximate test that the 
are normal, EDF statistics are then calculated from (4.2) and referred  

to the asymptotic points for Case 3 in Table 4.7. The modifications given in 
the table w ill not be valid for this problem.

From Monte Carlo studies. Pierce and Gray (1982) concluded the asymp
totic points can be used with good accuracy for the simple linear regression  
model, for n as low as 20. White and MacDonald (1980) gave some results 
for multiple regression situations. It seems clear that the tests would be 
affected considerably if the experimental model were not correct—for ex
ample, if the correct regression model were a quadratic function, but only 
a linear fit was made; see also comments on the multiple regression situ
ation by White and MacDonald (1980), and in the discussion to that paper, and 
by Pierce and Gray (1982). Wood (1978b) has discussed asymptotic theory 
for EDF statistics obtained from residuals in an analysis-of-variance model. 
In residual analysis, of course, other questions are also of great importance, 
for example, systematic variation of the residuals. For further discussion 
see Anscombe and Tukey (1963) or textbooks such as Draper and Smith 
(1966) or Kleinbaum and Kupper (1978).

4.9 EDF TESTS FOR THE EXPONENTIAL DISTRIBUTION

4.9.1 Tests for Exponentlality, Cases I, 2, and 3

The exponential distribution, denoted by Exp (of,/?), is the distribution

F(x;a,/3) = I -  e x p {- (x  -  a ) / ß }  , x >  a ;  ß >  0

In this section we consider tests of
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HqS а random sample , Xj  ̂comes from distribution Exp { a ,  ß )

As for the test for normality, we can distinguish three cases:

Case I: the origin or location parameter a  is unknown, but ß is known;
Case 2: the scale parameter ß is unknown, but a  is known;
Case 3: both parameters are unknown.

4.9.2 Tests for Case I

The first method we shall describe for Case I uses a special property of the 
exponential distribution, as follows. Let = X^i) “ ^(1 )» ..., n;
on Ho , the will be a random sample from Exp (0,)3) (see Section 10.3.1, 
Result 2) and, since ß is known, a Case 0 test can be made using the n -  I 
values of .

Alternatively, o¿ may be estimated unbiasedly by a  = (Х^ц -  1/n); this 
estimate is derived from the maximum likelihood estimate X (i), and has 
variance diminishing as l/n^. Then Z (j) are found from Z(i) =
I -  exp[-(X (I) -  a ) / ß ] ,  i = I , • • • , n, and EDF statistics calculated from the 
Z(i) by formulas (4.2) will have their Case 0 distributions asymptotically so 
that the percentage points in Table 4 . 2 may be used for large samples. How
ever, in contrast to the previous test procedure, the modifications given 
there will not apply, and since the two procedures are likely to have very 
similar power properties, the first procedure is more practical for re la 
tively small samples.

4.9.3 Tests for Case 2

For this case (Case 2) suppose first that a  is known to be zero. The maximum 
likelihood estimate of ß  is given b y  ß  =  X  where X  is the sample mean.

The steps in testing Hq are as follows:

(a) Calculate Z^ ĵ = I -  e x p  (-Х (ц/Х ), i = I, . . . ,  n.
(b) Calculate the EDF statistics from (4. 2 ).
(c) Modify and compare with the percentage points given in Table 4.11, or 

alternatively obtain p-levels from Table 4.12.

If the known origin is a  =  a ^ ,  not zero, the substitution X^ = Xj -  a , 
i = I , . . . ,  n, can be made, and the X [  tested for Exp (0,/3) as just described. 
See Result I of Section 10.3.1.

The percentage points given are as5nnptotic points for the statistics , 
U^, and A^; see Stephens (1974b, 1976a). The asymptotic distribution of 
was earlier tabulated by van Soest (1969), and points for and have also 
been calculated by Durbin, Knott, and Taylor (1975). The modifications were 
based on Monte Carlo points for finite n; for D and V, these were extrapolated



TABLE 4.11 Modifications and Percentage Points for EDF Tests for Exponentiality, Case 2: Origin Known,
Scale Unknown (Section 4.9.3)

Statistic
T

Upper tail 

Modified form T *

Significance level Q t

.25 .20 .15 .10 .05 .025 .01 .005 .0025

D (D -  0.2/11)(-^1+ 0.26 + О.5/-Л1) .926 .995 1.094 1.184 1.298

V (V  -  0.2/n)(^/n + 0.24 + 0.35/-\/n) 1.445 1.527 1.655 1.774 1.910

W 2 W2(1.0 + 0.16/n) .116 .130 .148 .175 .222 .271 .338 .390 .442

U^(1.0 + 0.16/n) .090 .099 .112 .129 .159 .189 .230 .261 .293

A^ A^(1.0 + 0.6/n) .736 .816 .916 1.062 1.321 1.591 1.959 2.244 2.534

Lower tail
Significance level o l

.01 .025 .05 .10 .15 .20 .25 .50

W2 Asymptotic percentage points. .0192 .0233 .0276 .0338 .039 .044 .048 .074

.0172 .0207 .0243 .0293 .0339 .0373 .0409 .0601

.150 .178 .208 .249 .280 .312 .342 .502

Adapted from Table 54 of Pearson and Hartley (1972) and from Stephens (1974b), with permission of the Biometrika Trustees 
and of the American Statistical Association.



TABLE 4.12 Formulas for Significance Levels, Tests for Exponentiality, Case 2: Origin Known, Scale Unknown
(Section 4.9.3)^

S ta t is t ic

U 2 A *

Z < Z j lo g  q  =  -1 1 .3 3 4  +  4 5 9 .0 9 8 z  -  5652. Iz=' lo g  q  =  -1 1 .7 0 3  +  5 4 2 .5 z  -  7 5 7 4 .5 9 z * lo g  q  =  -1 2 .2 2 0 4  +  6 7 .4 5 9 z  -  H O . Sz^

Zl 0 .0 3 5 0 .0 2 9 0 .2 6 0

Z j < Z < Z 2 lo g  q  =  -5 .7 7 9  +  1 3 2 .8 9 z  -  8 6 6 .58z^ lo g  q  =  -6 .3 2 8 8  +  1 7 8 .1 z  -  1 3 9 9 .4 9 z * lo g  q  =  -6 .1 3 2 7  +  2 0 .2 1 8 z  -  18 .663z2

Zz 0 .0 7 4 0 .0 6 2 0 .5 1 0

Z 2 <  Z < Z3 I o g p  =  0 .5 8 6  -  1 7 .8 7 z  +  7 .4 1 7 z * lo g  P  =  0 .8 0 7 1  -  2 5 .166z +  8 .4 4 z * lo g  P  =  0 .9 2 0 9  -  3 .3 5 3 z  +  0 .3 0 0 z^

Z3 0 .1 6 0 0 .1 2 0 0 .9 5 0

Z > Z 3 lo g  P  =  0 .4 4 7  -  1 6 .5 9 2 z  +  4 .8 4 9 z * I o g p  =  0 .7 6 6 3  -  2 4 .3 5 9 z  +  4 .5 3 9 z * lo g  P  =  0 .7 3 1  -  3 .0 0 9 z  +  0 .1 5 z^

Suppose Z is a modified value of W^, U^, or (See Table 4.11). For a given z, find the interval in which z lies. The formula 
gives the value of log q (q = lower tail significance level) or log p (p = upper tall significance level).
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to obtain asymptotic values. Stephens (1974b) has given references to other 
Monte Carlo studies, the first of which, for D only, was given by Lilliefors 
(1969). Subsequently, Durbin (1975) has produced exact null distribution the
ory for D , D” , and D, and has given percentage points for n up to 100; see 
also Margolin and Maurer (1976) for work on these statistics. Table 4.11 is 
an extended and revised version of that given in Stephens (1974b) making use 
of later results where possible. Table 4.12 gives formulas for obtaining 
p-values or q-values of a given value z of a modified statistic.

E 4.9.3 Example

Proschan (1963, Table I) has given a number of samples of data, consisting 
of intervals between failures of air conditioning equipment in aircraft. We

TABLE 4.13 O rig lna lV a luesX  
in a Test for E^x)nentiali1y

X Zi^ z b

12 0.113 0.094
21 0.189 0.159
26 0.229 0.193
27 0.237 0.200
29 0.252 0.213
29 0.252 0.213
48 0.381 0.327
57 0.434 0.375
59 0.446 0.385
70 0.503 0.439
74 0.522 0.457

153 0.783 0.717
326 0.962 0.932
386 0.979 0.959
502 0.993 0.984

^Values Z^usingthe Probability 
Integral Transformation with в  
given equal to 0.01. 
bValues Z 2 using the transforma
tion with в estimated from the 
data, i .e . ,  .0083.
Taken from Proschan (1963), with 
permission of the author and of 
the American Statistical Associ
ation.
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illustrate the test for exponentiality by taking his aircraft numbered 7910, 
for which the 15 intervals are as listed in Table 4.13. In order to emphasize 
the contrast between Case 0 of Section 4 . 6 and the test with unknown param
eter ¢, we first test the null hypothesis of exponentiality with both parameters 
given: O' = 0, ß  =  100. Thus the null hypothesis is the data are a random 
sample from Exp (0,100).

The transformation Z j = I  -  exp(-X i/l00) gives Z -values listed as Z^ 
in Table 4.13; on Ho , Z^ w ill be U (0 ,1). The values give test statistics 
D"*" = 0.210, D~ = 0.161, D = 0.210, V  = 0.372, =0.133, =0.130,

= 1.055. The modified forms, using Table 4.2, are = 0.973, D“* = 
0.650, D * = 0.846, V* = 1.522, W * = 0.116, U* = 0.130, A * = 1.055. Statis
tics V * and U * are almost significant at the 15% level; the others are far 
from significant even at this level.

If ß is not known in the test for езфопепйаИ1у, the estimate is ß  =  X  =  
121.2. With O' = 0 and ß  =  121.2, the Probability Integral Transformation 
gives the values in column Z 2 of Table 4.13 and the test statistics modified 
as in Table 4.11 become: D* = 1 .122, V * = 1 .661, W * = 0.221, U * = 0.172, 
A * = 1.210. A ll the statistics are now significant at the 10% level, with D*, 
V *, U*, significant (and W * almost so) at the 5% level. Thus, given the free
dom to choose the parameter, it appears that the assumption of an езфопеп- 
tial parent population is suspect. The comparison with the previous test for 
Case 0 may appear paradoxical, since apparently in Case 0 one makes use 
of more information, and we shall return to this point in Section 4.16.

IVlany other tests for exponentiality with known origin are given in Chap
ter 10. In particular, two other test statistics based on the EDF (D and S*) 
are discussed in Section 10.8.1.

4 . 9.4 Tests for Case 3

Relatively few tests have been proposed to test for exponentiality with a  and ß  
unknown, probably because Result 2 of Section 10.3 .1 can be used to reduce 
the test to a test with o' = 0. However, this may not always be the best

TABLE 4.14 Modifications and Upper Tail Percentage Points for a Test for 
Exponentiality, Case 3: Origin and Scale Unknown (Section 4.9.4)

Statistic

Significance level

Modification . 25 .15 .10 .05 .025 .01

W^(l + 2.8/n-3/n^) .116 .148 .175 .222 .271 .338

U *(l + 2.3/n-3/n^) .090 .112 .129 .159 .189 .230

A^(l + 5 .4/n -ll/n2 ) .736 .916 1.062 1.321 1.591 1.959
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TABLE 4.15 Upper Tail Percentage Points for N/nD ,̂ N^nD-, n/iiD, N/nV, 
W^, U^, and A^, for a Test of Exponentiallty, Case 3. Origin and Scale 
Unknown (Section 4.9.4)

Upper tall significance level a

.25 .15 .10 .05 .025 .01
Statistic

5 .491 .569 .639 .743 .825 .917
10 .580 .674 .745 .851 .952 1.038
15 .610 .700 .768 .872 .978 1.077
20 .624 .716 .785 .894 .995 1.108
25 .635 .725 .799 .909 1.010 1.125
50 .660 .758 .832 .943 1.051 1.163

100 .682 .778 .853 .967 1.074 1.189
OO .723 .820 .886 .996 1.094 1.211

Statistic n/iiD "

5 .627 .705 .753 .821 .891 .955
10 .671 .761 .825 .916 .993 1.089
15 .688 .783 .842 .933 1.022 1.111
20 .696 .791 .855 .949 1.041 1.132

. 25 .702 .795 .860 .958 1.052 1.149
50 .710 .807 .874 .976 1.072 1.178

100 .717 .814 .879 .984 1.089 1.192
CO .723 .820 .886 .996 1.094 1.211

Statistic n/iiD

5 .683 .749 .793 .865 .921 .992
10 .753 .833 .889 .977 1.048 1.119
15 .771 .865 .912 1.002 1.079 1.163
20 .786 .872 .927 1.021 1.099 1.198
25 .792 .878 .936 1.033 1.115 1.215
50 .813 .879 .960 1.061 1.149 1.257

100 .824 .911 .972 1.072 1.171 1.278
OO .840 .927 .995 1.094 1.184 1.298

Statistic N/nV

5 1.098 1.186 1.234 1.314 1.400 1.494
10 1.194 1.294 1.363 1.461 1.556 1.662
15 1.225 1.325 1.392 1.504 1.596 1.701
20 1.245 1.346 1.419 1.536 1.635 1.769

(continued)
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TABLE 4.15 (continued)

n

Upper tail significance level a

.25 .15 .10 .05 .025 .01

Statistic n/iiV, continued

25 1.260 1.366 1.438 1.559 1.658 1.796
50 1.292 1.400 1.481 1.600 1.701 1.847

100 1.310 1.419 1.502 1.647 1.740 1.897
CO 1.334 1.445 1.527 1.655 1.774 1.910

Statistic

5 .083 .102 .117 .141 .166 .197
10 .097 .122 142 .176 .211 .259
15 .103 .130 .151 .188 .229 .281
20 .106 .133 .157 .195 .237 .293
25 .107 .135 .160 .199 .247 .301
50 .111 .141 .166 .209 .256 .319

100 .113 .144 .170 .215 .263 .328
OO .116 .148 .175 .222 .271 .338

Statistic

5 .068 .083 .093 .113 .131 .153
10 .075 .094 .108 .131 .155 .187
15 .080 .099 .114 .139 .165 .200
20 .082 .102 .117 .143 .170 .207
25 .083 .104 .119 .146 .173 .212
50 .087 .108 .124 .152 .180 .223

100 .089 .110 .126 .155 .184 .229
OO .090 .112 .129 .159 .189 .230

Statistic

5 .460 • 555 .621 .725 .848 .989
10 .545 .660 .747 .920 1.068 1.352
15 .575 .720 .816 1.009 1.198 1.495
20 .608 .757 .861 1.062 1.267 1.580
25 .625 .784 .890 1.097 1.317 1.635
50 .680 .838 .965 1.197 1.440 1.775

100 .710 .875 1.008 1.250 1.510 1.855
OO .736 .916 1.062 1.321 1.591 1.959



TESTS BASED ON EDF STATISTICS 141

procedure. In this section we give EDF tests for Case 3, using estimates for 
both a  and ß ,  sim ilar to other EDF tests. The null hypothesis is

the random sample . . . »  comes from the distribution 
Exp (a ,/3), with Of, ß  unknown

The test procedure is as follows:

(a) Calculate estimates ¡ í  = n(X -  X^^^)/(n -  I) and a  = X̂ ^̂  ̂ -  ß / n *

(b) Calculate W. = a ) / 0 ,  i = I, ..

(C ) Calculate = I -  exp (-W^), 1 = 1 , . . . ,  n.

(d) Find the EDF statistics from (4.2), modify W^, U^, and A^ using 
Table 4.14 and compare with the.asymptotic percentage points given; 
for D" ,̂ D” , D, and V use Table 4.15 without modification.

The estimate of a  is superefficient and so asymptotic theory is the same as 
for Case 2 in the previous section. For finite n, however, the distributions 
are different. The modifications for W^, U^, and A^ and the points for D" ,̂ 
D”, D, and V  were found from extensive Monte Carlo studies (Spinelli and 
Stephens, 1987). Van Soest (1969) has simulated the probability distribution 
for W^, for n = 10 and 20. For comments on power, see Section 10,14.

4 .9.5 Tests for Exponentiality with Censored Data

Suppose, for example, in a life-testing experiment, the observations are  
recorded only up to a fixed time t (Type I censoring) or until a fixed number 
r  out of n are observed (Type 2 censoring). In either case let X/pj be the 
largest order statistic, so that the sample is right-censored. The parameter 
^ ln  Exp (0,/3) is estimated by

Д = I X ĵ  ̂ + (n -  r)t I у  r  for Type I data

and by

A  test for exponentiallty Exp (0,/3) may then be made as follows:

(a) Calculate Z(i) = I -  exp { - X ^ i ) / ß ) ,  i = I , . . . ,  r .
(b) For Type 2 censoring, use the in the formulas of Section 4.7.3 to

calculate statistics , , and A^ .
2 r ,n  2 r ,n  2 r ,n
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TABLE 4.16 Upper Tall Percentage Points for Statistics and for a 
Test for E3qx>nentlality with Unknown Scale Parameter and Known Origin, 
for Complete or Right-Censored Data of Type 2 (Section 4.9.5)
P  = r/n is the censoring ratio.

Significance level a

Statistic n 0.50 0.25 0.15 O.lO 0.05 0.025 0.01

W2

P  = 0.2

P  = 0.4

P  = 0.6

P  = 0.8

P  = 0.9

20 0.005 0.009 0.012 0.014 0.018 0.021 0.025
40 0.005 0.008 0.011 0.013 0.017 0.020 0.025
60 0.005 0.008 0.011 0.013 0.017 0.020 0.026
80 0.005 0.008 0.011 0.013 0.017 0.020 0.026

100 0.005 0.008 0.011 0.013 0.017 0.020 0.026
CO 0.005 0.008 0.011 0.013 0.016 0.021 0.026

10 0.019 0.030 0.038 0.045 0.055 0.066 0.079
20 0.017 0.028 0.037 0.044 0.056 0.068 0.083
40 0.017 0.028 0.036 0.044 0.056 0.068 0.084
60 0.017 0.028 0.036 0.044 0.056 0.068 0.085
80 0.017 0.028 0.036 0.044 0.056 0.069 0.086

100 0.017 0.027 0.036 0.043 0.056 0.069 0.086
OO 0.017 0.027 0.036 0.043 0.056 0.070 0.087

10 0.036 0.056 0.072 0.084 0.104 0.124 0.149
20 0.035 0.055 0.071 0.084 0.106 0.131 0.161
40 0.035 0.055 0.072 0.085 0.109 0.132 0.161
60 0.034 0.056 0.072 0.085 0.109 0.133 0.164
80 0.034 0.056 0.072 0.085 0.109 0.134 0.166

100 0.034 0.056 0.072 0.086 0.109 0.134 0.167
OO 0.034 0.058 0.072 0.086 0.110 0.136 0.171

10 0.055 0.086 0.107 0.126 0.156 0.187 0.229
20 0.055 0.086 0.110 0.130 0.167 0.203 0.253
40 0.055 0.087 0.111 0.131 0.167 0.203 0.253
60 0.055 0.087 0.112 0.132 0.168 0.205 0.256
80 0.055 0.087 0.112 0.132 0.169 0.206 0.257

100 0.055 0.087 0.112 0.132 0.169 0.206 0.258
OO 0.055 0.087 0.113 0.133 0.170 0.209 0.261

10 0.065 0.100 0.126 0.147 0.182 0.219 0.265
20 0.065 0.102 0.132 0.155 0.194 0.238 0.289
40 0.064 0.102 0.129 0.152 0.193 0.229 0.290
60 0.064 0.101 0.130 0.153 0.195 0.234 0.294
80 0.065 0.101 0.131 0.154 0.196 0.236 0.297

100 0.065 0.101 0.131 0.155 0.196 0.238 0.298
OO 0.065 0.101 0.132 0.156 0.199 0.243 0.303

(continued)
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TABLE 4. 16 (continued)

Significance level a

Statistic n 0.50 0.25 0.15 0.10 0.05 0.025 0.01

W2

P  = 0.95

P  = 1.0

10
20
40
60
80

100
OO

10
20
40
60
80

100

0.070
0.070
0.069
0.069
0.069
0.070
0.070

0.075
0.073
0.074
0.074
0.074
0.074
0.074

0.1090.110
0.108
0.108
0.108
0.108
0.109

0.116
0.115
0.115
0.115
0.115
0.115
0.116

0.136
0.142
0.138
0.139
0.139
0.140
0.141

0.147
0.148
0.147
0.147
0.147
0.147
0.148

0.160
0.166
0.161
0.163
0.164
0.164
0.166

0.171
0.175
0.172
0.173
0.173
0.173
0.175

0.200
0.209
0.205
0.207
0.208
0.2090.212
0.2160.221
0.218
0.219
0.220
0.220
0.222

0.239
0.251
0.246
0.250
0.252
0.254
0.259

0.259
0.265
0.267
0.267
0.268
0.268
0.271

0.292
0.313
0.304
0.313
0.318
0.321
0.333

0.319
0.328
0.331
0.334
0.336
0.337
0.338

A^

P  = 0.2

P  = 0.4

P  = 0.6

20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100

0.080
0.078
0.077
0.077
0.078
0.078

0.158
0.157
0.157
0.156
0.156
0.157
0.158

0.243
0.241
0.243
0.244
0.244
0.244
0.244

0.127
0.126
0.126
0.126
0.126
0.128

0.248
0.248
0.250
0.251
0.252
0.252
0.255

0.373
0.375
0.385
0.382
0.382
0.383
0.390

0.161
0.161
0.164
0.164
0.163
0.161

0.312
0.319
0.322
0.324
0.326
0.326
0.330

0.474
0.482
0.492
0.491
0.491
0.492
0.494

0.188
0.189
0.192
0.194
0.195
0.200

0.363
0.379
0.382
0.382
0.385
0.388
0.407

0.549
0.568
0.580
0.580
0.580
0.581
0.584

0.232
0.241
0.244
0.249
0.252
0.274

0.445
0.477
0.485
0.493
0.496
0.497
0.501

0.684
0.721
0.733
0.730
0.731
0.733
0.746

0.271
0.292
0.300
0.306
0.311
0.336

0.528
0.582
0.584
0.605
0.611
0.614
0.614

0.835
0.875
0.892
0.892
0.894
0.897
0.914

0.325
0.355
0.373
0.385
0.394
0.438

0.671
0.719
0.736
0.753
0.762
0.767
0.788

1.058
1.104
1.126
1.126
1.128
1.130
1.145

(continued)
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TABLE 4.16 (continued)

Significance level a

Statistic n 0.50 0.25 0.15 0.10 0.05 0.025 0.01

P = 0.8

P = 0.9

P = 0.95

P = 1.0

10
20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100
OO

10
20
40
60
80

100

0.337
0.337
0.344
0.341
0.341
0.341
0.345

0.391
0.396
0.399
0.398
0.398
0.399
0.407

0.433
0.431
0.437
0.434
0.434
0.435
0.444

0.485
0.488
0.494
0.491
0.491
0.492
0.496

0.510
0.518
0.529
0.527
0.530
0.532
0.549

0.580
0.611
0.608
0.609
0.612
0.615
0.630

0.653
0.657
0.657
0.654
0.657
0.660
0.680

0.746
0.723
0.732
0.728
0.728
0.729
0.736

0.636
0.662
0.669
0.670
0.670
0.671
0.675

0.732
0.768
0.771
0.766
0.766
0.768
0.781

0.800
0.822
0.824
0.824
0.827
0.830
0.8500.886
0.904
0.907
0.905
0.906
0.907
0.916

0.740
0.773
0.782
0.782
0.783
0.785
0.793

0.852
0.894
0.893
0.897
0.900
0.902
0.914

0.928
0.959
0.958
0.959
0.962
0.965
0.983

1.017
1.052 
1.049
1.051
1.053
1.054 
1.062

0.929
0.979
0.985
0.989
0.991
0.993
1.003

1.059
1.117
1.117
1.127 
1.132
1.135 
1.149

1.176
1.205
1.1951.202
1.2081.212
1.232

1.278
1.315
1.299
1.303
1.306
1.308
1.321

1.130
1.195
1.186
1.207
1.214
1.218
1.222

1.289
1.360
1.330
1.367
1.380
1.386
1.394

1.422
1.466
1.432
1.447
1.456
1.462
1.490

1.524
1.570 
1.565
1.570 
1.574 
1.576 
1.591

1.434
1.512
1.465
1.516
1.529
1.533
1.521

1.584
1.706
1.633
1.699
1.720
1.728
1.729

1.738
1.811
1.779
1.803
1.812
1.817
1.830

1.894
1.924
1.933
1.964
1.971
1.973
1.959

Some asymptotic points taken, from Pettitt (1977b), with permission of the 
author and of the Biometrlka Trustees.
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2 2
(C ) Refer 2 ^г ,п  2-^r,n ^  percentage points given In Table 4.16.

Pettitt (1977b) gave asymptotic theory and points for this test: some of the 
points have been used in Table 4.16. Tables for 2^^ ^ are given by Stephens 
(1986). ’ 2

For a test with Type I censored data, the test statistic, say, 
can be found by setting p = = I -  exp (-t/Д), where t is the censoring
value and ß is found as above, and then using the formulas of Section 4.7.3, 
with sample size r  + I . For large samples, an approximate test may be 
made by referring the statistic to Table 4.16, with entries p = p and n, but 
for smaller samples, entering the table at an estimate of p instead of the 
true value can produce a considerable error in significance level; see the 
comments in Section 4.8.4 on tests for normality.

Another method of treating right-censored data is to use the N -transfor- 
mation of Chapter 10 (see Section 10.5.6). This converts a right-censored 
exponential sample to a complete exponential sample, and the above tests of 
exponentlality for complete samples, or others given in Chapter 10, may
then be used to test R0 •

4.10 EDF TESTS FOR THE EXTREME- 
VALUE DISTRIBUTION

One form of the extreme-value distribution is

F(X) = exp j^-exp I - ~ , - «  < X < OO (4.6)

where - « > <  a  <  «>, and ß  > 0 .
The distribution of X* = -X  gives a second form of the extreme-value 

distribution:

F (x ') = I -  exp I -е? ф (^ • - «  < x ' < (4.7)

(here Of’ = -a  above).
The first version (4.6) has a long tall to the right, and (4 . 7) has a long 

tall to the left.
In this section we discuss EDF tests of the null hypothesis

a random sample X^, . . . ,  X^ comes from distribution (4.6) 
with one or both of parameters of and ß unknown

Three test situations can again be distinguished (Stephens, 1977):
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Case I: ß  known, a  to be estimated.
Case 2: a  known, ß t o  h e  estimated.
Case 3: a ^ ß  both unknown, and to be estimated.

We suppose the parameters w ill be estimated by maximum likelihood; 
the estimates, for Case 3, are given by the equations (Johnson and Kotz 
(1970), p. 283):

ß  = Х.ХУп -  [2 .x . ехр(-Х ./Д )]/[2 . ехр(-Х./Д)]

and

a  = - ß  log [2 . exp(-X.//3)/n]

(4.8)

(4.9)

Equation (4.8) is solved iteratively for ß , and then (4.9) can be solved for a .  
In Case I ,  )3 is known; then o: is given by (4.9) with ß replacing Д. In Case 2,

TABLE 4.17 Modifications and Upper Tail Percentage Points for Statistics 
, , and for the Extreme-Value or Welbull Distributions

(Sections 4.10, 4.11)

Significance level a

Statistic Modification .25 .10 .05 .025 .01

Case I W=* (I  + 0.16/n) .116 .175 .222 .271 .338

Case 2 None .186 .320 .431 .547 .705

Case 3 w * ( i  + о .г/ 'Л ) .073 .102 .124 .146 .175

Case I U=* (I  + 0.16/n) .090 .129 .159 .189 .230

Case 2 U=*(l + O-lSZ-sTn) .086 .123 .152 .181 .220

Case 3 U=* (I  + 0 . 2 /^ Г а ) .070 .097 .117 .138 .165

A^

Case I (I  + 0.3/n) .736 1.062 1.321 1.591 1.959

Case 2 None 1.060 1.725 2.277 2.854 3.640

Case 3 A ^ (l + 0.2/Nfn) .474 .637 .757 .877 1.038

Taken from Stephens (1977), with permission of the Biometrika Trustees.
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TABLE 4.18 Upper Tail Percentage Points for Statistics \TúD * , n/5d - ,  
N/nD, and N/nV, for Tests for the Extreme-Value or Weibull Distributions 
(Sections 4 . 10, 4.11)

Statistic n

Significance level a

.10 .05 .025 .01

^УñD♦ 10 .872 .969 1.061 1.152
Case I 20 .878 .979 1.068 1.176

50 .882 .987 1.070 1.193
OO .886 .996 1.094 1.211

n/iiD* 10 .773 .883 .987 1.103
Case I 20 .810 .921 1.013 1.142

50 .840 .950 1.031 1.171
OO .886 .996 1.094 1.211

n/tiD 10 .934 1.026 1.113 1.206
Case I 20 .954 1.049 1.134 1.239

50 .970 1.067 1.148 1.263
OO .995 1.094 1.184 1.298

^ГñV 10 1.43 1.55 1.65 1.77
Case I 20 1.46 1.58 1.69 1.81

50 1.48 1.59 1.72 1.84
OO 1.53 1.65 1.77 1.91

10 .99 1.14 1.27 1.42
Case 2 20 1.00 1.15 1.28 1.43

50 1.01 1.17 1.29 1.44
OO 1.02 1.17 1.30 1.46

n/iiD - 10 1.01 1.16 1.28 1.41
Case 2 20 1.01 1.15 1.28 1.43

50 1.00 1.14 1.29 1.45
OO 1.02 i . l7 1.30 1.46

(continued)
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TABLE 4.18 (continued)

Statistic n

Significance level a

.10 .05 .025 .01

n/hD 10 1.14 1.27 1.39 1.52
Case 2 20 1.15 1.28 1.40 1.53

50 1.16 1.29 1.41 1.53
OO 1.16 1.29 1.42 1.53

N/nV 10 1.39 1.49 1.60 1.72
Case 2 20 1.42 1.54 1.64 1.76

50 1.45 1.56 1.67 1.79
OO 1.46 1.58 1.69 1.81

n/hD* 10 .685 .755 .842 .897
Case 3 20 .710 .780 .859 .926

50 .727 .796 .870 .940
OO .734 .808 .877 .957

N/nD" 10 .700 .766 .814 .892
Case 3 20 .715 .785 .843 .926

50 .724 .796 .860 .944
OO .733 .808 .877 .957

^/ñD 10 .760 .819 .880 .944
Case 3 20 .779 .843 .907 .973

50 .790 .856 .922 .988
OO .803 .874 .939 1.007

^/ñV 10 1.287 1.381 1.459 1.535
Case 3 20 1.323 1.428 1.509 1.600

50 1.344 1.453 1.538 1.639
OO 1.372 1.477 1.557 1.671

Taken from Chandra, Singpurwalla, and Stephens (1981), with permission of 
the authors and of the American Statistical Association.
The table for \/nD, Case 2, has been corrected.
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OL is known; suppose then that = Xj -  a ; /3 is given by solving

ß  = {2 .Y. -  2.Y. exp(-Y./i3)}/n  
J J  J J J

The steps in making the test are then:

(a) Estimate unknown parameters as above.
(b) Calculate Z(i) = F(X^y), i = I ,  • • • , n, where F(x) is given by equation

(4.6), using estimated parameters when necessary.
(c) Use formulas (4.2) to calculate the EDF statistics.
(d) Modify the test statistics as shown in Table 4.17, o r use Table 4.18 

and compare with the upper tall percentage points given.

Table 4.17 is taken from Stephens (1977), and Table 4.18 from Chandra, 
Singpuivv^lla, and Stephens (1981).

Case I above is equivalent to a test for the е^фопепйа! distribution on the 
transformed variable Y  = e x p { - X / ß ) .  This transformation in (4.6) gives, 
for Y , the distribution F(y) = I  -  exp(-ôy), y > 0, with ô = езф(се//3). When 
ß is known, the transformation can be made, and the Y  values are then tested 
to come from the exponential distribution with origin zero and unknown scale 
parameter (Section 4 .9 .3 ). The test statistics for the exponential test will 
take the same values as those for the Case I test in the present section, 
except that D“̂ becomes D“ and vice versa.

4.11 EDF TESTS FOR THE W EIBULL DISTRIBUTION

4.11.1 Test Situations

The general form of the Weibull distribution W { x ; a , ß  ,m) is

F(X) = I -  exp I - ( ^ Д | . x >  a ;  ß >  0 ,  m >  I

Here a  and ß  are location and scale parameters, respectively, and m is a 
shape parameter; a  is called the origin of the distribution. The Welbull 
density function is

, ^m -I ( ,  ^mj
- P  1- ( ^ )  I

The null hypothesis in this section is

H^: a random sample X^, . . . ,  Xj  ̂ comes from the Weibull 
distribution W (x ;a , /3, m)
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4.11.2 Tests When the Location Parameter Is Known;
Reduction to a Test for the Extreme-Value Distribution

We consider the case where a  is known. Suppose its value is zero, so that 
Ho becomes

H : the set X comes from W(x;0,/3,m)
O a

This distribution is often called the two-parameter Weibull distribution. If a  
is not zero, but has value OJq , say, the transformation X ’ = X  -  , i =
I ,  . . . ,  n, gives a set X ’ , for which Hqq, w ill be true when Hq is true for X; 
thus Hqq/ is tested for X ’ .

In considering Hq we distinguish three cases:

Case I: m is known and ß  is unknown;
Case 2 :  ß  i s  known and m is unknown;
Case 3: both m and ß  are unknown.

For the test of Hq^,, the tables for the extreme-value distribution tests 
may be used. Let Y  = -  log X in the distribution W {x;0,ß ,m ); the distribu
tion for Y  becomes

F(y) = e x p  ^  ¿ , <  У  < (4.10)

with в = l/m  and ф = -  log /3. This distribution is the extreme-value distri
bution of Section 4.10, and a test of Hoa for X may be made by testing that 
Y  has the extreme-value distribution, with one or both of в and ф unknown. 

The test procedure therefore becomes:

(a) Make the transformation Y i = -  log X i, i = I , . . . ,  n.
(b) Arrange the Y i in ascending order (note that if the Xi were given in 

ascending order the Y i w ill be in descending o rder).
(c) Test that the Y-sam ple is from the extreme-value distribution (4.6) as 

described in Section 4. 10.

In Case I, m will be known, and so в w ill be known in distribution (4.10) 
for Y . The test is therefore a Case I  test as described in Section 4.10. In 
Case 2, /3 is known, and so ф is known in distribution (4.10) for Y .The test 
will be a Case 2 test of Section 4.10. In Case 3, both parameters в and ф 
in (4.10) w ill be unknown, so the test will be a Case 3 test of Section 4.10. 
Tables for the rather more unusual cases where a  is unknown have been 
given by Lockhart and Stephens (1985a).
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4.12 EDF TESTS FOR THE GAMMA DISTRIBUTION

In this section we discuss the tests of the null hypothesis

H^: a random sample . . . ,  X^ comes from the Gamma 
distribution, G(x;o',/3,m) with density

"  /ЗГ(т) x > O !;/ 3 > 0 , m > 0

The location parameter a  w ill be called the origin of the distribution; ß  and 
m are, respectively, scale and shape parameters.

4.12.1 Tests with Known Origin, Cases I, 2, and 3

We consider the case where a  is known. If o' = 0, Hq becomes

Hqq/2 set X comes from G(x;0,)3,m)

If a  is not zero, but has value oíq , say, the transformation x j  = Xj -  QJq , 
i = I, . . . ,  n, is made to give a set X*: then the null hypothesis Hq for set X  
reduces to Hqq, for set X*, and Hqq, is tested using the set X*.

In considering Hqq, we can distinguish three cases:

Case I: m is known, and ß is unknown;
Case 2: ß is known, and m is unknown;
Case 3: both m and ß are unknown.

For Cases 2 and 3, distribution theory, even as5anptotic theory, when m 
is estimated by maximum likelihood or another efficient method, will dqjend 
on the true m; this is because m is not a location or scale parameter (Sec
tion 4 .3 .3 ). However, useful approximate tests can still be made as follows.

4.12.2 Tests for Case I

The steps for making this test are:

(a) Putthesampleinascendingorder Х (ц  < • • • < Х(ц).
(b) Let X  be the sample mean, and estimate ß h y  ß  =  X^m ; ß  is the maxi

mum likelihood estimator of /3.
(c) Define

I(X ;m ,^ ) =
ß ^ T ( m )  0

I ^ e xp (-x /^ )d x
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TABLE 4.19 Upper Tail As3anptotlc Percentage Points 
for , U^ , and A^ in Tests for the Gamma Distribution
(Section 4 . 12)^

Statistic m

Significance level a

.10 .05 .025 .01

^ f f 2 I .175 .222 .271 .338
2 .156 .195 .234 .288
3 .149 .185 .222 .271
4 .146 .180 .215 .262
5 .144 .177 .211 .257
6 .142 .175 .209 .254
8 .140 .173 .205 .250

10 .139 .171 .204 .247
12 .138 .170 .202 .245
15 .138 .169 .201 .244
20 .137 .169 .200 .243

CO .135 .165 .196 .237

U* I .129 .159 .189 .230
2 .129 .158 .188 .228
3 .128 .158 .187 .227
4 .128 .158 .187 .227
5 .128 .158 .187 .227
6 .128 .157 .187 .227
8 .128 .157 .187 .227

10 .128 .157 .187 .227
12 .128 .157 .187 .227
15 .128 .157 .187 .227
20 .128 .157 .187 .227

OO .128 .157 .187 .227

A" I 1.062 1.321 1.591 1.959
2 .989 1.213 1.441 1.751
3 .959 1.172 1.389 1.683
4 .944 1.151 1.362 1.648
5 .935 1.139 1.346 1.627
6 .928 1.130 1.335 1.612
8 .919 1.120 1.322 1.595

10 .915 1.113 1.314 1.583
12 .911 1.110 1.310 1.578
15 .908 1.106 1.304 1.570
20 .905 1.101 1.298 1.562

OO .893 1.087 1.281 1.551

^Parameters: location a known; scale ß unknown;
shape m known.
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Accurate computer routines now exist for this expression (the incomplete 
gamma function). Calculate = I(X^y;m,/3), for i = I , . . . »  n.

(d) Calculate the EDF statistics from the using formulas (4.2).
(e) Modify the statistics as follows:

For m = I , calculate

W * = W * (l  + 0.16/n) ; U * = U ^ (l + 0.16/n) ; A * = A * ( l  + 0.6/n)

For m > 2, calculate

w .  .  - » • » ) , D . .  .
1.8n- l  l . S n - l  n^ m^

The modified statistics are then referred to the upper tail percentage points 
given in Table 4.19 for the appropriate known value of m. These points are  
the as3nnptotic points for the various distributions; they were given by Pettitt 
and Stephens (1983).

The modifications given above are based on Monte Carlo studies for 
finite n, and have been designed to be as comprehensive as possible, cover
ing all values of m and n; when the given percentage points are used at levèl a  
it is believed that the true level of significance w ill not differ by more than 
0.5% for n > 5.

4.12.3 Application to a Test for the Chi-Square Distribution

The Gamma distribution, with m -  r/2 and /3 = 2, becomes the chi-square 
distribution with r  degrees of freedom. Thus this Case I test can be used to 
test that observations X j, multiplied by an unknown constant, come from a 
chi-square distribution with known degrees of freedom. For example, it may 
be used to test Hq : n independent sample variances s f , . . . ,  s^» each calcu
lated from a sample of size k, come from parent populations which are nor
mal with the same (unknown) variance . An application might be to test for 
constant variance in an Analysis of Variance with cells each containing к 
observations. Other applications are given by Pettitt and Stephens (1983).

4.12.4 Test for Case 2

For this case, the steps are as follows:

(a) Put the sample in ascending order i) < * ‘ * < ^(n)*
(b) Estimate m by solving for in the equation {  2. log X. }/n = ip{m) -  log ß ,

d
where ^(m) is the digamma function is fbe maximum
likelihood estimator of m.

(c) Calculate = I(X^^ ;̂m,/3), for i I,
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TABLE 4.20 Upper Tail Asymptotic Percentage Points for , , 
in Tests for the Gamma Distribution (Section 4 . 12)^

and A^

Statistic m

Significance level a

.25 .10 .05 .025 .01 . 005

I .103 .150 .186 .223 .273 .311
2 .099 .143 .176 .210 .256 .291
3 .097 .140 .172 .205 .250 .283
4 .096 .138 .171 .203 .247 .280
5 .096 .138 .169 .202 .245 .278
6 .095 .137 .169 .201 .244 .276
8 .095 .136 .168 .200 .242 .275

10 .095 .136 .167 .199 .241 .274
12 .095 .136 .167 .199 .241 .273
15 .094 .135 .167 .198 .240 .272
20 .094 .135 .166 .198 .240 .272

OO .094 .134 .165 .197 .238 .270

I .090 .129 .159 .189 .230 .262
2 .089 .128 .158 .189 .229 .261
3 .089 .128 .158 .188 .229 .260
4 .089 .128 .158 .188 .229 .260
5 .089 .128 .158 .188 .229 .260
6 .089 .128 .158 .188 .228 .260
8 .089 .128 .157 .188 .228 .260

10 .089 .128 .157 .188 .228 .260
12 .089 .128 .157 .188 .228 .260
15 .089 .128 .157 .188 .228 .260
20 .089 .127 .157 .187 .228 .260

OO .090 .127 .157 .187 .228 .259

A* I .680 .956 1.170 1.390 1.687 1.916
2 .661 .926 1.130 1.338 1.619 1.836
3 .655 .915 1.115 1.320 1.596 1.809
4 .651 .909 1.108 1.310 1.584 1.795
5 .649 .906 1.103 1.305 1.577 1.787
6 .648 .904 1.101 1.301 1.572 1.781
8 .646 .901 1.097 1.297 1.567 1.775

10 .645 .899 1.095 1.294 1.563 1.771
12 .644 .898 1.094 1.293 1.561 1.768
15 .644 .897 1.092 1.291 1.559 1.766
20 .643 .896 1.091 1.289 1.557 1.763

OO .644 .894 1.087 1.285 1.551 1.756

^Parameters: location a known; scale ß known; shape m unknown.
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TABLE 4.21 Upper Tail Asymptotic Percentage Points for W^, 
in Tests for the Gamma Distribution (Section 4. 12)^

155 

, and A^

Statistic m

Significance level a

.25 .10 .05 .025 .01 .005

I .079 .111 .136 .162 .196 .222
2 .076 .107 .131 .155 .187 .211
3 .075 .106 .129 .153 .184 .208
4 .075 .105 .128 .152 .183 .207
5 .075 .105 .128 .151 .182 .206
6 .075 .105 .128 .151 .181 .205
8 .074 .104 .127 .150 .181 .204

10 .074 .104 .127 .150 .180 .204
12 .074 .104 .127 .150 .180 .203
15 .074 .104 .127 .149 .180 .203
20 .074 .104 .126 .149 .180 .203

OO .074 .104 .126 .148 .178 .201

I .071 .098 .119 .141 .169 .190
2 .070 .097 .118 .139 .166 .187
3 .070 .097 .118 .138 .165 .186
4 .070 .097 .117 .138 .165 .186
5 .069 .097 .117 .138 .165 .185
6 .069 .097 .117 .138 .165 .185
8 .069 .096 .117 .137 .164 .185

10 .069 .096 .117 .137 .164 .185
12 .069 .096 .117 .137 .164 .185
15 .069 .096 .117 .137 .164 .185
20 .069 .096 .117 .137 .164 .185

OO .069 .096 .117 .136 .164 .183

I .486 .657 .786 .917 1.092 1.227
2 .477 .643 .768 .894 1.062 1.190
3 .475 .639 .762 .886 1.052 1.178
4 .473 .637 .759 .883 1.048 1.173
5 .472 .635 .758 .881 1.045 1.170
6 .472 .635 .757 .880 1.043 1.168
8 .471 .634 .755 .878 1.041 1.165

10 .471 .633 .754 .877 1.040 1.164
12 .471 .633 .754 .876 1.039 1.163
15 .470 .632 .754 .876 1.038 1.162
20 .470 .632 .753 .875 1.037 1.161

OO .470 .631 .752 .873 1.035 1.159

^Parameters: location a known; scale ß unknown; shape m unknown.
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(d) Calculate the EDF statistics from the using formulas (4.2).
(e) Reject Hoq/ if the value of the statistic used is greater than the value in 

Table 4.20 for desired significance level a  and for appropriate m.

4.12.5 Tests for Case 3

The steps in the test are as follows:

(a) Estimate m by solving for in the equation

{2 .  log X j}/n  -  log X = ф{т) -  log m

where ÿ(m) is the digamma function as above, and estimate ß  by 
ß = X/in.

(b) Calculate EDF statistics from = I(X^j);m ,ß ), i = I, . . . ,  n.
(C ) Reject Hq if  the value of the statistic used is greater than the value in 

Table 4.21, for desired significance level a , and appropriate in.

4.12.5.1 Comment

The points in Table 4.21 remain remarkably stable as m changes, especially 
for , and accurate results can be expected when in is used for m, except 
possibly for small values of m. Note that only asymptotic points are given; 
experience with , , and suggests these will be very good approxi
mations to the points for finite n, even for quite small n. The points in 
Tables 4.20 and 4.21 are taken from Lockhart and Stephens (1985b), where 
the as3rmptotic theory is also developed. A somewhat different treatment 
was given much earlier in an unpublished report by Mickey, Mmdle, Walker, 
and Glinskl (1963). The various cases when the origin is not known are much 
more unlikely; furthermore, it is often difficult to estimate parameters effi
ciently. Tests for these cases have been given by Lockhart and Stephens 
(1985b). Tables for the Kolmogorov statistic D, for n = 4(1)10(5)30, have 
been given for Cases 1 ,2 , and 3 above (a different estimate of m is used in 
Case 3) by Schneider and Clickner (1976).

4 . 13 EDF TESTS FOR THE LOGISTIC DISTRIBUTION 

In this section is discussed the test of

Hq : a random sample X i , . . . ,  X^ comes from the logistic distribution 

F(x;o',/?) = 1/[1 + e x p  { - (x  -  O i ) / ß } ]  , - « < x < < » ; ) 3 < 0  

with parameters o' or ¢, or both, unknown



TABLE 4 .22 Modifications and Upper Tail Percentage Points for , , in Tests for the Logistic Distribution
(Section 4.13)^

Significance level a

Statistic Modification .25 .10 .05 .025 .01 .005

w *
Case I (1.9nW2 -  0.15)/(1.Sn -  1.0) .083 .119 .148 .177 .218 .249

Case 2 (0 .SSnW^ -  0 .45)/(0.95n -  1.0) .184 .323 .438 .558 .721 .847

Case 3 (nW=̂  -  0.08)/(n -  1.0) .060 .081 .098 .114 .136 .152

Case 2 (1.6nU^ -  0 .16)/(1.6n -  1.0) .080 .116 .145 .174 .214 .246

Case I A* + 0.15/n .615 .857 1.046 1.241 1.505 1.710

Case 2 (О.бпА^ -  1 .8)/(0.6n -  1.0) 1.043 1.725 2.290 2.880 3.685 4.308

Case 3 A^(1.0 + 0.25/n) .426 .563 .660 .769 .906 1.010

H
И
H
CO

W
Ö
O
й;
и
ö

W

hH
CO
HH
O
CO

^For Gases 1 and 3 use modifications and percentage points for Cases I and 3, respectively (see Section4.13). 
Taken from Stephens (1979), with permission of the Biometrika Trustees.
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TABLE 4.23 Upper Tall Percentage Points for Statistics D' '̂s/n, 
Dn/ii, and VN/n, for Tests for the Logistic Distribution (Section 4 . 14)

Case
Significance level a0.10 0.05 0.025 0.01

5
10
20
50

510
20
50

5
10
20
50

5
10
20
50

OO

5
10
20
50
CO

5
10
20
50

0.702
0.730
0.744
0.752
0.757

0.971
0.990
0.999
1.005
1.009

0.603
0.636
0.653
0.663
0.669

0.736
0.777
0.800
0.808
0.816

1.108
1.148
1.167
1.179
1.187

0.643
0.679
0.698
0.708
0.715

Statistic D'^^Гn

0.758 
0.792 
0.809 
0.819 
0.8261.120 
1.143 
1.150 
1.161 
1.166

0.650 
0.687 
0.705 
0.716 
0.723

Statistic Dn/п

0.791 
0.837 
0.865 
0.874 
0.883

1.236 
1.274 
1.294 
1.305 
1.313

0.679 
0.730 
0.755 
0.770 
0.780

0.805
0.846
0.867
0.880
0.888

1.239
1.268
1.282
1.290
1.297

0.690
0.736
0.758
0.773
0.781

0.845
0.895
0.926
0.937
0.947

1.349
1.388
1.406
1.419
1.427

0.723
0.774
0.800
0.817
0.827

0.854
0.913
0.944
0.962
0.974

1.380
1.423
1.444
1.456
1.464

0.735
0.789
0.816
0.832
0.842

0.883
0.653
0.9971.011
1.025

1.474
1.521
1.545
1.559
1.568

0.751
0.823
0.854
0.873
0.886

(continued)
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TABLE 4 . 23 (continued)

Case n
Significance level Of

0.10 0.05 0.025 0.01

Statistic Y \T n

I 5 1.369 1.471 1.580 1.658
10 1.410 1.520 1.630 1.741
20 1.433 1.550 1.659 1.790
50 1.447 1.564 1.675 1.815

OO 1.454 1.574 1.685 1.832

2 5 1.314 1.432 1.547 1.674
10 1.372 1.483 1.587 1.711
20 1.400 1.510 1.607 1.730
50 1.417 1.525 1.619 1.741

OC 1.429 1.535 1.627 1.748

3 5 1.170 1.246 1.299 1.373
10 1.230 1.311 1.381 1.466
20 1.260 1.344 1.422 1.514
50 1.277 1.364 1.448 1.542

OO 1.289 1.376 1.463 1.560

Taken from Stephens (1979), with permission of the Biometrika 
Trustees.

As in earlier sections, we distinguish three cases:

Case I: ß known, a  unknown;
Case 2: a  known, ß  unknown;
Case 3: o¿ and ß  both unknown.

The parameters are estimated from the data by maximum likelihood. 
For Case 3, when both a  and ß  are unknown, the equations for the estimates 
Of, ß  are

П-» Z i [ l  + exp { (X i -  0!)/ ^ }]-*  = 0.5 

I  -  exp { (Xj -  Z t ) / ß }  
I + exp {(X^ -  ä ) / ß }

П-* S. '
Xj -  a

=  -I
ß

(4.11)

(4.12)

These equations may be solved iteratively; good starting values for of and ß  
are the sample mean X and the sample standard deviation s. In Case I ,  a  
is the solution of equation (4.11), with ß  replacing Д. In Case 2, /3 is the
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S o lu tion  of (4.12), with a  replacing a .  The steps in making the test are then 
as follows:

(a) Find estimates of any unknown parameters.
(b) Calculate = 1/[1 + езф {-(Х (1) -  o i ) / ß } ] , i = I , • . . ,  n, with a  and ß  

replaced by estimates where necessary.
(c) Calculate the EDF statistics from (4. 2 ).
(d) For , , and modify the statistic as in Table 4.22; reject Hq if 

the statistic exceeds the percentage point given for desired significance 
level O'. For D'^, D ", D, and V, multiply by n/п  and use Table 4.23.
The table for D'^n/iT can also be used for D“ n/E.

The as3nnptotic percentage points for , , and given in Table 4.22
are based on theoretical work of Stephens (1979), and the modifications have 
been derived, as in previous sections, from extensive Monte Carlo studies 
for finite n. For each case, 10,000 samples were used to give the percentage 
points, for n = 5, 8, 10, 20, and 50. The percentage points for D"*" n/п , D \ f n ,  
and V  \fn  given in Table 4 . 23 were derived from the same Monte Carlo 
studies.

4.14 EDF TESTS FOR THE CAUCHY DISTRIBUTION 

The Cauchy distribution has density

f ( x : a , ß )  =  ^  ßz ^  ( / _  а ) г  • - ~ < x < c o ; ^ > 0  

and distribution function

F(x;a,/Î) = 1 + i  tan-* , - « > < х < » ; / 3 > 0

In this section we discuss tests of the null hypothesis

(4.13)

(4.14)

H^: a random sample . . . ,  Xj  ̂ comes from the Cauchy distribution, 
with one or both of parameters a  and ß  unknown

As with previous tests, we consider three cases:

Case I: ß known, o¿ unknown;
Case 2: a  known, ß unknown;
Case 3: both a  and ß unknown.

For other distributions, the parameters have been estimated by maximum 
likelihood; however, for the Cauchy distribution, the likelihood may have
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TABLE 4.24 Upper Tail Percentage Points for and A^ 
for Tests for the Cauchy Distribution (Section 4 . 14)

Significance level a

n .25 .15 .10 .05 .025 .01

Case I . Statistic

5 .208 .382 .667 1.26 1.51 1.61
8 .227 .480 .870 1.68 2.30 2.55

10 .227 . 4 6 0 .840 1.80 2.60 3.10
12 .220 .430 .770 1.76 2.85 3.65
15 .205 .372 .670 1.59 2.88 4.23
20 .189 .315 .520 1.25 2.65 4.80
25 .175 .275 .420 .870 2.10 4.70
30 .166 .250 .360 .710 1.60 4.10
40 .153 .220 .290 .510 1.50 3.05
50 .145 .200 .260 .400 .70 2.05

100 .130 .170 .210 .270 .35 .60
OC .115 .146 .173 .216 .260 .319

Case I . Statistic A^

5 1.19 2.22 3.83 8.00 12.75 17.980
8 1.33 2.62 4.7 10.0 17.4 25.0

10 1.34 2.52 4.5 10.6 18.2 29.0
12 1.31 2.42 4.1 9.9 18.8 32.0
15 1.30 2.15 3.5 8.2 17.2 31.2
20 1.17 1.86 2.8 6.5 14.4 27.5
25 1.12 1.68 2.3 4.7 10.8 23.0
30 1.08 1.55 2.1 3.8 8.2 20.0
40 1.02 1.38 1.8 2.9 5.2 15.5
50 .970 1.29 1.6 2.4 3.8 10

100 .890 1.16 1.4 1.8 2.2 3.5
OO .834 1.02 1.219 1.519 1.812 2.212
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TABLE 4.25. Upper Tail Percentage Points for and 
for Tests for the Cauchy Distribution (Section 4 . 14)

Significance level a

n .25 .15 .10 .05 .025 .01

Case 2. Statistic

5 .199 .236 .261 .338 .437 .590
8 .211 .273 .321 .389 .463 .564

10 .212 .279 .332 .414 .501 .626
12 .212 .281 .337 .433 .525 .661
15 .206 .279 .339 .444 .537 .684
20 .199 .273 .333 .442 .547 .698
25 .194 .268 .328 .437 .551 .704
30 .189 .265 .326 .435 .553 .708
40 .185 .260 .323 .434 .555 .712
50 .183 .258 .321 .433 .557 .714

100 .179 .254 .319 .432 .559 .715
OO .176 .250 .316 .131 .560 .714

Case 2. Statistic

5 .974 1.131 1.239 1.59 2.08 2.84
8 1.085 1.360 1.560 1.88 2.18 2.55

10 1.110 1.414 1.653 2.04 2.38 2.89
12 1.117 1.443 1.710 2.14 2.55 3.15
15 1.117 1.449 1.728 2.22 2.65 3.31
20 1.101 1.444 1.728 2.24 2.73 3.44
25 1.083 1.432 1.727 2.25 2.77 3.50
30 1.064 1.422 1.724 2.25 2.80 3.53
40 1.051 1.41 1.723 2.26 2.82 3.56
50 1.045 1.405 1.722 2.27 2.83 3.59

100 1.038 1.40 1.718 2.28 2.86 3.64
OO 1.034 1.409 1.716 2.283 2.872 3.677
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TABLE 4.26 Upper Tail Percentage Points for and A^ 
for Tests for the Cauchy Distribution (Section 4 . 14)

Significance level a

n .25 .15 .10 .05 .025 .01

Case 3. Statistic

5 .167 .242 .305 .393 .445 .481
8 .192 .315 .441 .703 .940 1.13

10 .197 .331 .481 .833 1.201 1.571
12 .194 .329 .487 .896 1.391 1.901
15 .185 .317 .472 .904 1.54 2.33
20 .169 .281 .419 .835 1.63 2.96
25 .154 .253 .366 .726 1.47 3.08
30 .143 .225 .319 .615 1.25 2.90
40 .126 .195 .263 .460 .850 2.17
50 .117 .175 .235 .381 .642 1.56
60 .1097 .160 .211 .330 .508 1.07

100 .098 .135 .174 . 2378 .331 .544
OO .080 .108 .130 .170 .212 .270

Case 3. Statistic A^

5 .835 1.14 1.40 1.77 2.00 2.16
8 .992 1.52 2.06 3.20 4.27 5.24

10 1.04 1.63 2.27 3.77 5.58 7.50
12 1.04 1.65 2.33 4.14 6.43 9.51
15 1.02 1.61 2.28 4.25 7.20 11.50
20 .975 1.51 2.13 4.05 7.58 14.57
25 .914 1.40 1.94 3.57 6.91 14.96
30 .875 1.30 1.76 3.09 5.86 13.80
40 .812 1.16 1.53 2.48 4.23 10.20
50 .774 1.08 1.41 2.14 3.37 7.49
60 .743 1.02 1.30 1.92 2.76 5.32

100 .689 .927 1.14 1.52 2.05 3.30
OO .615 .780 .949 1.225 1.52 1.90
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local maxima, and It may be difficult to find the true maximum. We there
fore find estimates using sums of weighted order statistics. Chernoff, Gast- 
wirth, and Johns (1967) have given the estimate a  = with

_  sin 4тг 
i n tan 7Г

j/ (n+  I) - 0 . 5 }
j/ (n+  I) -  0 .5 }

The estimate o í  ß i s  ß  =  Щ  dj with

A -  8 tan 7r{j/(n + I) -  0 .5 }  
i n sec^ ^ {j/ (n  + I) -  0 .5 }

These estimates are asymptotically efficient, and asymptotic distributions 
of , , and can be found. The test of Hq Is then as follows:

(a) Estimate parameter a  or /3 or both, as described above.
(b) Calculate = Г (Х (ц ;а ,0 ), given in (4.14), with estimates replacing 

unknown parameters.
(C ) Use the formulas (4.2) to calculate EDF statistics.
(d) Refer to Tables 4 . 24, 4.25, or 4. 26 to make the test; reject Hq if the 

test statistic is greater than the value given for n and for the desired 
significance level a .

The points are taken from Stephens (1985), where the asymptotic theory, 
and tables for , are given.

4.15 EDF TESTS FOR THE VON MISES DISTRIBUTION

The von Mises distribution is used to describe unlmodal data on the circum
ference of a circle. Suppose the circle has center O and radius I, and let a 
radius OP be measured by the polar coordinate 9 , from ON as origin. Let 
$Q be the coordinate of a radius O A , and let /c be a positive constant. The 
von Mises density is

i(0 î Oq  t k ) —
2тг1о(/с)

exp {/c cos (Ö -  ^ ) }, 0 <  0 <  2ТГ

Here Iq (/c) is the imaginary Bessel function of order zero. The distribution 
has a mode along OA (that is, at 9 =  9q ) and is symmetric around OA; for 
K =  O the distribution reduces to the uniform distribution around the circle. 
Suppose a random sample of values 02» • • • * ^  given, denoting loca
tions on the circumference of points Pj^, P2 , Pjj. We discuss the test of

Ho : the random sample of 0-values comes from the von Mises distribution 

= Ц в ; в о , к ) 0 9



TABLE 4.27 Upper Tall Percentage Points for for Tests 
of the von Mises Distribution (Section 4 . 15)

True
shape

K

Significance level a

0.500 0.250 0.150 0.100 0.050 0.025 0.010 0.005

Case I

0.0 0.047 0.071 0.089 0.105 0.133 0.163 0.204 0.235
0.50 0.048 0.072 0.091 0.107 0.135 0.165 0.205 0.237
1.00 0.051 0.076 0.095 0 .1 1 1 0.139 0.169 0.209 0.241
1.50 0.053 0.080 0.099 0.115 0.144 0.173 0.214 0.245
2.00 0.055 0.082 0.102 0.119 0.147 0.177 0.217 0.248
2.50 0.056 0.084 0.104 0 .121 0.150 0.180 0.220 0.251
3.00 0.057 0.085 0.106 0.122 0.152 0.181 0.222 0.253
3.50 0.058 0.086 0.107 0.123 0.153 0.182 0.223 0.254
4.00 0.058 0.086 0.107 0.124 0.153 0.183 0.224 0.255

10.00 0.059 0.088 0.109 0.126 0.155 0.186 0.227 0.258
OO 0.059 0.089 0.110 0.127 0.157 0.187 0.228 0.259

Case 2

0.0 0.047 0.071 0.089 0.105 0.133 0.163 0.204 0.235
0.50 0.048 0.072 0.091 0.107 0.135 0.165 0.205 0.237
1.00 0.051 0.076 0.095 0 .1 1 1 0.139 0.169 0.209 0.241
1.50 0.053 0.080 0.100 0.116 0.144 0.174 0.214 0.245
2.00 0.055 0.082 0.103 0.119 0.148 0.177 0.218 0.249
2.50 0.056 0.084 0.105 0 .121 0.150 0.180 0.220 0.251
3.00 0.057 0.085 0.105 0.122 0. 151 0.181 0.221 0.252
3.50 0.057 0.085 0.106 0.122 0.151 0.181 0.221 0.253
4.00 0.057 0.085 0.106 0.122 0.151 0.181 0.221 0.253

10.00 0.057 0.085 0.105 0.122 0.151 0.180 0.221 0.252
OO 0.057 0.085 0.105 0.122 0.151 0.180 0.221 0.252

Case 3

0.0 0.030 0.040 0.046 0.052 0.061 0.069 0.081 0.090
0.50 0.031 0.042 0.050 0.056 0.065 0.077 0.090 0.100
1.00 0.035 0.049 0.059 0.066 0.079 0.092 0.110 0.122
1.50 0.039 0.056 0.067 0.077 0.092 0.108 0.128 0.144
2.00 0.043 0.061 0.074 0.084 0 .101 0.119 0.142 0.159
2.50 0.045 0.064 0.078 0.089 0.107 0.125 0.150 0.168
3.00 0.046 0.066 0.080 0.091 0.110 0.129 0.154 0.173
3.50 0.047 0.067 0.081 0.093 0.112 0.131 0.157 0.176
4.00 0.047 0.067 0.082 0.093 0.113 0.132 0.158 0.178

10.00 0.048 0.068 0.083 0.095 0.115 0.135 0.162 0.182
OO 0.048 0.069 0.084 0.096 0.117 0.137 0.164 0.184

Taken from Lockhart and Stephens (1985c), with permission of the Biometrika 
Trustees.
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As for other distributions, there are three cases:

Case I: Oq unknown, к known;
Case 2: known, к unknown;
Case 3: both Oq and к unknown.

Maximum likelihood estimates of and of к  are found as follows. Let R be 
the vector sum or resultant of vectors O P i, i = I , «о ., n, and let R Ы  its 
length. The estimate o f  Oq Is  the direction of g ,  and the estimate к o f  к  

is given by solving

I oM
R̂
N

(4.15)

where I i  (к) is the imaginary Bessel function of order I. Tables for solving 
(4.15) are given in, for example, Biometrika Tables for Statisticians, Vol. 2 
(Pearson and Hartley, 1972), and by Mardia (1972).

When OA is known, let X  be the component of g  on OA; then the estimate 
of K is now given by K i  , obtained by replacing R by X  in (4.15).

Since the distribution is on a circle, only or V  are valid EDF statis
tics, of those we have been considering (see Section 4 .5 .3 ). Asymptotic null 
distributions can be found for ; because к  is not a scale parameter, the 
distribution depends on /c. However, as for the gamma and Weibull distribu
tions, useful tests are still available.

The steps in making a test of Hq are then as follows:

(a) For the appropriate case, estimate unknown parameters as described 
above.

(b) Calculate = F (0^^; во where and к are replaced by estimates 
if necessary.

(c) Calculate from formula (4. 2) .

Refer to the part of Table 4 . 27 appropriate for the given case, using к  
or k ; reject Hq if exceeds the point given for a .  The test is approximate, 
since asymptotic points are used; however, these are likely to be accurate, 
for practical purposes, for n > 20. The points are taken from Lockhart and 
Stephens (1985), where asymptotic theory is also given.

4. 16 EDF TESTS FOR CONTINUOUS DISTRIBUTIONS: 
m SCELLANEOUS TOPICS

4.16.1 Power of EDF Statistics when Parameters 
Are Estimated

In Section 4.6 some comments were made on the power of different EDF sta
tistics for Case 0 , using complete samples, where essentially the final test
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is a test for uniformity of the Z -values given by the Probability Integral 
Transformation. Different statistics were found to detect different types of 
departure from uniformity. When unknown parameters are estimated from  
the same sample as is used for the goodness-of-fit test, the differences in 
the powers of the statistics tend to become sm aller. It appears that fitting 
the parameter or parameters makes it possible to adjust the tested distri
bution to the sample in such a way that the statistics can detect a departure 
from the null distribution with roughly the same efficiency; nevertheless, A^ 
tends to lead the others, probably because it is effective at detecting depar
tures in the tails.

Some asymptotic theory is available to examine power, at least for 
quadratic statistics . Durbin and Knott (1972) demonstrated a method by which 
asymptotic power results could be obtained, and applied it to tests for the 
normal distribution with mean 0 and variance I, that is. Case 0 tests, 
against normal alternatives with a shift in mean or a shift in variance. 
Stephens (1974a) extended the results to shifts in both mean and variance.
The technique rests on a partition of the appropriate statistics into compo
nents (see also Section 8 . 12). Durbin, Knott, and Taylor (1975) showed how 
the decomposition into components could be done also for the test for nor
mality with mean and variance unknown (Case 3 ), o r for the е щ ю п е п П а ! test 
with scale parameter unknown, and used their method to discuss the asymp
totic power of the components. Stephens (1976b) followed the method and 
applied it to tests for the statistics W^, U^, and A^ for these situations. The 
overall result when tests for normality or eзфonentiallty are made with 
unknown parameters, is that A^ is slightly better than for the alternatives 
discussed, with not far behind W^.

The superiority of A^ has also been documented by various power studies 
based on Monte Carlo sampling. Some of these, in comparisons of tests of 
uniformity and normality, are by Stephens (1974b). These power studies also 
included the statistics D"*", D“ , D, and V.

The most famous statistic, the Kolmogorov-Smimov D, tends to be weak 
in power. Statistics D"*" and D ", on the other hand, often have good power but 
each one against only certain classes of alternatives. For example, in tests 
of exponentiality (see Table 10. 6 , results for Group I statistics) D"*" appears 
to be powerful against alternatives with decreasing failure rate and D“ is 
powerful against alternatives with Increasing failure rate. In some applica
tions the alternative of interest may be clearly identified, and then it w ill be 
possible to identify which statistic to use. However, D“*" and D " w ill be biased 
when used against the wrong alternatives, so these statistics must be used 
with caution. From the power studies for tests for normality and езфопепй- 
ality it appears that A^ (or as second choice) should be the recommended 
omnibus test statistic for EDF tests with unknown parameters, with good 
power against a wide range of alternatives.
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4.16.2 The Effect on Power of Knowing 
Certain Parameters

In Section 4.9 above, as an illustration of the test for exponentiality, the 
example was worked in the case when the parameter ß was known, and also 
when it was necessary to estimate it. It is clear from the example (or from  
a comparison of Tables 4.11 and 4.14) that when the estimate is very close 
to the true value, one has a much more sensitive test using the tables for 
the parameters unknown than using the tables for Case 0 ; in general, the 
critical values for rejection are much smaller when parameters must be 
estimated. It would quite frequently happen that the estimated value of ß  
would be close to the true value, and then the practitioner who does not know 
ß  w ill obtain greater power than if ß  were known. This appears somewhat 
paradoxical« in that usually in statistical testing one assumes that the more 
knowledge the better. However, the tests are (Ideally) intended as tests for 
distributional form, not as tests for parameter values, and some knowledge 
of parameters may not be very Important in assessing distributional form.
For example, it may be unhelpful to know, and to use, the mean of the true 
distribution« when this is not the one tested. Stephens (1974b) and Dyer (1974) 
have noted these effects in tests for normality; being given means and vari
ances changes the test from Case 3 to Case 0 , with a consequent loss of 
power. On the other hand, Spinelli and Stephens (1987) have shown that in 
tests for exponentiality it is better to use the value of the origin, when this 
is known, than to estimate it. Note also that in Example E 4.9.3 the е^фопеп- 
tial form, when ß was given, was acceptable, but when the test focused more 
on the exponential shape (the main point of the test) and less on the parameter, 
the exponential form was rejected. Further work is still needed on what 
parametric information is useful and what is not.

4.16.3 Other Techniques for Unknown Parameters

4.16.3.1 Use of Sufficient Statistics

Some other interesting methods have been proposed to deal with unknown 
parameters. When sufficient statistics are available for в ,  Srinivasan (1970, 
1971) has suggested using the Kolmogorov statistic D calculated from a com
parison of Fji(x) with the estimate f { x ; 0 )  obtained by applying the Rao- 
Blackwell theorem to F(x, 0), where в is, say, the maximum likelihood 
estimator of 0. The resulting tests are asymptotically equivalent to the tests 
given in previous sections using F (x ;0) itself (Moore, 1973) and can be ex
pected to have sim ilar properties for finite n. The method will usually lead 
to complicated calculations, and has been developed only for tests for normal
ity (Srinlvasan, 1970; see also Kotz, 1973) and for tests of exponentiality (see 
Section 10.8.1).
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4 . 16.3 > 2 The Half-Sample and Related Methods

Another method of eliminating unknown parameters is called the half-sample 
method; this can be useful when unknown parameters are not location or 
scale. Unknown components in в are estimated by asymptotically efficient 
methods (for example, maximum likelihood) using only half the given sample, 
randomly chosen. The estimates, together with any known components, give 
an estimate в of the vector 0. The transformation = ;0), i = I,
. . . ,  n, is made, and EDF statistics are calculated from formulas (4.2), 
now using the whole sample. A remarkable result is that, asymptotically, 
the EDF statistics will have their Case 0 distributions (Section 4.4), although 
this w ill not be true for finite n. Stephens (1978) has examined the half- 
sample method applied to tests for normality and exponentiallty, to compare 
with the techniques given in Sections 4.8 and 4.9. Several points can be made:

(a) The quadratic statistics W^, U^, and A^, as in other situations, appear 
to converge fairly rapidly to their asymptotic distributions: this is prob
ably the case for tests for other distributions also, so that for reason
ably large (say n > 20) samples, the half-sample method could be used 
with the Case 0 as3rmptotic points.

(b) The half-sample technique is not Invariant; different statisticians will 
obtain different values of the estimates, according to the different pos
sible random half-samples chosen for estimation, and so w ill get differ
ent values of the test statistics.

(c) There is considerable loss in power when the half-sample method is 
used for tests of normality and exponentiallty, compared with using EDF 
statistics with parameter estimates obtained from the whole sample, as 
described in Sections 4 . 8 and 4 . 9. The powers also tend to vary among 
the different statistics.

Braun (1980) has also suggested a technique for dealing with unknown 
parameters. These are first estimated using the whole sample; then the 
sample itself is randomly divided into several groups and a Case 0 test made 
on each group separately, using the estimates as though they were true val
ues. This technique can be ejq)ected to be valuable only for large samples; 
see Braun (1980).

It seems clear that the above methods should not be preferred to the 
techniques previously presented for tests Involving unknown location and 
scale parameters, where the complete sample is used to estimate parame
ters, but they might be useful for tests for distributions involving shape 
parameters. More information would be helpful on how the methods compare 
with other tests with unknown shape parameters, for example, use of or 
its improvements discussed in Chapter 3, or with EDF tests such as the tests 
for the Weibull or gamma distributions given in Sections 4.11 o r 4 .12  above.
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Tests have been derived for : X  has a symmetric distribution about a 
specified median. If the median is a, the transformation = X -  a gives a 
sample set which, on Ho, w ill be symmetric with median zero. Hence only 
this situation need be considered. The test is not strictly a goodness-of-fit 
test, but a test of the very general hypothesis F(x) = I  -  F (-x ). A basic tech
nique is to compare the EDF^s of X  and -X ; the statistics are then based on 
ranks. Smirnov (1947) and Butler (1969) suggested a modification of the 
Kolmogorov statistic for this problem. Distribution theory of the Butler- 
Smirnov test was given by Chatterjee and Sen (1973), and power results 
were discussed by Koul and Stoudte (1976). Other variations, and methods 
of obtaining confidence bands, were illustrated by Doksum, Fenstad, and 
Aaberge (1977); these authors find versions of Kolmogorov statistics which 
are competitive with EDF statistics and with the Shapiro-Wilk statistic 
(Section 5.10.3) when used as tests for normality against gamma and log
normal alternatives. Review articles on Kolmogorov-type statistics for 
symmetry are given by Niederhausen (1982) and Gibbons (1983).

Rothman and Woodroofe (1972) and Srinivasan and Godio (1974) have 
given test statistics S^ of Cramdr-von Mises type for Hq ; Hill and Rao (1977) 
showed connections between the two statistics (called there R^ and , have 
generalized them, and finally have proposed a statistic T^^) which is based

on the generalizations. The statistic has the property that it takes the same 
value if Xi is replaced by -X i o r if it is replaced by l/Xi for all I. Hill and 
Rao (1977) gave tables of probabilities in the upper tail for n2TW/4, for n

from 10 to 24. Lockhart and McLaren (1985) have given as3nnptotic points 
for this test.

Use of the EDF to estimate the center of symmetry was discussed by 
Butler (1969) and by Rao, Schuster, and Littell (1975).

4.16.4 Tests for Symmetry

4.16.5 Tests Based on the Empirical 
Characteristic Function

Some authors have proposed goodness-of-fit tests based on the empirical 
characteristic function (E C F ). This is defined, for a random sample Xj ,̂ X2 ,

• . . ,

as n — to 0(t), the characteristic function of the distribution F(x) of X, 
and the real and imaginary parts of <t>ĵ {t) , say Cjj(t) and Sjj(t), suitably nor
malized, are asymptotically jointly normal. Tests of fit can be based on how 
well 0u(t), Cji(t), or Sj (̂t) correspond to hypothesized values (corresponding 
to a given distribution) at particular values of t; or they can be of Kolmogorov- 
Smlrnov type or Cramér-von Mises type, based on

by <t> (t) =  ̂ e3qp(lt Xi)}/n, where here i^ = - I ;  ó (t) converges,
n j= l n
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sup I Ф (t) -  ф(1)| 
t “

or on 1 1¢ (1) - ¢ ( 1)1 
n

' dG(t) ,

where G is a suitable measure. Many practical questions remain for such 
tests, such as the choice of t-values or of G(t); also, tables rarely exist for 
finite n and power studies are often limited, so that more work is needed in 
this area. Epps and Pulley (1983) have given a test for normality, with 
tables, and references to earlier work.

4.17 EDF TESTS FOR DISCRETE DISTRIBUTIONS

4.17.1 Introduction

The tests given in previous sections have all been developed for various 
cases in which the tested distribution F(x) was continuous. Historically, the 
test statistics were introduced with this intention, and the field was left 
clear to the Pearson chi-square statistic for testing for discrete distribu
tions. However, an EDF can also be drawn for discrete data and it can be 
compared with the cumulative distribution from which the data are supposed 
to be drawn; it is then natural to define measures of discrepancy analogous 
to the statistics given for continuous distributions. Here we examine tests 
based on such measures. A  general review of goodness-of-fit tests for dis
crete distributions was given by Horn (1977).

Data may appear to be discrete either because the sample genuinely 
arises from a discrete distribution like the Binomial or Poisson, for ex
ample, in measurements of counts, o r alternatively because originally con
tinuous data may have been grouped. The grouping may occur because the 
unit of measurement is very coarse, for example, when angles are meas
ured to the nearest 5 degrees, o r weights to the nearest pound or gram.
This occurs in the data on leghorn chicks in Table 4.1; the two chicks which 
are recorded as having weight 190 gm obviously do not possess exactly equal 
weight, but each weighs somewhere between 189.5 and 190.5 gm. With large 
amounts of data, grouping may also be done to facilitate display or handling 
of the data, and the original values, and therefore some information, may 
be lost before a goodness-of-fit test is to be made. This happens with Monte 
Carlo sampling, when very many observations w ill be recorded, and for 
ease of tabulation w ill often be graded into a histogram as they are collected.

Of course, in practice all continuous data are subject to the limits of 
accurate measurement, but the inherent grouping may be so fine as to have 
negligible effect. This was assumed to be so for the data on chicks when they 
were tested for normality in Sections 4.4 and 4.8.
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4.17.2 T h eE D F fo rD isc re teD ata : CaseO

Suppose that for discrete data the possible outcomes are divided into к cells 
and the null hypothesis is

Ho : P  {an observation fálls in cell i) = pj, i = I, . . . ,  к

The Pj are assumed given, so that Hq is completely specified, and the 
situation is Case O for discrete distributions. The cell boundaries may be 
determined by the actual values taken by a random variable X, especially if 
there are exactly к of these, or some values may be grouped together, as 
in the tail of a Poisson distribution, to give к cells overall. Simpóse n inde
pendent observations are taken, and let Oj be the observed number and Ej 
be the expected number (Ej = npj), in the i-th cell. Define the statistic S by

J
S =  max I J  (0  -  E )| 

l< j< k  'i = l  '

For groined continuous data, let the cell boundaries, in ascending order, be 
Co, c j, . . . ,  (¾; cell i contains values X such that c j_ j < X  < cj. If Oj and 
Ej are the observed and expected values in cell i, the statistic S can be de
fined as above. Also, an EDF may be defined as

j = l .

F (X) =  F (c . ) , c. < X  < c _  , 5 n' ' n' з' ’ J -  3 + 1

Fjj(X) is the cumulative histogram of the data. The grouped distribution func
tion Fg(X) may be defined in the same way, by replacing Oj by E j. Then the 
statistic S is equal to

S = n sup IF  ( X ) - F  (X ) IX n g

and there is an obvious parallel with the Kolmogorov statistic nD. Similarly, 
a statistic parallel to would be

O к ( j ) 2
W^ = H - I E  I E  ( O i - E )

3=1 4 = 1   ̂ ^

and it is possible to construct parallels to the other statistics for continuous 
distributions.
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The value of the statistic S depends on the ordering of the cells so that 
a different ordering will produce a different value for the same data* It is 
therefore recommended that S be used when there is a natural ordering of 
the categories.

Several authors have discussed the statistic S or the statistics and S" 
defined by

S = maxl<j<k U=I
j

E (Oi -  E^) and S = max
l<3<k

which are analogous to nD"** and nD", and we confine ourselves to tests for 
discrete data based on these three statistics.

Pettitt and Stephens (1977) have given exact probabilities for the distri
bution of S for equal cell probabilities. They also showed how the tables 
can be used as good approximations for probability distributions of S for 
unequal probabilities per cell, and also to deduce approximate probabilities 
for S^ o r S“ (see also Conover, 1972). Table 4.28 is taken from Table I  
of Pettitt and Stephens (1977). The table gives values of P (S  > m ), for values 
of m which give probabilities near the usual test levels. Thus a test of Hq is 
made as follows:

(a) Record the observed number of observations (¾ and the e3q>ected number 
El, for all i, i = I, . . . ,  k.

(b) Calculate Tj = i = I. • • • . k.

(c) Calculate ST*" = maxj T j , or S“ = maxj (-T j),  or S = maxj I Tjl s let m 
be the value of the test statistic used.

(d) Use Table 4.28 to find p-levels, that is P(S > m). The p-levels for S^ 
or S’ , that is, P(S^ > m) or P  (S’  > m) are each approximately
5 P  (S > m ).

(e) If the p-level for the statistic used is less than the test level a , reject 
Ho at significance level.

Statistic S gives a two-sided test and statistics and S" give one-sided 
tests.

E 4.17.2 Example

The data given in Table 4.29, used by Pettitt and Stephens (1977), are taken 
from Siegel (1956). Each of ten subjects was presented with five photographs 
of himself, varying in tone (grades 1-5), and was asked to choose the photo
graph he liked best. The hypothesis tested was that there was no overall 
preference for any tone, that is, each tone was equally likely to be chosen.

The values of T. = (Ô  -  Ê ) are given in the table. The values of
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TABLE 4.28 Table of Probabilities for EDF Statistic S for a Fully 
Specified Discrete Distribution with к Classes (Section 4.17)

k = 3 к = 5

n = 6 m ; 4 3 n = 10 m : 5 4
.00274 .03567 .00477 .04162

n = 9 m : 5 4 3 n = 15 m : 6 5 4
.00193 .01656 . 12361 .00584 .03202 . 12322

n = 12 m : 6 5 4 n = 20 m : 7 6 5
.00109 .00771 .04994 .00496 .02203 .07617

n = 15 m : 6 5 4 n = 25 m : 8 6 5
.00361 .02089 .09181 .00368 .04717 . 13083

n = 18 m : 6 5 4 n = 30 m : 8 7 6
.00902 .04005 . 13579 .00946 .02930 .07924

n = 21 m : 7 6 5
к = 6

.00402 .01760 .06308

n = 24 m : 7
.00792

6
.02897

5
.08824

n = 12 m : 6
.00173

5
.01422

4
.08064

n = 27 m ; 7
.01325

6
.04245

5
.011433

n = 18 m : 7
.00308

6

.01599
5

.06435

n = 30 m : 8 ' 
.00609

7
.02015

6

.05757

n = 24 m : 7
.01375

6

.04695
5

. 13203

n = 30 m : 8 . 7 6

к = 4 .01071 .13317 .08836

n = 8 m : 4 3
I r  —  *7

.01514 .10791 K — «

n = 12 m : 5
.01115

4
. 05974

n = 14 m : 6

.00511
5

.02996
4

. 12856

n = 16 m : 6

.00706
5

.03299
4

.12611

n = 21 m : 7
.00807

6
.03242

5
. 10550

n = 20 m : 7
.00424

6

.01826
5

. 06598

n = 28 m : 8
.00853

7
.02828

6

.08047

n = 24 m ; 7 6 5 k = 8
.01014 .03526 . 10519

n = 16 m : 6 5
n = 28 m ; 8 7 6 .01122 .05166

.00566 .01914 . 05689 n = 24 m : 8 7 6

.00410 .01641 .05477

(continued)
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TABLE 4.28 (continued)

к = 9

n = 18 m : 

n = 27 m :

.00406 .02043

8 7
.00833 .02831

5
.07840

6
.08210

к = 10 

n = 20 m :

n = 30 m :

6 5
.00781 .03276 .10909

9 7 6
.00421 .04365 .11333

^For given n and k, the table gives values of P(S > m) beneath values of m. 
The probabilities given are exact for cells of equal probability. Half the 
tabulated probabilHy is a good approximation to P(S+ > m) = P(S“ > m ). 
Taken from Pettitt and Stephens (1977), with permission of the American 
Statistical Association.

TABLE 4 . 29 Data for EDF Test for a Discrete Distribution

Tone grade j of 
chosen photograph

Number choosing 
grade j* 0^2

Expected number:
E.:

3 T.= E
i= l

<°i -

1
2
3
4
5

0
I
0
5
4

-2
-3
-5
-2

0

^The first column gives the five grades of tone of a photograph, and the data 
in Column 2 are the numbers out of 10 persons in an experiment who chose 
the different tone grades. (See Section 4.17.)
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and S” are respectively О and 5, and the value of S is 5. From Table 4.29 
for n = 10, к = 5, we have P  (S > 5) = 0.00477, so S is highly significant, 
with p -level less than .005, and Hq w ill be rejected. The Pearson statistic

к
= 2  (О -  E )V E  

1=1

has the value 11. Using the usual x| approximation, P  (X^ > 11) = 0.024, 
while by exact enumeration the probability is 0. 04. The S statistic thus gives 
a much more extreme value than does , and appears to be more sensitive 
in this instance. Pettitt and Stephens have investigated the power of S, espe
cially against alternatives representing a trend in cell probability as the cell 
index i increases, and it appears that for such alternatives, S w ill often be 
more powerful than X^.

Note that Case 0 tables for nD should not be used for S, despite the 
parallel between the two statistics. Noether (1963) suggested that use of the 
nD tables would give a conservative test; Pettltt and Stephens have given 
several examples to show this to be true, with the true a-value very different 
from the supposed value.

The test for S has been given above for Case 0 where the null hypothesis 
is completely specified. The analogue of S is not available for the various 
cases where probabilities for each cell must be estimated, for example, in 
a test for a Poisson or binomial distribution, where an unknown parameter 
must be estimated from the data.

Wood and Altavela (1978) have discussed asymptotic properties of 
Kolmogorov-Smlmov statistics D^, D “, and D when used with discrete dis
tributions, and have shown how asymptotic percentage points may be 
simulated.

4.18 COMBINATIONS OF TESTS

4.18.1 Introduction

Suppose к independent statistical tests are made. It may be that the p-levels 
are quite small, but not small enough to be significant. If the к tests are all 
tests of sim ilar type—for example, all tests for normality of sim ilar data, 
with small samples of each—the results may suggest, overall, that the data 
are non-normal, but the samples are too small to detect this. It then becomes 
desirable to combine the tests. The general problem of combining tests, even 
of different t5фes, has been discussed by many authors; see, for example, 
Fisher (1967), Birnbaum (1954), and Volodin (1965). Fisher (1967) suggested 
an easy method of combination, based on the p-levels of the к separate test 
statistics. In effect, the p-levels are tested for uniformity. This method is 
discussed in Section 8.15 and has been used to combine various tests for
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normality by Wilk and Shapiro (1968) and by Pettitt (1977a). Volodin (1965) 
has discussed tests for one distribution (the normal, exponential, Poisson, 
or Weibull) against specific alternatives which are close to the one tested.

4.18.2 Combining EDF Test Statistics: Case 0

In this section we give a method of combining test statistics obtained from  
EDF tests. Suppose A^ is the test statistic in a Case 0 test, and let test j

give value A; the proposed test statistic is Z, = , A * / k .  For Case 0 , A^
к  J = I  3

is chosen as test statistic since, as was stated in Section 4.4, its distribution 
function almost does not depend on n. A table of percentage points for Zj^, for 
Case 0 tests, is given in Table 4.30. When к is too large for the table, a 
good approximation to the percentage point of Zk is given by the correspond
ing point for a normal distribution with mean ц  and variance o^/k, where ß  
and (T̂  are given in the last line of the table.

£4.18.2  Example

Suppose six Case 0 tests for normality are made, and the values of A^ are  
2.353, 1.526, 0.550, 0.252, 2.981, 2.309. The p -levels of the tests are, 
from Table 4.3: 0.06, 0.17, 0.70, 0.97, 0.03, 0.06. Theaverage is 
Z^ = 1.662, and reference to Table 4.30 shows Z¿ to be significant at the 5% 
level. Although only one component test is significant at the 5% level, the 
overall combination suggests a total picture of non-normality.

TABLE 4.30 Table for Combining Tests for к Samples, Case 0 
(Section 4.18.2)^

No. of samóles 
к

Significance level a

.25 .10 .05 .025 .01

2 1.242 1.705 2.047 2.387 2.838
3 1.219 1.582 1.842 2.096 2.427
4 1.200 1.506 1.721 1.928 2.195
6 1.173 1.414 1.578 1.735 1.934
8 1.155 1.358 1.495 1.624 1.786

10 1.142 1.320 1.439 1.550 1.689

OC ß  = 1.000 = 0. 57974/к

^Upper tail percentage points of Z = Z  jA*/k, where A^“ is the value 
of A^ for sample j , case 0. For к > 10, Z is approximated by a 
normal distribution with ß  and a  ̂ as shown.
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TABLE 4.31 Table for Combining Tests for к Samples, 
Parameters Unknown (Section 4.18.3)^

Significance level a
No. of samples

Test к .25 .10 .05 .025 .01

Normal 2 1.081 1.537 1.878 2.220 2.674
Case 2 3 1.065 1.422 1.680 1.934 2.265

4 1.050 1.350 1.562 1.768 2.035
6 1.027 1.262 1.424 1.579 1.777
8 1.010 1.208 1.343 1.470 1.631

10 0.998 1.172 1.289 1.398 1.535
CO (See Table 4.30: /X = 0.8649, = 0.5303/к)

Normal 2 0.455 0.562 0.638 0.710 0.805
Case 3 3 0.446 0.530 0.588 0.643 0.713

4 0.439 0.510 0.559 0.604 0.661
6 0.431 0.487 0.524 0.559 0.602
8 0.425 0.473 0.504 0.533 0.569

10 0.421 0.463 0.490 0.515 0.546
OO (See Table 4.30: H = 0.3843, = 0. 3615/k)

Exponential 2 0.723 0.942 1.102 1.260 1.469
Case I 3 0.708 0.881 1.003 1.122 1.276

4 0.698 0.843 0.945 1.042 1.166
6 0.683 0.798 0.876 0.950 1.043
8 0.673 0.771 0.836 0.897 0.973

10 0.666 0.752 0.809 0.861 0.927
OO (See Table 4.30: ß  = 0.5959, = 0 .1392/k)

^Upper tall percentage points of Zĵ . = S jA j/k where A * Is the modified A^ 
for sample j . Values are given for the test of normality with mean zero and 
variance unknown (Case 2 of Section 4 . 8) , the test for normality with mean 
and variance unknown (Case 3 of Section 4.8), and for the test for exponen- 
tlallty (Section 4.9, Case 2).
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4.18.3 Combining EDF Test Statistics: Other Cases

The same technique can be applied to combine tests of fit when parameters 
are estimated. Here each value of A^ w ill be modified, as described in 
previous sections, for the appropriate test, and then the mean of the 
modified values A?, j = I , • • • , k, w ill be taken as the overall test statistic. 
Upper tall percentage points of for tests of normality and for tests of 
exponentiallty, are in Table 4.31. For к too large for the table, follow the 
same procedure as described in Section 4.18.2, for Table 4.30.

E 4.18.3 Example

Proschan (1963) has given a number of sets of fáilure times of airconditioning 
equipment for several aircraft. The data for aircraft 7910 have already been 
listed in Table 4.13. When EDF tests of exponentiallty are made on the sets 
for the first 6 aircraft, with a  = 0 and ß estimated separately for each a ir 
craft, the values of A * (that is, A^ modified as in Table 4.11) are: 0.543, 
0.722, 0.763, 1.187, 0.499, 1.175, and the mean A * is 0.814; reference to 
Table 4.31 shows this value to be near the 10% point, for к = k, although 
only two of the Individual values are significant at the 10% level.

4.18.4 Combining the Standardized Values 
from Several Tests

Pierce (1978) has suggested the following method of combining tests based 
on к samples, for testing Hq : the sample comes from a distribution F (x ;0), 
with в containing unknown location and/or scale parameters a  and ß .  The 
true values of these parameters may be different for each test. For sample i, 
let Oi  ̂ and /¾ be the maximum likelihood estimates. Define standardized 
values W ri = ( ^ r i  “ ^ = I* . . . ,  n¿, where r  = I, . . . ,  n^, are
the observations in sample i. The proposal of Pierce is that the W^j for all

the к samples should be pooled to form one large sample of size n = n^.

Pierce showed that the limiting distribution of any EDF statistic calculated 
from the combined sample w ill be the same as its limiting distribution for 
one sample. Similar results apply if only one parameter is not known. Pierce  
gave results of a Monte Carlo study on tests for normality (Case 3 ), com
paring the method, using A^ calculated from the к pooled samples of stand
ardized values, with Fisher^s method using the p-levels of к values of A^ .
The alternative, that is, the true distribution, was a Weibull distribution, 
and the pooled method is more sensitive in this study. Quesenberry, Whitaker, 
and Dickens (1976) have given another method, somewhat sim ilar but less 
direct, of combining tests for normality.
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4.19 EDF STATISTICS AS INDICATORS 
OF PARENT POPULATIONS

Statisticians sometimes use goodness-of-fit statistics to decide which popu
lation appears best suited to describe a data set. EDF statistics may be used 
for this purpose; when the different parent populations F¿(x) are fully speci
fied (Case 0), atypical statistic, say A^, is calculated assuming Fi(x) to 
be correct, giving value A?, and values of a \ may be directly compared.
A smaller value of A f w ill indicate a better fit than a larger value. However, 
when parameters are estimated from the data, the value of a | must not be 
the indicator, since the distribution of A f will now vary with F¿(x); instead, 
the Pi-value attached to A f w ill be a suitable indicator, with a larger р|- 
value (measured from the upper-tail) indicating a better fit.

4.20 TESTS BASED ON NORMALIZED SPACINGS

4.20.1 Normalized Spacings and the EDF Statistic a |

In this section tests are discussed based on the spaclngs of a sample. Each 
spacing is normalized by division of a constant and a transformation made 
to produce Z-values between 0 and I. We give the test based on the EDF sta
tistic A| , the Anderson-Darling A^ calculated from these z-values, and 
compare it with tests based on the median o r the mean of the values. The 
technique affords an Interesting method of testing by eliminating location and 
scale parameters, rather than directly estimating them, and is based on 
tests for the e^qxDnential distribution. The tests can be used for censored 
data. The general case will be treated of a sample which has been censored 
at both ends. Suppose t + 2  successive observations X  , X  , . . . ,

(K) (K"^l)
X are given, and the test is of the null hypothesis:

Hq : the original X-sample comes from a continuous distribution T { x ; a , ß ) ,  
where a  and ß  are unknown location and scale parameters

Then values X  can be viewed as being constructed from a random sample W  
from F (x ;0 ,1) ,  by the relation X(i) =  a  +  ß W ( i ) ,  I = к, к + I , . . . ,  к + t + I .
Suppose m^ = E(W^^^), and define spacings

®i ^(k+i) 1 = 1 ,(k+i-1) ’
t + I ; these are analogous to the spacings D^ of Section 8 .2  o r the spacings E j 
of Section 10.5.2. Then normalized spacings are given by

= .........

When the are from the e^qponential distribution Езф(о',^3), given in 
Section 4 .9 .1 , the y^ will be i . i .d . Exp (0, ß ) . The J transformation of
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Section 10.5.4 can then be applied to give values 

i / t+1

"(I. ■ Д  ........‘

and the will be ordered uniforms, that is, they will be distributed as an 
ordered sample of size t from the uniform distribution with limits 0 and I.

A special case of normalized spacings is the set derived, as in Sec
tion 10.5.2, by the N-transformation applied to a complete sample of X -  
values from Exp (0,/3); here an extra spacing is available between X^i) and 
‘the known lower endpoint a  = 0 of the distribution of X. The spacings 
are E i = X (I ) , E 2 = X (2) -  X (i), E3 = Х (3) -  X (2), e tc ., and, for the 
Exp (0 ,1) distribution, mj -  m j» !  = l/(n + I -  i), with mg = 0; thus the 
normalized spacings are the values Xj in Section 10.5.2. Tests that the 
original sample is exponential can then be based on statistics used for test
ing that the Z(^ are ordered uniforms, for example, EDF statistics. Case 0 
(Section 4.4), or any of the test statistics described in Chapter 8 . Tests of 
this type, for exponentiality of the original X, are discussed in Chapter 10.

These tests can be adapted to test that X came from a more general 
F(x;o¿,/3) as follows. The spacings are calculated as described above, and, 
provided values of ki = mj -  m^ ĵ  ̂ known, normalized spacings y i  can 
be found; then the transformation to z(i) can be made. Then, subject to 
important conditions particularly affecting the extreme spacings, suitably 
separated normalized spacings from any continuous distribution are asymp
totically Independent and exponentially distributed with mean ß (see Pyke, 
1965, for rigorous and detailed results). The conditions on this result are 
sufficiently strong, however, that the transformed values Z(^) must not be 
assumed to be distributed as uniform order statistics, even asymptotically, 
for the purpose of finding distributions of test statistics. However, asymp
totic distribution theory of three statistics calculated from the z-values has 
been given by Lockhart, O^Reilly, and Stephens (1985, 1986).

4.20.2 Tests for the Normal, Logistic, and Extreme- 
Value Distributions Based on Ag

We first discuss statistic Ag ; this is the Anderson-Darling statistic A^ 
defined in equation (4.2), but using the Z(j) above derived from the spacings. 
Later we discuss statistics based on the median and the mean of the z-values.

Asymptotic percentage points for a |, for use with tests that the X^ are 
from one of the normal, logistic, or extreme-value distributions, are given 
in Table 4.32; these are taken from Lockhart, O^Rellly, and Stephens (1985, 
1986). Thus to make a test for normality, p = k/n and q = (k + t + l)/n are 
found, and Table 4.32 is entered on the line corresponding to p and q; the 
null hypothesis that the original Xj are normal is rejected if a | exceeds the 
percentage point given for the desired test level a .
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TABUS 4.32 As5rmptotic Percentage Points for Ag, for Tests for Normal, 
Logistic, or Extreme-Value Populations (Section 4.20). The table is 
entered at p = k/n and q = (k + t + l)/n.

Left
censoring 
point, p

Right 
censoring 
point, q

Significance level a

0.25 0.20 0.15 0.10 0.05 0.025 0.01

Normal Distribution

0
0
0
0
0.25
0.25

I
0.75
0.50
0.25
0.75
0.50

0.955 1.066 
1.056 1.183 
1.098 1.232

1.211
1.350
1.409

1.422
1.592
1.667

1.798
2.026
2.129

2.191
2.479
2.612

2.728
3.100
3.273

1.133 1.273 1.459 1.730 2.215 2.722 3.416
1.178 1.324 1.518 1.800 2.306 2.835 3.559
1.225 1.381 1.587 1.889 2.430 2.996 3.770

Logistic Distribution

0
0
0
0
0.25
0.25

I
0.75
0.50
0.25
0.75
0.50

1.123
1.141
1.178
1.215
1.177
1.223

1.263
1.281
1.325
1.369
1.323
1.378

1.448
1.468
1.521
1.574
1.517
1.584

1.720
1.741
1.806
1.873
1.801
1.885

2.206
2.230
2.318
2.409
2.308
2.424

2.716
2.741
2.852
2.969
2.838
2.989

3.413
3.441
3.584
3.736
3.564
3.761

Extreme-Value Distribution

0
0.0
0.0
0.0
0.25
0.25
0.25
0.50
0.50
0.75

I
0.75
0.50
0.251.0
0.75
0.501.0
0.751.0

1.016
1.159
1.202
1.229
1.027
1.187
1.231
1.051
1.224
1.081

1.138
1.302
1.354
1.386
1.150
1.336
1.388
1.177
1.380
1.213

1.300
1.492
1.555
1.594
1.312
1.532
1.596
1.345
1.586
1.387

1.535
1.770
1.849
1.898
1.549
1.819
1.901
1.589
1.887
1.641

1.957
2.267
2.376
2.444
1.972
2.333
2.447
2.025
2.428
2.096

2.398
2.787
2.927
3.015
2.413
2.870
3.018
2.481
2.993
2.571

3.000
3.498
3.682
3.797
3.018
3.605
3.800
3.105
3.767
3.222

^The table is entered at p = k/n and q = (k + t + l)/n.
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Monte Carlo studies suggest that, as in previous sections, the points 
may be used to give a good approximate test for, say, n > 20. The tables 
can be interpolated for values of p and q not given.

The test for the extreme-value distribution above refers to distribution
(4.7); for a test that X  comes from (4.6) the substitution = -X  must be 
made, and the X ’ tested to come from (4.7 ). The test may be adapted to a 
test that X  comes from the two-parameter Weibull distribution W (x;0,ß,m ) 
of Section 4.11 by taking X* = log X  and testing that X ’ comes from (4.7).

In the above tests, values of m^ (or more precisely, o f Ц  = -  пц)
are needed. For the normal distribution values of m^ have been extensively 
tabulated or can be accurately calculated; see Section 5 .7.2. For the logistic 
distribution, ki = n/{(i -  l)(n  -  i + I ) }, i = 2, . . . ,  n. For the extreme-value 
distribution, values of m^ have been given by Mann (1968) and by White 
(1968)} also values of kj are tabulated, for 3 < n < 25, by Mann, Scheuer, 
and Fertig (1973). Alternatively the approximation m^ = lo g [-  l o g { l  -  
(i -  0 .5)/(n + 0 .2 5 )}] is quite accurate for n > 10 (Lawless, 1982).

4.20.3 Tests Based on the Median and the Mean 
of the Transformed Spacings

Although they are not properly EDF statistics, it is convenient to discuss 
here tests based on the median and the mean of the . The test based on 
the median was introduced by Mann, Scheuer, and Fertig (1973) for the 
special problem of testing that an original right-censored sample of t-values 
comes from the two parameter Weibull distribution W(t;0,/3,m) (Section 
4.11) against the three-parameter alternative W(t;o',)3,m), with a  > 0 . The 
test situation arises in reliability theory. To make the test, the transfor
mation X  = log t is made as described above, and the right-censored sample 
of X-values is tested to come from the extreme-value distribution (4.7). 
Suppose therefore that the r  smallest order statistics of an X-sample of 
size n are available, giving r  -  I  normalized spacings yi ; the statistic 

Г—I Г—Iproposed is S = 2 . y./T , where T = 2 .  ̂ y . , and where s = (r  + 1)/2 if

r  is odd and s = (r  + 2)/2 if r  is even. It is easily shown that S = I -  Z (^j, 
where w = s -  I, so that S is equivalent to which is essentially the
median of the z-values. Mann, Scheuer, and Fertig (1973) give tables of 
percentage points for S, based on Monte Carlo studies, for n = 3(1)25, and 
for r  = 3 (l)n . For the problem they were studying, the authors proposed a 
one-taii test; Hq is rejected if S is too large (so the median is too sm all).
An example of the S-test, with censored data, is given in Section 12.4.1. 
Mann and Fertig (1975) later modified the S statistic, by choosing a smaller 
value of S. They also showed how to obtain confidence intervals for the 
origin of a three-parameter Weibull distribution by choosing those values 
which gave non-significant test results.
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Another possible test statistic for Hq is Z , the mean of the Tiku 
and Singh (1981) gave a test, also for the extreme-value distribution, with 
double censoring; the statistic is their Z *. On Hq , the authors gave an accu
rate normal approximation for Z *  with mean I , and with variance depend
ent on the variances and covariances of standard extreme-value order statis
tics. It is easily shown that Z * = 2Z, so that the Tlku-Singh approximation 
can easily be adapted to give percentage points for Z . The distributions of S 
and Z, when the X come from a suitably regular parent population, have 
been investigated by Lockhart, O ’Reilly, and Stephens (1985, 1986). Both

statistics are asymptotically normal; Sj = Cit^(S -  0.5) and Z^ = C2t^(Z -0 .5 ) 
are asymptotically N (0 , 1), where and C2 are constants dependent on the 
parent population and on the censoring levels.

For example, for the extreme-value test, for complete samples,
Cl = 2.233, and C2 = 4.0098. If the z(i) could be assumed to be ordered 
uniforms, S would have a beta distribution and Z would have a distribution 
tabulated in Chapter 8; as3onptotically these also tend to normal distributions 
of the type given above, with Cj = 2 for S and C2 = nÎÏ2 = 3.464 for Z .
Mann, Scheuer, and Fertig found the beta distribution to give a good approx
imation to their Monte Carlo points for small n, and suggested its use for n 
beyond their tables; however, comparison of the normal approximations 
above shows that use of the beta distribution for large n w ill give a test 
which is too conservative.

4.20.4 Power Properties

Monte Carlo power studies by Mann, Scheuer, and Fertig showed that S has 
good power properties for the problem they were considerii^ where S was 
used with one tail. Other power studies for the extreme-value test have been 
given by Littell, McClave, and Offen (1979), Tiku and Singh (1981), and 
Lockhart, O ’Reilly, and Stephens (1986). These show that A| and Z have 
high power, often better than S. For some alternatives, S w ill be biased; 
we return to this point below.

Tlku (1981) has investigated S*, equivalent to Z, in testing for normality. 
Lockhart, O ’Reilly, and Stephens (1985) have made further comparisons, 
involving A|, S, Z, the A^ (Case 3) test of Section 4.8, and the Shaplro-WiIk 
W  test discussed in Chapter 5; here S must be used with two tails to cover 
reasonable alternatives. The most powerful tests for normality are given by 
W , A^ (Case 3), and A|: these three give quite sim ilar results.

Lockhart, O ’Reilly, and Stephens have also shown that statistics S and Z 
can give non-conslstent tests for some alternatives to the null; for example, 
this is the case in testing for normality. Statistic S may also be biased, as 
was observed by Tiku and Singh (1981), although for the problem discussed
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by Mann, Scheuer, and Fertig (1973) this does not appear to be the case. It 
would seem that statistic A|, which is consistent, should be preferred to Z 
and S except perhaps for some situations in which the alternatives to the null 
are very carefully specified to avoid problems of bias and non-consistency. 
A| has good power In studies so far reported. It can be easily calculated 
without direct estimation of parameters, can be used for censored data, and 
is consistent. These properties suggest that A|, and possibly other EDF 
statistics found from normalized spacings, might prove useful in other test 
situations, rivaling the regular use of EDF statistics as described in the 
rest of this chapter.
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Tests Based on Regression and Correlation

Michael A. Stephens Simon F raser University, Burnaby, B . C . ,  Canada

5.1 INTRODUCTION

In previous chapters it has been shown how a random sample can be used in 
a graphical display (for example, on probability paper, or by drawing the 
EDF) which is then used to indicate whether the sample comes from a given 
distribution. The techniques make use of the sample values arranged in 
ascending order, that is, they use the order statistics. In this chapter we 
examine another graphical method, related to probability plots, in which the 
order statistics are plotted on the vertical axis of the graph, against T^, 
a suitable function of i, on the horizontal axis. A  straight line is then fitted 
to the points, and tests are based on statistics associated with this line. This 
type of test will be called a regression test; when the test statistic used is 
the correlation coefficient between X and T , the test will be called a corre
lation test.

5.1.1 Notation

The following notation is used: Xj^, . . . »  Xj  ̂ is a random sample from a 
continuous distribution Fq (x), known or hypothesized; X (ij < X^2) < • • . < X^^) 
are the order statistics. X may refer to the n-vector with components Xj or 
X(i) depending on context. Fq(X) is often of the form F(w) with w = (x -  a ) / ß ;  
OL is the location parameter and ß is the scale parameter. If ^  = 0, Fq (x) is 
said to contain a scale parameter only.

If U = F (W ), W = F"^(u), so that F ”^(*) is the inverse function of F(»)> 
f(w) is the density function corresponding to F (w ).
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W i ,  . . . »  Wjj is a random sample from F(w ); <  W (2) < • • • < W^jj)
are the order statistics- T j, i = I, n, is used to describe a set of con- 

E (W (i)), where E denotes езфес-stants; two important sets are T j = mj
tation, and Ti = = F “^{i/(n + 1 )}, i = I , • • • , n; m, H, T are column
vectors of length n with components m|, Щ, Ti, respectively.
Z  or Z i denotes the sum over i from I to n unless other limits are given 
X = ZiXi/n, T = Z^Tj/n, etc. ; log X means loge

5.1.2 Definitionss CorrelationCoefficient

Let X refer to the vector . . . ,  X^jjj, and T to vector T i ,  . . . ,  Tjj;
define the sums

S(X,T) = Z(X^.j -  3Q(T. -  f )  = SX^^^T  ̂ -  n X f  

S(X,X) = Z(X^.^ = 2(X^ -¾ "

S (T ,T ) = 2 (T j -  T)2

and let v (X ,T ) = S(X,T)/(n -  I ); sim ilarly define v (X ,X ) and v (T ,T ). The

correlation coefficient between X  and T  is R (X ,T ) = v (X ,T )/ {v (X ,X )v (T ,T )}*

= S (X ,T )/ {S (X ,3Q S (T ,T )}^ . The statistic Z (X ,T ) = n { l  -  R^(X, T )} is often 
used in subsequent sections. S(X,X) may be referred to as S^; sim ilarly  
v(X, T) or R(X, T) may be referred to as v or R when there is no ambiguity 
in context. The usual meaning of (sample) correlation, defined for two sets 
of random variables, is here being extended to define "correlation” between 
a set of random variables X  and a set of constants T , following the same 
definition.

5.1.3 The Correlation Coefficient for Censored Data

Suppose only a subset of the X̂ ¿̂  is available, because the data have been 
censored. Provided the ranks i of the known Х(ц are known also, the corre
sponding Ti can be paired with the X^ij, and the correlation coefficient cal
culated as above, with the sums running only over the available values i. The 
calculation of R(X, T) is thus very easily adapted to all types of censored 
data.

5.2 REGRESSION TESTS: MODELS

Regression tests arise most: naturally when unknown parameters in the tested 
distribution Fo(X) are location and scale parameters. Simpóse Fq(x) is F(w) 
with W  = (x -  a ) / ß ,  so that ce is a location parameter and ß  a scale parameter,



TESTS BASED ON REGRESSION AND CORRELATION 197

and simpóse any other parameters in F(w) are known. If a sample of values 
W j were taken from F(w) with ce = 0 and ß = I, we could construct a sample 
Xj from F q (x) by calculating

= ce + ßW ., i = I, (5.1)

Let mi = E(W^Jj); then

E(X,.J = a  +  ß m .  
(I) I

(5.2)

and a plot of Х(ц against пц should be approximately a straight line with 
intercept a  on the vertical axis and slope /3. The values mt are the most 
natural values to plot along the horizontal axis, but for most distributions 
they are difficult to calculate. Various authors have therefore proposed 
alternatives Ti which are convenient functions of i; then (5.2) can be replaced 
by the model

X = O' + ÔT + €
(I) ^ i  i

(5.3)

where ei is an “e rro r” which for T i = mi w ill have mean zero. A  frequent 
choice for Ti is Щ defined in Section 5.1.1.

5.3 MEASURES OF FIT

Three main approaches to testing how well the data fit (5.3) can be identified;

(a) A test is based on the correlation coefficient R(X, T) between the paired 
sets Xi and Ti as defined in Section 5.1.2.

(b) Estimates o¿ and ß of the parameters in the line o' + /3 Ti are found by a 
suitable method, and a test is based on the sum of squares of the resid
uals X(i) -  X^i), where i^ i) =  a  +  ß T ^ .  In order to give a scale-free  
statistic, this must be divided by another quadratic form in the Х (ц .

(c) The scale parameter ß  is estimated as in (b), and the squared value 
compared with another estimate of ß ^, for example that obtained from  
the samóle variance.

These three methods are closely connected. In particular, when the 
method of estimation in (b) and (c) is ordinary least squares, the techniques 
often lead to test statistics equivalent to R^. We discuss R^(X,m ) in this 
chapter, for various distributions, beginning with the uniform. R^(X,m ) is 
consistent against all alternatives; methods (b) and (c) can yield statistics 
which are not consistent against certain classes of alternative. We shall
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discuss statistics based on methods (b) and (c) when they arise in connection 
with tests for the normal and exponential distributions.

5.4 TESTS BASED ON THE CORRELATION COEFFICIENT

5 .4 .1 The Correlation Coefficient and the ANOVA Table

When ordinary least squares is used to estimate a  and ß in the line 
X(i) = O' + ß T i t  the estimate of Д is ß  =  S (X ,T )/S (T ,T ), and the standard 
ANOVA table for the model is, with Х^ц =  â +  ß T ^ ,

Regression sum of squares: S^(X ,T )/S(T ,T ) 

Error sum of squares (ESS) : 2¾ { Х^ц -  Х(ц

Total sum of squares (TSS) : S^(X,X)

Define

Z (X ,T ) = n { l  -R 2 (X ,T )} (5.4)

It is easily shown that Z (X ,T ), or simply Z , is n(ESS/TSS). Thus Z is 
equivalent to R^, but can also be regarded as based on ESS (Section 5.3, 
method (b)), or on the ratio of two quadratic forms (method (c )). The inter
connections exist because ordinary least squares has been used to estimate 
a  and /3.

When T = m, R^ is an appealing statistic for measuring the fit, since 
if a "perfect” sample is given, that is, a sample whose ordered values fall 
exactly at their e^jected values, R^(X,m) w ill be I. A test based on R^(X,m) 
will be one-tail, with small values of R^ indicating a poor fit. There are 
then some advantages in using Z instead of R^; first, high values of Z lead 
to rejection of a good fit, corresponding to many other goodness-of-fit sta
tistics (such as EDF statistics or Pearson^s X^), and second, Z often has 
an asymptotic distribution, which can be found, and interpolation in tables 
is easier. We therefore tabulate Z , and insert asymptotic points in the tables 
where these have been calculated.

R^(X ,T ) is naturally suited to the model Х(ц =  a  +  ß T i  where both a  
and ß are unknown. When one or more of these parameters are known (for 
example, in many tests for exponentiality a  = 0, and in some tests for uni
formity O' = O and ß =  I ) ,  R^ w ill not necessarily be a good statistic for 
measuring the fit, and a test based on the residuals (method (b)) will be 
more natural. These points will be discussed in Sections 5.6.1 and 5.11.4 
below.
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5.4.2 Consistency of the R(X, m) Test

Saiiiadi (1975) showed the consistency of the text based on R(X,m ) for testing 
normality, and more recently Gerlach (1979) has shown consistency for cor
relation tests based on R (X ,m ), or equivalently on Z = n { l  -  R^(X ,m )}, for 
a wide class of distributions including all the usual continuous distributions. 
This is to be expected, since for large n we expect a sample to become per
fect in the sense of Section 5 .4.1. We can expect the consistency property 
to extend to R(X, T) provided T approaches m sufficiently rapidly for large 
samples. We now give tests based on R^(X ,m ), for the uniform distribution, 
with unknown limits (next section) and with limits 0 and I (Section 5.6).

5.5 THE CORRELATION TEST FOR THE UNIFORM  
DISTRIBUTION WITH UNKNOWN LIMITS

5.5.1 CompleteSamples

Suppose U (a,b ) refers to the uniform distribution between limits a and b. 
The test for uniformity is a test of

H^: a random sample X^, X^, ., X comes from U (a,b ) 
n

with a, b unknown.
The ordered values Х(ц will be plotted against mi = l/(n + I); mi = 

E (W (i)), where W i , W 2 , . . . ,  W^ is a random sample from U (0,1), and 
m = 0.5; for this distribution mi = Hi. The correlation test then takes the 
following steps:

(a) Calculate Z = n { l  -  R^(X ,m )}.
(b) Compare Z to the percentage points In Table 5.1; reject Hq if Z exceeds 

the appropriate value for given n and Z has an asymptotic null distri
bution, found and tabulated by Lockhart and Stephens (1986). The points 
given for finite n, obtained by Monte Carlo studies, approach the as3nnp- 
totlc points smoothly and rapidly, and interpolation in Table 5 .1 is 
straightforward. Note that since R^(X ,T) is scale-free, R^(X,m ) is 
here the same as R^(X ,T) with Ti = i.

5 . 5.2  Tests for Type 2 Censored Samples

Suppose the sample is Тзфе 2 right-censored (see Chapter 11), and only the 
subset X (i), 1 = 1, . . . ,  r , is available. This subset, on Hq , will be uniform 
with unknown limits a* and b* if a and b are unknown. Thus the subset may 
be treated as a complete sample of size r  and the test above may be used; 
mi is then i/ (r + I ). Alternatively, R^(X,m) can be calculated as described 
in Section 5.1.2; since the X(ij are the first r  values out of n, the values mi
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TABLE 5ol Upper Tail Percentage Points for Z = n { l  
Test for Uniformity, Full Sample

Significance level a

(X, m )}  for a

0.5 0.25 0.15 0.10 0.05 0.025 0.01

4

6

8

10

12

18

20

40

60

80

0.344 

0.441 

0.495 

0.535 

0.560 

0.605 

0.610 

0.640 

0.648 

0.658 

0. 666

0.559 

0.703 

0.792 

0.833 

0.864 

0.940 

0.960 

0.980 

0.988 

0.997 

0. 993

0.734

0.901

1.000

1.068

1.093

1.147

1.200

1.215

1.227

1.228 

1.234

0.888
1.053

1.163

1.245

1.280

1.385

1.420

1.420

1.420

1.420 

1.430

1.089 

1.325 

1.474 

1.532 

1.628 

1.716 

1.760 

1.762 

1.765 

1.770

I. 774

1.238

1.590

1.739

1.846

1.938

2.083

2.140

2.140

2.140

2.140 

2.129

1.388

1.918

2.100

2.294

2.360

2.503

2.550

2.550

2.550

2.550

2. 612

are i/(n + I ), i = I , . . . ,  r , with mean m = (r  + 1)/{2 (n  + 1)}. Because 
R^(X,m) is scale-free, both these procedures are equivalent to finding the 
correlation between Х(ц and i, and the two values of R^ are identical. Simi
larly, a left-censored or double-censored sample can be treated; if the ranks 
of the known X(j) are s < i < r, the correlation R between Xj and i may be 
found, and Table 5 .1 used as though the data were a complete sample of size 
n = r  + I -  s. Note that this technique cannot be used for a randomly censored 
sample. Chen (1984) has examined correlation tests for randomly censored 
data, especially in connection with testing езфопепйаШу.

5.5.3 Test for Type I Censored Samples

For a Type I censored sample, the procedure above does not make use of 
the censoring values, say A for the lower value and B for the upper. Suppose, 
for simplicity, A is zero and B is 11. Then it is possible to have, say, five 
values out of ten, X^^) to X (5), which are 0.9, 2.1, 3.1, 3.9, 5.2; these 
could give a large correlation coefficient, but would be suspect as being a 
uniform sample because of the large gap between the maximum X (5) = 5.2 
and B = 11. One way to make use of A and B is to include these in the sample, 
m;aking it now a sample of size 7. On Hq , all 7 values will be uniform between
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unknown limits a*, b *  and again the complete sample test in Section 5 .5 .1 
may be used. The test as now made combines a test for uniformity of the 
X(i) with a test that they are spread over the range (A , B ).

5.6 THE CORRELATION TEST FOR U(0,1)

5.6.1 CompleteSamples

In many goodness-of-fit situations, a transformation reduces the original 
test to a test of : that a set of X-values is U (0 ,1). Examples are the 
Probability Integral Transformation discussed in Chapter 4, and the J and K 
transformations in tests for е^фопепиаИ1у discussed in Chapter 10. For this 
null hypothesis, equation (5.2) reduces to

= “ i

where mj = i/(n + I ); that is, a  and ß  are known to be 0 and I ,  respectively. 
As in Section 5.5.3, statistic R^(X ,m ), taken alone, is not a suitable test 
statistic for Ho ; for example, R^ could be very close to I even if the X-values 
were uniform on only a small subset of [0 ,1 ]. R^(X,m ) can be modified for 
this situation by including 0, I as values in the sample, but a more direct 
use of the known range is to base a test on the residuals v¿ = Х^ц -  mj, for 
example, using = 2¿v|; then M^/n is statistic Tj  ̂ of Section 8.8.1.
Other tests based on vj are given in Section 8.8.1.

5.6.2 Censored Samples from U (0, 1)

Suppose the sample is Type I left-censored at A and right-censored at B; a 
test for uniformity should not only test for linearity of the values given in 
this interval, but also should test that the number of values is reasonable. 
R^(X,m) alone will not do this, for reasons sim ilar to those given in Section 
5.5.3; sim ilar objections would ápply if the given values were Type 2 cen
sored. Thus the correlation coefficient alone will not usually be appropriate 
for testing for U (0 ,1) with censored samples.

Further illustrations of these difficulties are given in Chapter 11, where 
other methods are proposed for censored U (0 ,1) samples.

5.7 REGRESSION TESTS FOR THE 
NORMAL DISTRIBUTION I

5.7.1 Tests Based on the Correlation Coefficient 

In this section correlation tests are discussed for



202 STEPHENS

Ho: a random sample X i , . . . ,  
with both jL¿ and cr unknown

Xn comes from N(/x,cr^) (5.5)

In sections 5.8 and 5.9 other regression tests for (5.5) are developed, 
based on residuals, or on the ratio of two estimates of scale.

For the normal distribution N (m, o-^), f(w) = (2тг) ^exp (-w V 2 ), with 
W = (x -  fj)/<T ; thus a  =  1Л and /3 = a, and mi are the e x p e c t e d  values of 
standard normal order statistics. Equation (5.2) becomes

E(X^^^) = /i + om^ (5.6)

For the normal distribution m = 0, and R^(X,m ) can conveniently be written 
in vector notation. Let X  be the vector {X ^i) » X^2) » • • • » ^(n)^ before, and 
let m be the vector (m i,m2 . • • • ,nin); let a prime, for example, in X* and m ^  
denote the transpose of a vector or of a matrix. Then, for a complete sample.

(5.7)

This statistic w ill be seen later to be identical to the Shapiro-Francia statis
tic W ’ , so that, for testing normality, we can refer to R^(X,m ) also as W 4

5 . 7 .2  Eзфected Values of Standard Normal 
Order Statistics

Values of m^, for the calculation of R^(X ,m ), must be calculated numeri
cally: extensive tables have been given by Harter (1961). The approximation

m. = Ф
. 1  /J_2_0^^75>| 

Vn + 0 125>'
(5.8)

first suggested by Blom (1958) can also be used; Ф"^(*) is the inverse of the 
standard normal cdf and computer routines exist for this function. Other 
formulas given by Hastings (1955) are quoted in Abramowltz and Stegun 
(1965, p. 933); an algorithm has been given by Milton and Hotchkiss (1969), 
and simpler formulas, suitable for use on pocket calculators, have since 
been given by Page (1977) and by Hamaker (1978). Weisberg and Bingham 
(1975) have shown that use of Blom*s formula and the Milton-Hotchkiss 
algorithm for Ф"^(*) to approximate mj makes negligible difference to the 
distribution of R^(X,m) = which in any case must be found by Monte 
Carlo methods. Shapiro and Francia (1972) originally introduced W* as a 
replacement for the Shapiro-Wllk statistic below, for use when n > 50, but 
the above articles suggest that W ’ = R^(X,m) will be useful, because of the



TABLE 5.2 Upper Tail Percentage Points for Z = n { l  -  R^ (X ,m )} for a 
Test for Normality with Complete or Type 2 Censored Data; p = censoring 
ratio r/n

Significance level a

0.50 0.25 0.15 0.10 0.05 0.025 0.01

p = 0.2

p = 0.4

P = 0.6

p = 0.8

p = 0.9

p = 0.95

1.0

20
40
60
80

100

10
20
40
60
80

100

10
20
40
60
80

100

10
20
40
60
80

100

10
20
40
60
80

100

10
20
40
60
80

100

10
20
40
60
80

100
400
600

1000

1.52
2.68
3.25
3.65
3.94

0.77
1.33
1.77
2.02
2.18
2.30

0.76
1.03
1.30
1.42
1.52
1.60

0.65
0.84
1.01
1.08
1.15
1.19

0.62
0.76
0.90
0.96
1.01
1.05

0.60
0.74
0.87
0.92
0.97
1.01

0.59
0.76
0.91
1.01
1.06
1.08
1.34
1.43
1.50

2.86
4.25
5.05
5.64
6.07

1.42
2.09
2.72
3.04
3.30
3.51

1.19
1.57
1.93
2.13
2.27
2.38

1.01
1.25
1.48
1.58
1.67
1.78

0.94
1.14
1.31 
1.40
1.46
1.50

0.92
1.11
1.26 
1.33
1.39
1.43

0.89
1.11
1.32
1.42
1.50
1.55
1.83
1.94
2.00

3.65
5.40
6.34
7.08
7.64

1.80
2.64
3.42
3.84
4.16
4.39

1.50
1.97
2.42
2.66
2.82
2.94

1.26
1.55
1.81
1.95
2.06
2.14

1.17
1.40
1.61
1.70
1.78
1.84

1.13
1.36
1.54
1.61
1.68
1.741.10
1.36
1.60
1.72 
1.80
1.86
2.17
2.26
2.33

4.16
6.27
7.46 
8.32
8.95

2.03
3.07
3.98
4.49
4.84
5.09

1.76
2.28
2.81
3.08
3.29
3.43

1.45
1.79
2.09
2.25
2.38
2.47

1.35
1.60
1.86
1.96
2.05
2.12

1.30
1.55
1.76
1.85
1.92
1.98

1.26
1.56
1.83
1.96
2.05
2.11
2.45
2.52
2.60

5.26 
7.69
9.25

10.38
11.22

2.51
3.76
4.92
5.65
6.13
6.46

2.18
2.83
3.47
3.86 
4.12
4.30

1.79
2.20
2.61
2.80 
2.95
3.07

1.67
1.97
2.27
2.38
2.50
2.60

1.62
1.89
2.14
2.26
2.35
2.41

1.58
1.91
2.23
2.39 
2.49
2.56
2.89
2.98 
3.11

6.65
9.07

11.00
12.50
13.64

3.17
4.46
5.97
6.79
7.44
7.92

2.61
3.38 
4.22
4.70
5.04
5.27

2.14
2.63
3.14
3.38
3.56
3.68

2.01
2.33
2.70
2.87
2.99
3.07

1.95
2.26
2.52
2.69
2.80
2.88

1.90
2.31
2.66
2.83
2.94
3.01
3.36
3.42
3.61

8.13
10.76
13.01
15.17 
16.96

3.90
5.38
7.30
8.51
9.38

10.01

3.15
4.09
5.31 
5.97
6.36
6.63

2.59
3.27
3.85
4.29
4.50
4.61

2.42
2.86
3.34
3.54 
3.68 
3.78

2.34
2.73
3.14
3.27
3.39
3.48

2.27
2.81
3.30
3.43
3.54
3.61
3.95
4.04 
4.25



204 STEPHENS

ready availability of good approximations to mi, for smaller n. We have 
therefore constructed tables for this test based on R^(X ,m ), using (5.8) for m.

5.7.3 CorrelationTestBasedon R^(X,m)

The correlation test using R^ (X, m) then takes the following form:

(a) Calculate Z = n { I -  R^ (X ,m )}, with mi given by (5.8).
(b) Refer Z to Table 5.2. Hq is rejected if Z is greater than the percentage 

point for given values of n and of p = r/n, and significance level a .
Table 5.2 contains percentage points for use with Type 2 censored data. 
They have been found by extensive Monte Carlo sampling, using 10,000 
samples for each n. Shapiro and Francia (1972) have given points for 
W ’ = R^(X,m ), for complete samples only, for n = 35 and for all n be
tween 50 and 99. Fotopoulos, Leslie, and Stephens (1984) have produced 
asymptotic theory for Z (X ,m ), for complete samples.

Tables are not given for Type I right-censored data since objections 
apply sim ilar to those against EDF statistics. If the цррег censoring value 
were t, and if p = ф{1 -  ß ) / a } ,  tables of Z could be given for selected p and n; 
however, they would have to be entered, in practice, at p = ф {(t -  ?)/?}, and 
this could cause an error in the apparent significance level of Z . For large 
samples, Z can be calculated from the available observations, and Table 5.2 
can be used to give an approximate test.

E 5.7.3 Example

Table 5.3 contains 20 values of weights of chicks, taken from Bliss (1976), 
already used in Chapter 4 in tests of normality. When these are correlated

TABLE 5.3 Data for Tests of Normality

X^; 156, 162, 168, 182, 186, 190, 190, 196, 202, 210, 214, 220, 226, 
230, 230, 236, 236, 242, 246, 270 

b
Hija........ ....  : 1.86748, 1.40760, 1.13095, 0.92098, 0.74538, 0.59030,

0.44833, 0.31493, 0.18696, 0.06200

n»20.
I C, m i l  • 1*8682, 1.4034, 1.1281, 0.9191, 0.7441, 0.5895, 0.4478, 

0.3146, 0.1868, 0.0619

^The values X are weights of 20 chicks, in gram s.
W alues m are the exact expected values of standard normal order statistics. 
^Values m* are those given by (5.8).
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with mi calculated from (5.8), also given in the table, the value of R is 
0.9907, leading to Z = 0.3719. When the weights are correlated against the 
exact mi (also given), Z = 0.3720, a negligible difference. Reference to 
Table 5.2 shows that Z is not significant at p = 0.50, so that normality is 
not rejected (the same conclusion as in Section 4 .8 .1 ). An example with 
censored data is in Section 11.4 . 1. 2.

5.7.4 Correlation Test Based on R^ (X, H)

Let Hi = Ф“^{i/(n  + 1)} ; a test could be based on statistic Z(X,H) = 
n { l  -  R^(X,H)}, following the procedure given above. This test statistic was 
suggested by de Wet and Venter (1972). Use of the Щ  instead of mi makes 
distribution theory of Z(X,H) easier than that of Z(X,m), and de Wet and 
Venter have given the asymptotic theory for Z(X,H), for full samples. 
Stephens (1986) has given tables for Z(X,H), for finite n and for complete 
and Type 2 censored samples. These are not included here since computation 
of Z(X,H) is no easier than that of Z(X,m) and the corresponding tests can 
be expected to have sim ilar properties.

5.7.5 Other Correlation Statistics for Normality

Smith and Bain (1976) have proposed the correlation statistic R (X ,K ), where 
Ki is a close approximation to Щ ,  given by Abramowltz and Stegun (1965, 
p. 933). Smith and Baln have given tables for use when R^(X,K) has been 
calculated from Type 2 censored data. Filliben (1975) investigated tests 
using T i = nii the median of the distribution of W^i^; nii is given by Ф“^(íïi), 
where Ui is the median of the i-th order statistic of a uniform sample. 
Filliben has given an empirical approximation for Ui which gives a formula 
for ihi sim ilar to that for mi given in (5.8) above; thus R^(X,m ) is close to 
R^(X,m ) =W * and has sim ilar power properties (Filliben, 1975). Fllllben  
also gave tables of critical values of R^ (X, m ).

5.8 REGRESSION TESTS BASED ON RESIDUALS

We next turn to the second method of testing described in Section 5.3, in 
which parameters a  and ß  in the model Х^ц =  a  +  ß T \  +  ^i are estimated 
and a test is then based on the residuals. We consider estimates given by 
generalized least squares, and suppose T = m. In the notation of Section 5.2, 
let Vij = E { W^ij -  în i} { W ( j) -  m j} ,  the covariance of W (i) and W ( j). Then, 
as before, let X be the column vector with components X (i), . , X(n)» let
m be the column vector with components m i, . . . ,  m^, and let I be a column 
vector with each component I . Let V be the matrix V = (Vij) and let X* be 
the transpose of X; sim ilarly for other vectors and matrices. The general
ized least squares estimates of a  and ß are
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а  = -m ’GX and ß =  V G X (5.9)

where

G =
V “4lm^ - т Г ) У

(Г У -Ч ) -  ( r V “^m)2

For particular distributions, for example, for the normal and exponential 
distributions, these equations simplify considerably^.

The estimate of X(i) given by the line is again =  a  +  ß m i ,  and the 
sum of squares of residuals, corresponding to the E rro r Sum of Squares In 
the ANOVA table of Section 5.4, is ESS^ = 2 i(X (i) -  ^ (i))^ ; a test for fit 
may then be based on Zj (X,m ) = ESSj/S^, where Ŝ  = (X(i) -  as
before. Alternatively, since In generalized least squares analysis the quan
tity ESS2 = (X -  i ^ ’V “^(X -  ÍQ, where X is the column vector with^compo
nents Xi(I)* X ĵ̂ ,̂ is minimized by the parameter estimates a  and /?, 
the test might be based on Z 2(X ,m ) = ESS2/S^. The test based on Z^ can be 
shown to be consistent. Some examination of such tests has been made by 
Spinelli (1980), for the exponential and the extreme-value distributions, but 
otherwise they have not been much developed.

5.9 TESTS BASED ON THE RATIO OF 
TWO ESTIMATES OF SCALE

Finally we turn to the third method of testing the fit of the model (5.2), one 
which has been developed by Shapiro and Wilk for testing normality and 
exponentiality. The procedure used is to compare /3̂ , where /? is the general
ized least squares estimate given in equation (5.9), with the estimate of /3̂  
given by the sample variance, and the test statistic is essentially 
Tests of this type are closely related to those in the previous section.

For the normal test, this statistic works very well, but In other test 
situations, for example, for the exponential test, the statistic is inconsistent; 
in practical terms there will be certain alternative distributions which will 
not be detected even with very large samples (see Section 5.12).

In the case of tests for normality, modifications of the first estimate 
of /3̂ above have also been suggested, since the estimate is complicated to 
calculate. It is not, of course, necessary to use the particular estimates of 
scale given above, and a test can be developed using the ratio of any two con
venient estimates for ß ^. Some comments on the choice of these estimates 
are in Section 5.11 below.

In the next section we give tests for normality based on residuals and on 
ratios of scale estimates. Regression tests for exponentiality of all types 
are Included with other tests in Section 5.11, and some general comments 
on the techniques are given in Section 5.12.
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5.10 REGRESSION TESTS FOR THE  
NORMAL DISTRIBUTION 2

5 .10 .1 Tests for Normality Based on Residuals

The model (5 . 2) can be extended to provide further tests of fit. Suppose the 
m \  are the expected values of order statistics from a N (0 , 1) distribution; the 
model expressed by (5.2) is then correct only when the sample Xi comes 
from a normal distribution. A wide class of alternative distributions can be 
specified by supposing that the order statistics in a sample of size n from a 
distribution F(X) have expectations which satisfy the model

E(X(i)) = Д + o-m̂  + (5.10)

where ß^y • • • are constants and W2(m i), W3 (m j), . . .  are functions of mi- 
By different choices of these functions, the normal model for X  is embedded 
in various classes of densities. For the appropriate class, for given W j(*), 
the estimates ^  of the constants ß j can be derived by generalized least 
squares. A test for normality can be based on these estimates by using them 
to test Ho : /З2 = /З3 = • • • = 0. Equivalently, tests may be based on the reduc
tion in error sum of squares between a fit of model (5.2) and the more gen
eral model (5.10) above. LaBrecque (1973, 1977) has developed such tests, 
for Wj(m) a j-th order polynomial in m, chosen so that the covariance matrix 
of the estimates д, o-, e tc ., should be diagonal, and has given the 
necessary tables of coefficients and significance points. Stephens (1976) has 
suggested use of Hermite polynomials for w j(*) and has given asymptotic 
theory of the tests based on ßj, for j > 2 .

5.10.2 T estfo r N (0 , 1)

When the parameters in N (^ ,(j^ ) are specified, the test based on residuals 
takes a simple form. Let Х^ц = (Х(ц -  д)/о-; the null h3pothesis then reduces 
to a test that the Х^ц are N (0 , 1) ,  and a natural statistic based on residuals 
is

“ Î . - = = % ) - ” ,>*

De Wet and Venter (1972) have investigated the asymptotic theory of this 
statistic (which they call L^). However, no tables are available for small 
sample sizes, and the power properties of the test are not known. The test 
based on would be a rival to the many tests available for this case, called 
Case 0 in Chapter 4, when parameters are fully specified; for example, the 
Xi could be transformed to uniforms (on the null hypothesis) by the Probabil
ity Integral Transformation (Section 4.2.3) and any of the many tests for 
U (0 ,1) could be used.
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5.10.S Tests for Normality Based on the Ratio of 
Estimates of Scale; the Shapiro-Wilk Test

For the normal distribution, a. and ß in (5.2) are д and a, respectively; the 
estimates of these parameters given by (5.9) then become

-  -  , .  m *V -iX
Ai = X  and <7 = , —

m ’ V ^ m
(5.11)

The test statistic proposed by Shapiro and Wilk (1965) is

W  =
2r 4

Ŝ (5.12)

where S  ̂ = 2 (Xaî  -  X)^ = 2(Х^ -  before, and where here R^ = m *V ~ ^
and = m ^ V ^ V "^ .  The factors R^ and ensure that W  always takes 
values between 0 and I.

5. 10. 3. 1 Computing Formulas

When O- is substituted in the formula for W , it may be reduced to the following 
computing formula. First, let vectors a* and a be defined by

a* = V ”^m and a = a*/C (5.13)

then

W
Ŝ  S2 (5.14)

In order to calculate W , the vector a is needed, and this in turn requires 
values of m and V “ ,̂ derived from V. At the time of the introduction of W , 
exact values of V  were published only for sample sizes up to n = 20 (Teichroew, 
1956; Sarhan and Greenberg, 1962). They have since been calculated for 
larger sample sizes (Tietjen, Kahaner, and Beckman, 1978), and an algorithm 
for approximating V  has been given by Davis and Stephens (1977). For values 
of n between 21 and 50, Shapiro and Wilk used approximations for the compo
nents ai of a, and gave a table for sample sizes from n = 3 to 50. These are 
given in Table 5.4. The a  ̂are symmetric about 0, that is, aj = 
i = I , . . . ,  r , where r  = (n -  1)/2 if n is odd and r  = n/2 if n is even, so 
that only the positive values are given.

5. 10.3. 2 Test Procedures

The steps in making the W test for normality, that is, for testing : the Xj 
are a random sample from N(ai,ct̂ ), with ju, cr unknown, are:
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TABLE 5.4 Coefficients for the W Test for Normality

1
2
3
4
5

1
2
3
4
5

2 3 4 5 6 7 8 9 10

.7071 .7071 .6872 .6646 .6431 .6233 .6052 .5888 .5739
— .0000 .1677 .2413 .2806 .3031 .3164 .3244 .3291
— — — .0000 .0875 .1401 .1743 .1976 .2141
— — — — .0000 .0561 .0947 .1224
— — — — — — — .0000 .0399

11 12 13 14 15 16 17 18 19 20

.5601 .5475 .5359 .5251 .5150 .5056 .4968 .4886 .4808 .4734

.3315 .3325 .3325 .3318 .3306 .3290 .3273 .3253 .3232 .3211

.2260 .2347 .2412 .2460 .2495 .2521 .2540 .2553 .2561 .2565

.1429 .1586 .1707 .1802 .1878 .1939 .1988 .2027 .2059 .2085

.0695 .0922 .1099 .1240 .1353 .1447 .1524 .1587 .1641 .1686

.0000 .0303 .0539 .0727 .0880 .1005 .1109 .1197 .1271 .1334
— — .0000 .0240 .0433 .0593 .0725 .0837 .0932 .1013
— — — — .0000 .0196 .0359 .0496 .0612 .0711
— — — — — — .0000 .0163 .0303 .0422
— — — — — — — — .0000 .0140

21 22 23 24 25 26 27 28 29 30

I .4643 .4590 .4542 .4493 .4450 .4407 .4366 .4328 .4291 .4254
2 .3185 .3156 .3126 .3098 .3069 .3043 .3018 .2992 .2968 .2944
3 .2578 .2571 .2563 .2554 .2543 .2533 .2522 .2510 .2499 .2487
4 .2119 .2131 .2139 .2145 .2148 .2151 .2152 .2151 .2150 .2148
5 .1736 .1764 .1787 .1807 .1822 .1836 .1848 .1857 .1864 .1870

6 .1399 .1443 .1480 .1512 .1539 .1563 .1584 .1601 .1616 .1630
7 .1092 .1150 .1201 .1245 .1283 .1316 .1346 .1372 .1395 .1415
8 .0804 .0878 .0941 .0997 .1046 .1089 .1128 .1162 .1192 .1219
9 .0530 .0618 .0696 .0764 .0823 .0876 .0923 .0965 .1002 .1036

10 .0263 .0368 .0459 .0539 .0610 .0672 .0728 .0778 .0822 .0862

11 .0000 .0122 .0228 .0321 .0403 .0476 .0540 .0598 .0650 .0697
12 — — .0000 .0107 .0200 .0284 .0358 .0424 .0483 .0537
13 — — — — .0000 .0094 .0178 .0253 .0320 .0381
14 ___ — — — — — .0000 .0084 .0159 .0227
15 — — — — — — — — .0000 .0076

(continued)
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TABLE 5.4 (continued)

SI 32 33 34 35 36 37 38 39 40

.4040 .4015 .3989 .3964
2794 .2774 .2755 .2737
2403 .2391 .2380 .2368
2116 .2110 .2104 .2098

.1883 .1881 .1880 .1878

.1683 .1686 .1689 .1691

.1505 .1513 .1520 .1526

.1344 .1356 .1366 .1376

.1196 .1211 .1225 .1237

.1056 .1075 .1092 .1108

.0924 .0947 .0967 .0986

.0798 .0824 .0848 .0870

.0677 .0706 .0733 .0759

.0559 .0592 .0622 .0651

.0444 .0481 .0515 .0546

.0331 .0372 .0409 .0444

.0220 .0264 .0305 .0343

.0110 .0158 .0203 .0244

.0000 .0053 .0101 .0146
— — .0000 .0049

47 48 49 50

1 .4220
2 .2921
3 .2475
4 .2145
5 . 1874

6 .1641
7 . 1433
8 . 1243
9 . 1066

10 . 0899

11 .0739
12 .0585
13 .0435
14 .0289
15 .0144

16 .0000
17 -
18 -
19 -
20 -

41

.4188

.2898

.2463

.2141

.1878

.1651

.1449

.1265

.1093

.0931

.0777

.0629

.0485

.0344

.0206

.0068

42

.4156

.2876

.2451

.2137

.1880

.1660

.1463

.1284

.1118

.0961

.0812

.0669

.0530

.0395

.0262

.0131

.0000

43

.4127

.2854

.2439

.2132

.1882

.1667

.1475

.1301

.1140

.0988

.0844

.0706

.0572

.0441

.0314

.4096

.2834

.2427

.2127

.1883

.1673

.1487

.1317

.1160

.1013

.0873

.0739

.0610

.0484

.0361

.4068

.2813

.2415

.2121

.1883

.1678

.1496

.1331

.1179

.1036

.0900

.0770

.0645

.0523

.0404

.0187 .0239 .0287 

.0062 .0119 .0172 
— .0000 .0057

44 45 46

I .3940 .3917 .3894 .3872 .3850 .3830 .3808 .3789 .3770 .3751
2 .2719 .2701 .2684 .2667 .2651 .2635 .2620 .2604 .2589 .2574
3 .2357 .2345 .2334 .2323 .2313 .2302 .2291 .2281 .2271 .2260
4 .2091 .2085 .2078 .2072 .2065 .2058 .2052 .2045 .2038 .2032
5 .1876 .1874 .1871 .1868 .1865 .1862 .1859 .1855 .1851 .1847

6 .1693 .1694 .1695 .1695 .1695 .1695 .1695 .1693 .1692 .1691
7 .1531 .1535 .1530 .1542 .1545 .1548 .1550 .1551 .1553 .1554
8 .1384 .1392 .1398 .1405 .1410 .1415 .1420 .1423 .1427 .1430
9 .1249 .1259 .1269 .1278 .1286 .1293 .1300 .1306 .1312 .1317

10 .1123 .1136 .1149 .1160 .1170 .1180 .1189 .1197 .1205 .1212

(continued)
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TABLE 5.4 (continued)

41 42 43 44 45 46 47 48 49 50

11 .1004 .1020 .1035 .1049 .1062 .1073 .1085 .1095 .1105 .1113
12 .0891 .0909 .0927 .0943 .0959 .0972 .0986 .0998 .1010 .1020
13 .0782 .0804 .0824 .0842 .0860 .0876 .0892 .0906 .0919 .0932
14 .0677 .0701 .0724 .0745 .0765 .0783 .0801 .0817 .0832 .0846
15 .0575 .0602 .0628 .0651 .0673 .0694 .0713 .0731 .0748 .0764

16 .0476 .0506 .0534 .0560 .0584 .0607 .0628 .0648 .0667 .0685
17 .0379 .0411 .0442 .0471 .0497 .0522 .0546 .0568 .0588 .0608
18 .0283 .0318 .0352 .0383 .0412 .0439 .0465 .0489 .0511 .0532
19 .0188 .0227 .0263 .0296 .0328 .0357 .0385 .0411 .0436 .0459
20 .0094 .0136 .0175 .0211 .0245 .0277 .0307 .0335 .0361 .0386

21 .0000 .0045 .0087 .0126 .0163 .0197 .0229 .0259 .0288 .0314
22 — — .0000 .0042 .0081 .0118 .0153 .0185 .0215 .0244
23 — — — — .0000 .0039 .0076 .0111 .0143 .0174
24 — — — — — — .0000 .0037 .0071 .0104
25 — — — — — — — — .000 .0035

Taken from Shapiro and Wilk (1965), with permission of the authors and of 
the Biometrika Trustees.

(a)

(b)
(C)

Calculate Y  from Y  = Z. - a .. .(X. .. „ 
i= l n + l- i ' (n+l-i)

-  )̂ where r  = (n -  1)/2,

if n is odd, and r  = n/2 if n is even.
Calculate W  = Y V S ^ .
If W  is less than the value given in the lower tail in Table 5.5 for appro
priate values of n and a ,  reject Hq at level a .

The exact distribution of W  under the null hypothesis w ill depend on n, 
but not on the true values of д and o-. This distribution is not known, and 
Shapiro and Wilk provided Monte Carlo percentage points for use with the 
test. Table 5.5 contains these percentage points of W , for sample sizes 
n < 50. Shapiro and Wilk (1968) gave an approximation to the null distribution 
of W .

The test is made in the lower tail of W , because extensive Monte Carlo 
studies by Shapiro and Wilk suggested that when the sample is not from a 
normal distribution, low values of W  w ill usually result; this is so because 
W  is approximately R^(X,m) for the normal case (see Section 5.10.4).
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TABLE 5.5 Percentage Points for the W  Test for Normality

Significance level а.

Lower tail Upper tail

n 0.01 0.02 0.05 0.10 0.50 0.10 0.05 0.02 0.01

3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000
4
5

6
7
8 
9

10

.687

.686
.707
.715

.748

.762
.792
.806

.935

.927
.987
.979

.992

.986
.996
.991

.730

.749

.764

.781

.760

.778

.791

.806

.803

.818

.829

.842

.838

.851

.859

.869

.928

.932

.935

.938

.972

.972

.972

.972

.979

.978

.978

.978

12
13
14
15

.805

.814

.825

.835

.828

.837

.846

.855

.859

.866

.874

.881

.883

.889

.895

.901

.943

.945

.947

.950

.973

.974

.975

.975

.979

.979

.980

.980

16 0.844
17 .851
18 .858
19 . 863
20 . 868

21 0.873
22 .878
23 .881
24 .884
25 .888

26 0.891
27 . 894
28 .896
29 . 898
30 .900

31 0.902
32 . 904
33 . 906
34 . 908
35 .910

0.863 0.887 
. 869 . 892

0.906 0.952 
.910 .954

.874

.879

.884

.897

.901

.905

.914

.917

.920

.956

.957

.959

.978

.978

.979

.982

.982

.983

0.888 0.908 
.892 .911

0.923 0.960 
.926 .961

.895

.898

.901

.914

.916

.918

.928

.930

.931

.962

.963

.964

.981

.981

.981

.984

.984

.985

0.904 0.920 0.933 0.965 0.982
.906 .923 .935 .965 .982
.908 .924 .936 .966 .982
.910 .926 .937 .966 .982
.912 .927 .939 .967 .983

0.914 0.929 0.940 0.967 0.983
.915 .930 .941 .968 .983
.917 .931 .942 .968 .983
. 919 . 933 . 943 . 969 . 983
.920 .934 .944 .969 .984

.997

.993

0.713 0.743 0.788 0.826 0.927 0.974 0.981 0.986 0.989
.985
.984
.984
.983

.988

.987

.986

.986

11 0.792 0.817 0.850 0.876 0.940 0.973 0.979 0.984 0.986
.984
.984
.984
.984

.986

.986

.986

.987

0.976 0.981 0.985 0.987 
.977 .981 .985 .987

.986

.986

.986

.988

.988

.988

0.980 0.983 0.987 0.989 
.980 .984 .987 .989

.987

.987

.988

.989

.989

.989

0.985 0.988 0.989 
.985 .988 .990
.985 .988 .990
.985 .988 .990

".985 .988 .900

0.986 0.988 0.990 
.986 .988 .990
.986 .989 .990
.986 .989 .990
.986 .989 .990

(continued)



TESTS BASED ON REGRESSION AND CORRELATION 213

TABLE 5.5 (continued)

n

Significance level a

Lower tail 

0.01 0.02 0.05 0.10 0.50 0.10 0.05

Upper tail 

0.02 0.01

36 0.912 0.922 0.935 0.945 0.970 0.984 0.986 0.989 0.990
37 .914 .924 .936 .946 .970 .984 .987 .989 .990
38 .916 .925 .938 .947 .971 .984 .987 .989 .990
39 .917 .927 .939 .948 .971 .984 .987 .989 .991
40 .919 .928 .940 .949 .972 .985 .987 .989 .991

41 0.920 0.929 0.941 0.950 0.972 0.985 0.987 0.989 0.991
42 .922 .930 .942 .951 .972 .985 .987 .989 .991
43 .923 .932 .943 .951 .973 .985 .987 .990 .991
44 .924 .933 .944 .952 .973 .985 .987 .990 .991
45 .926 .934 .945 .953 .973 .985 .988 .990 .991

46 0.927 0.935 0.945 0.953 0.974 0.985 0.988 0.990 0.991
47 .928 .936 .946 .954 .974 .985 .988 .990 .991
48 .929 .937 .947 .954 .974 .985 .988 .990 .991
49 .929 .937 .947 .955 .974 .985 .988 .990 .991
50 .930 .938 .947 .955 .974 .985 .988 .990 .991

Taken from Shapiro and Wilk (1965), with permission of the authors 
and of the Biometrika Trustees.

E 5.10. 3. 3 Example

For the data of Table 5.3, Y  in Step (a) above is (using coefficients from  
Table 5.4) Y  = 0.4734(270 -  156) + 0.3211(246 -  162) + • • • = 131.95. Ŝ  is 
17845 and W  = 0.976. Reference to Table 5.5 shows W  to be significant at 
approximately the 10% level, upper tail, indicating a very good normal fit.

5.10.4 The Shapiro-Francia Test

A test sim ilar to W, but for use with n >  50, was later suggested by Shapiro 
and Francia (1972). This is based on the observation of Gupta (1952), that 
the estimate a  is almost the same if is Ignored in (5.11); the test statistic 
then given by Shapiro and Francia is
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As has already been observed, is equivalent to the sample correlation 
statistic R^(X,m) given by equation (5.7) of Section 5.7.1. A justification 
for the equivalence, for large n, of W  and W* has bèen given by Stephens 
(1975), who showed that, for large n, V “4n ~  2m; then /n and /n in 
Section 5.10.3 will have limits 2 and 4 and W  reduces to W ’ = R^(X,m ).

5. 10. 5 The d*Agostino Test

In the above tests, a  is given by a linear combination of the order statistics. 
The coefficients are difficult to calculate for W , and in W* the formula is 
replaced by an easier one. Other linear combinations of order statistics can 
also be used to estimate o, and one in particular, proposed by Downton 
(1966), has been used by d^Agostino to provide a further adapation of the 
Shapiro-Wilk statistic. d’Agostino’s statistic is given by

o/o
= - è ( n + l)} ]/ (S n  ) (5.15)

The statistic is easier to calculate than W  or W* but must be used with 
both tails; d^Agostlno has shown by Monte Carlo studies that alternative dis
tributions may produce large or small values of the statistic. D ’Agostino 
(1971, 1972, 1973) tabled percentage points for a standardized value of D ^, 
given by Y  = {D ^  -  (2n/7t ) ”^} n/п/О.02998598, and gave power studies (see 
Chapter 9). Note that D^ can be regarded as a correlation statistic, based 
on the correlation R (X ,T) where now T^ = { i  -  j(n  + 1)}; however, the fact 
that Ti is not near mi means that D^ can take significantly large or small 
values when the sample is not normal.

5.10.6 Power Studies for Regression Tests 
of Normality

Shapiro and Wilk (1965) and Shapiro, Wilk, and Chen (1968) have given exten
sive Monte Carlo studies to compare W  with other test statistics for normal
ity. Their studies indicate that W  is a powerful omnibus test, particularly 
when compared with the Pearson chi-square tests and against other older 
tests, for example, those based on skewness bj and kurtosis Ьз, or 
U = range/(standard deviation). Stephens (1974) also gave comparisons, par
ticularly of W  with EDF statistics, and pointed out that low power results for 
the latter, given in the papers quoted above, are based on non-comparable 
test situations. Nevertheless, over a wide range of alternative distributions, 
W  gives slightly better power than EDF statistics A^ and W ^, and consider
ably better than the Kolmogorov D, or the Pearson X^ or Pearson-Fisher X^ 
discussed in Chapter 3. For large samples, Stephens (1974) also compared 
W , W*, and Da  for power over a wide range of alternatives. The power of W ’ 
is marginally less than that of W  when W  is available, and that of Da  is
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sm aller again. Thus the power drops as the statistic becomes more easy to 
calculate. Dyer (1974) has shown that W* has good power properties. For 
large samples these studies are effectively showing the value of the corre
lation coefficients R^(X,m) or R^(XjH) as test statistics for normality. Of 
these statistics, it would appear to be best to use the Shapiro-Wilk W  for 
small samples, and Z(X ,m ) for larger samples (n>  50), but further com
parisons would be useful.

5.11 REGRESSION TESTS FOR THE 
EXPONENTIAL DISTRIBUTION

5.11.1 Introduction

In this and the following sections we discuss tests of

Hq : a random sample of X-values comes from Exp ( a , ß) 
that is, the distribution

F q (x) = I -  exp { - ( x  -  o i ) / ß } f  X > O', /3 > 0 (5.16)

Parameter a  is the origin of the distribution, and ß  is the scale parameter. 
First suppose that both a  and ß  are unknown.

5.11.2 Correlation Coefficient Tests

For the exponential distribution, m. = (n -  j + 1)"^ and so can be calcu

lated without numerical Integration. The test statistic Z (X ,m )= n {l  -R ^(X ,m )}, 
for either complete or right-censored samples of Type 2, is referred to 
Table 5.6. Points in this table were found from Monte Carlo samples, using
10,000 samples for each n.

Also, for the exponential distribution, Hj = - lo g  { l  -  i/(n + 1 )};  the 
correlation test statistic using H is then Z (X ,H ) = n { l  -  R ^ (X ,H )} and is 
referred to Table 5.7. The points differ only slightly from those for Z(X ,m ) 
except when p, the censoring ratio, is near I . Although Spinelli and Stephens 
(1983; see Section 5.11.6) found Z (X ,H ) less sensitive than Z (X ,m ) for 
complete samples we include the table because Щ  can be calculated more 
easily than mi. It might also be true that the power of Z (X ,H ) improves for 
right-censored samples where the influential tail observations are not avail
able. Smith and Bain (1976) have given a table of points for Z(X,H )/n, and 
Lockhart and Stephens (1986) have discussed asymptotic theory for both 
Z(X ,m ) and Z (X ,H ). Examples of the use of these statistics are given in 
Chapter 10.
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TABLE 5.6 Upper Tail Percentage Points for Z = n { l  -  R ^ (X ,m )} for a 
Test for Exponentiality, Parameters Unknown, for Complete or Type-2 
Right-Censored Data; p = r/n is the censoring ratio

Significance level a.

n 0.50 0.25 0.15 0.10 0.05 0.025 0.01

P = 0.2

P = 0.4

P = 0.6

P = 0.8

P = 0.9

P = 0.95

P = 1.0

20 1.74 2.83 3.68 4.40 5.44 6.24 6.97
40 2.53 3.95 5.00 5.87 7.32 8.81 10.71
60 2.80 4.32 5.44 6.34 7.90 9.47 11.64
80 2.95 4.51 5.68 6.58 8.20 9.81 12.13

100 3.05 4.63 5.82 6.74 8.39 10.03 12.44

10 0.86 1.41 1.82 2.16 2.68 3.09 3.50
20 1.25 1.98 2.51 2.96 3.73 4.49 5.46
40 1.48 2.26 2.84 3.34 4.13 4.96 6.15
60 1.54 2.33 2.93 3.42 4.23 5.08 6.27
80 1.57 2.38 2.98 3.47 4.28 5.14 6.34

100 1.59 2.40 3.01 3.49 4.31 5.18 6.37

10 0.75 1.22 1.55 1.81 2.25 2.65 3.19
20 0.95 1.47 1.86 2.17 2.69 3.25 4.03
40 1.06 1.60 2.02 2.36 2.93 3.54 4.36
60 1.09 1.65 2.05 2.39 2.96 3.56 4.37
80 1.11 1.66 2.07 2.40 2.98 3.58 4.39

100 1.12 1.66 2.08 2.41 2.99 3.59 4.40

10 0.65 1.04 1.32 1.55 1.93 2.31 2.83
20 0.79 1.22 1.55 1.81 2.27 2.76 3.46
40 0.87 1.32 1.67 1.94 2.43 2.85 3.56
60 0.90 1.35 1.69 1.97 2.45 2.92 3.63
80 0.91 1.37 1.71 1.99 2.46 2.95 3.66

100 0.92 1.37 1.72 2.00 2.47 2.97 3.68

10 0.62 1.00 1.27 1.49 1.85 2.23 2.68
20 0.79 1.21 1.53 1.79 2.25 2.74 3.45
40 0.86 1.32 1.66 1.94 2.42 2.96 3.67
60 0.89 1.35 1.69 1.97 2.46 2.99 3.70
80 0.91 1.36 1.70 1.99 2.49 3.01 3.71

100 0.92 1.37 1.71 2.00 2.50 3.02 3.72
10 0.63 1.03 1.31 1.53 1.89 2.24 2.67
20 0.81 1.26 1.59 1.89 2.40 2.89 3.73
40 0.93 1.41 1.80 2.11 2.71 3.26 4.06
60 0.97 1.47 1.85 2.16 2.73 3.30 4.14
80 0.99 1.50 1.88 2.18 2.74 3.32 4.18

100 1.00 1.52 1.89 2.20 2.74 3.34 4.20

10 0.64 1.05 1.34 1.56 1.92 2.25 2.67
20 0.92 1.46 1.87 2.20 2.77 3.35 4.10
40 1.26 2.00 2.58 3.05 3.94 4.92 6.42
60 1.47 2.32 2.95 3.52 4.67 5.94 8.01
80 1.64 2.58 3.30 3.96 5.25 6.81 9.33

100 1.78 2.78 3.57 4.30 5.70 7.49 10.35
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TABLE 5.7 Upper Tail Percentage Points for Z = n { l  -  R ^ (X ,H )} for a 
Test for Exponentiality, Parameters Unknown, for Complete or Type 2 
Right-Censored Data; p = r/n is the censoring ratio

Significance level a

0.50 0.25 0.15 0.10 0.05 0.025 0.01

20 2.13 3.38 4.33 5.12 6.40 7.59 8.94
40 2.68 4.14 5.25 6.15 7.61 9.06 11.10

P = 0.2 60 2.89 4.42 5.57 6.47 8.04 9.63 11.87
80 3.00 4.57 5.73 6.64 8.27 9.92 12.27

100 3.06 4.66 5.83 6.74 8.40 10.11 12.52

10 0.86 1.41 1.82 2.16 2.69 3.08 3.48
20 1.25 1.98 2.51 2.96 3.73 4.49 5.39
40 1.48 2.25 2.84 3.33 4.13 4.96 6.14

P -  0.4 60 1.54 2.33 2.93 3.42 4.23 5.08 6.27
80 1.57 2.38 2.98 3.46 4.28 5.14 6.33

100 1.59 2.40 3.00 3.49 4.31 5.18 6.37

10 0.75 1.22 1.54 1.80 2.25 2.65 3.18
20 0.95 1.47 1.85 2.17 2.70 3.27 4.01

P = O.6 40 1.06 1.61 2.02 2.36 2.93 3.53 4.36
60 1.09 1.64 2.05 2.39 2.96 3.56 4.37
80 1.11 1.66 2.07 2.40 2.98 3.58 4.39

100 1.11 1.67 2.08 2.41 2.99 3.58 4.40

10 0.65 1.03 1.31 1.53 1.93 2.31 2.81
20 0.79 1.22 1.55 1.81 2.28 2.78 3.48

P = 0.8 40 0.86 1.32 1.67 1.94 2.44 2.96 3.56
60 0.90 1.35 1.69 1.97 2.46 2.96 3.64
80 0.92 1.37 1.71 1.99 2.47 2.96 3.69

100 0.93 1.37 1.71 2.00 2.48 2.97 3.71

10 0.62 0.99 1.25 1.47 1.86 2.25 2.75
20 0.78 1.20 1.53 1.81 2.31 2.80 3.57
40 0.85 1.32 1.66 1.94 2.43 2.99 3.75

P = 0.9 60 0.89 1.35 1.69 1.98 2.48 3.03 3.77
80 0.91 1.36 1.71 1.99 2.50 3.05 3.77

100 0.92 1.37 1.72 2.00 2.51 3.06 3.78

10 0.62 1.02 1.29 1.51 1.90 2.28 2.74
20 0.80 1.25 1.61 1.88 2.43 3.05 3.96
40 0.92 1.41 1.82 2.15 2.78 3.41 4.29

P = 0.95 60 0.96 1.48 1.87 2.19 2.79 3.40 4.30
80 0.98 1.51 1.89 2.20 2.79 3.40 4.31

100 1.00 1.53 1.90 2.22 2.79 3.40 4.31

10 0.63 1.01 1.30 1.54 1.94 2.31 2.74
20 0.88 1.44 1.89 2.27 2.99 3.71 4.76
40 1.19 1.99 2.69 3.33 4.57 5.90 7.86P = 1 .0 60 1.39 2.33 3.20 3.96 5.52 7.33 9.85
80 1.55 2.63 3.62 4.49 6.35 8.52 11.52

100 1.67 2.86 3.94 4.90 7.00 9.44 12.83
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5.11.3 Tests Based on the Residuals

As was described before, tests may also be based on the ESS of Section
5.4.1, divided by a quadratic form in the When simple least squares 
is used, and when the divisor is S^, regression on m yields n(ESS/S^) = 
Z(X ,m ) as test statistic, and regression on H 3rlelds Z(X , H). The divisor Ŝ  
is an estimate of nß^ , but for the exponential distribution it might be better 
to use the estimate nX^, since X is a sufficient estimator of ß» The corre
sponding test statistic ESS/(nX^) does not appear to have been Investigated.

5.11.4 Tests Based on Residuals, When the Origin Is Known

Situations often arise in testing for exponentiallty where a  is known; usually 
O' = 0. If O' is OJq , the substitution X ’ = X -  Œq w ill reduce the test to a test 
of Hq , with O' = 0, on the X* values. Thus we can suppose the null hypothesis 
is

Hq : a set of values of X is from Exp (0,/3)

In the test statistics R^(X,m ) or R^(X,H) the fact that oj is 0 is not used;
however, the line Е(Х^ц) =  ß m \  can be fitted to the pairs {m j,X ^ jj} and a
test statistic can be constructed using the ESS divided by a suitable estimate
of /3̂ , sim ilar to those in Section 5.11.3 above. If a  and ß  were both known,
a natural statistic on these lines would be M?, = -  m.)^ where X* =

E (I) i' (i)
(X(i) -  O')//? ; this is analogous to of Section 5.10.2. Lockhart and Stephens 
(1986) have studied statistics based on residuals.

5.11.5 Tests Based on the Ratio of Two Estimates of Scale

5.11.5.1 The Shapiro-Wilk Test, for Origin 
and Scale Unknown

For the exponential distribution, the estimates in (5.9) become

n ( X _ ^

^ = ¾  and ¢ = - (5.17)

and the comparison o f  ß  ̂ with the sample variance leads to the Shapiro-Wilk
(1972) statistic

n (X - X  )2 
W „ = ------------^ (5.18)'E  (n -  1)S2

Thus the test for exponentiallty with origin and scale unknown is as follows:
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(a) Calculate W g  from (5.18).
(b) Refer W jj to Table 5.8, using, in general, a two-tail test.

Shapiro and Wilk pointed out that, in general, W g  w ill give a two-tail test, 
since for alternative distributions W g  may take either low or high values.

Shapiro and Wilk (1972) gave a table of percentage points for W g  based 
on Monte Carlo studies; Table 5.8 is adapted from their table. Currie (1980) 
has since calculated the points by numerical methods. Points for W g  can also 
be found from those of Greenwood^s statistic based on uniform spacings (see 
Section 10.9.3.2). The test is discussed in Section 5.12.

5.11.5.2 Adaptation of the Shapiro-Wilk Statistic 
for Known Origin

It is often required to test for F(x) in (5.16) with a  known; for the present, 
suppose O' = 0. The estimate of ß in the new model = /5т^ now becomes 
/? = X, the same as the maximum likelihood estimate, and the corresponding 
Shapiro-Wilk statistic would be based on X^/S^; Hahn and Shapiro (1967) 
have proposed WEq = S^/(n5c)^, and have given percentage points derived 
from Monte Carlo methods. Stephens (1978) later gave a test statistic, here 
called W g , which, for sample size n, has the same distribution as W g  for 
sample size n + I . Statistics W Eq and Wg are in fact equivalent, and both 
are equivalent to Greenwood^s statistic based on spacings (see Section
10.9.3.2). The test based on Wg w ill be given here since no new tables are 
necessary for its use. Suppose, returning to the general situation, that the 
known origin has value a  =  Œq . The steps in the test are as follows:

(a) Let z. = X. -  for i = I , 2, . . . ,  n.

(b) Calculate

i= l
and = E

1=1

(C ) Calculate Wg = A V [n {(n  + 1)B -  A ^ }].
(d) Refer Wg to Table 5.8, using the percentage points given for sample 

size n + I , and using a two-tail test.

Wg can also be calculated by adding one extra value X^+^ equal t o  to the 
given sample of X-values of size n, and then using all n + I values to calcu
late W e  from (5.18). This is a useful device if a computer program is already 
available for W e * Stephens (1978) showed that, for most alternatives, use of 
Wg gives greater power than using W e  as though a  were not known.

Shapiro and Wilk (1972) also discussed the situation when it is desired to 
test the exponential distributional form, and at the same time to test that
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TABLE 5.8 Percentage Points for and W_ for Testing Exponentiality

Significance level a

Lower tail

n 0.005 0.01 0.025 0.05 0.10 0.50 0.10 0.05 0.025

Upper tail 

0.01 0.005

3

4

5

6

7

8 

9

.252

.124

.085

.061

.051

.045

.040

10 .037

12 .031

14 .027

16 .023

18 .021

.254

.130

.091

.067

.059

.051

.0^4

.040

.036

.038

.028

.025

.260

.143

.105

.080

.070

.061

.054

.049

.041

.036

.033

.029

.270

.160

.119

.096

.081

.071

.063

.057

.049

.043

.037

.033

.292

.189

.144

.117

.097

.085

.075

.068

.057

.050

.044

.039

.571

.377

.288

.228

.187

.163

.142

.123

.101

.085

.073

.064

.971

.751

.555

.429

.347

.293

.255

.218

.172

.142

.119

.102

.993

.858.668

.509

.416

.350

.301

.253

.202

.165

.136

.116

.998

.924

.759

.584

.485

.403

.345

.288

.236

.186

.154

.131

.9997

.968

.860

.678

.571

.485

.402

.339

.272

.213

.177

.448

.9999

.984

.919

.750

.643

.543

.443

.370

.298

.232

.193

.167

H
И



20 .020

25 .017

30

35

40

.015

.013

.012

45 .011

50 .010

55

60

.009

.009

65 .008

70 .008 

75 .007

80 .007

85 .007

90 .006

95 .006

100 .006

.023

.019

.016

.014

.013

.012.011.010

.010

.009

.008

.008

.008

.007

.007

.007

.006

.026 .030 

.022 .025 

.019 .021 

.017 .019 

.015 .016 

.013 .015 

.012 .014 

.012 .013 

.011 .012 

.010 .011 

.009 .010 

.009 .010 

.008 .009 

.008 .009 

.008 .008 

.007 .008 

.007 .007

.035 

.029 

о 024  
.021 

.019 

.017 

.015 

.014 

.013 

.012 

.011 

.011 

.010 

.009 

.009 

.008 

.008

.057 .088 

.045 .067 

.036 .054 

.031 .044 

.027 .038 

.024 .033 

.021 .029 

.019 .026 

.018 .023 

.016 .022 

.015 .019 

.014 .018 

.013 .017 

.012 .016 

.012 .015 

.011 .014 

.010 .013

.100

.075

.059

.049

.041

.036

.032

.028

.025

.023

.021

.019

.018

.017

.016

.015

.014

.112

.084

.064

.054

.045

.039

.034

.030

.027

.025

.022

.021

.019

.017

.016

.015

.015

.129

.093

.072

.059

.050

.042

.036

.032

.029

.027

.024

.022
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Adapted from Shapiro and Wilk (1972), with permission of the authors and of the American Statistical Association.
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û; = OfQ , where i s  a given constant. The test statistic for a  is based on 

U =

When the observations are exponential, U is distributed independently of W g , 
and Shapiro and Wilk combine the two statistics by Fisher’s method (Sec
tion 8.15).

5.11.5.3 The Jackson Statistic

A statistic suggested by Jackson (1967) is effectively a comparison between 
the slope of the regression line through the origin, when Х(ц is plotted 
against mi and the covariance of the X-values is ignored, and X, the max
imum likelihood estimator of ß . The statistic is

J = Zm .X ,.y (nÍQ  
I (I)

In general, J is used as a two-tail test. Jackson has given moments of J, 
and percentage points for n = 5, 10, 15, 20. These are based on curve- 
fitting, using the moments.

5.11.5.4 The de Wet-Venter Statistic

De Wet and Venter (1973) have devised a statistic dependent on the ratio of 
two asymptotically efficient estimators of /3. It is straightforward to apply 
their method to the exponential test with a  = 0, for a complete sample; the 
test statistic is = n j^ {Z X ^ y / H j} where = -lo g  { l  -  i/(n + 1)}. De Wet 
and Venter have given as5nnptotic null distribution theory for V g .

5.11.6 Comparison of Regression Tests for ЕздюпепШШу

Splnelli and Stephens (1987) have reported results on power studies to com
pare R^(X,m) and R^(X,H) in tests for exponentiality, with EDF statistics 
W^ and , and with W g  ; for these studies both a  and ß  were assumed 
unknown. On the whole, the correlation statistics R^(X,m ) and R^(X,H) 
were less effective than EDF statistics or than W g , particularly for large 
sample sizes. For tests for this distribution (in contrast to tests for normal
ity) we might also expect some difference between R^ (X, m) and R^ (X, H) ; 
this emerges clearly from the studies, with R^ (X, H) less powerful overall 
than R^(X,m ). Statistic W g  has good power over a wide range of alternatives, 
although it will have lower power against alternatives with coefficient of 
variation equal to I (see Section 5.12).
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5.12 TESTS BASED ON THE RATIO OF TWO ESTIMATES 
OF SCALE: FURTHER COMMENTS

In Section 5.3 it was noted that Sarkadi (1975), for normality, and Gerlach
(1979) more generally, have proved the consistency of tests based on the 
correlation coefficient R (X ,m ). The value of R (X,m ) w ill, loosely speaking, 
approach I as the fit gets better. The test based on R (X ,m ) is then a one-tail 
test; the null hypothesis is rejected only for small values of R, or for large 
values of Z = n (l -  R^(X ,m )).

This consistency does not necessarily extend to correlation statistics 
R (X ,T ) when T is not m. For example, tests based on the ratio of the gener
alized least squares estimate of ß with an estimate obtained from the sample 
variance can be put in terms of correlation statistics, but will not generally 
be consistent. For the Shapiro-Wilk test for normality in Section 5.10.3, 
dr/S is equivalent to the correlation coefficient R (X ,T ) where T¿ is the i-th 
component of T = V"^m. Then if T is proportional to m, or very nearly so, 
the graph of X(j) against T^ will be approximately a straight line; R (X ,T ) will 
be a good measure of fit, and low values of R (X ,T ) will lead to rejection of 
the normal model. For the normal distribution, T is nearly proportional 
to m, since Vm »  m/2 impl5dng »  2m (Stephens 1975), with the ap
proximation becoming better for large n; then the Shapiro-Wilk W  approaches 
the Shapiro-Francia W \  and this is the same as the correlation statistic 
R^(X,m ), which is consistent.

However, the normal case is exceptional. Even for other symmetric 
distributions V “^m will not as a rule be proportional to m, even as3rmptot- 
Ically, and the situation is more complicated for non-S3nnmetric distributions, 
s u c h  as the exponential. For such distributions the test based on the ratio of 
/3 2 to Ŝ  is equivalent to the correlation R^ (X, T) with the vector T = 
l»V "^ (lm ’ -  m l*)V ” ,̂ and for most distributions this vector w ill not even be 
close to m. For example, for the e3qx>nential distribution, with a sample of 
size n, T is proportional to a vector with one component equal to -(n  -  I ), 
and the other n -  I components all equal to I . A plot of X (j) against T j , even 
for a ’̂perfect” exponential sample with X^y = mj, would not be close to a 
straight line, and the value of R (X ,T ) would not be close to I . The statistic 
R(X, T) then gives no indication of the fit in the sense that a large value indi
cates a good fit and a small value a bad fit. In practical terms, this means 
that for W e , equivalent to R ^ (X ,T ), both tails are needed to make the test. 
Also, the test statistic will not be consistent.

For the exponential distribution, the coefficient of variation C y  = o'/^l 
is I , and for large samples nWg converges in probability to l/C ^  = I; how
ever, there are other distributions for which nW£ would also converge to I 
(for example, the Beta distribution Beta (x; p ,q ) defined in Section 8.8.2, 
with P < I, and q = p {p  + l } / { l  -  p } ) ,  and W e  w ill not detect these alter
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natives* Nevertheless, when the alternatives to exponentiality are identified 
and exclude such distributions, W j; can be powerful, as was reported in 
Section 5.11.6; see also Section 10.14.

For the uniform distribution, the Shapiro-Wilk method gives Wu =
(n -  I) {X (n ) -  this also can be shown to be inconsistent. Similar
objections apply to the corresponding test for the extreme-value distribution, 
which was examined by Spinelli (1980).

In general, consistency of a test based on the ratio of two estimates of 
scale must depend critically on how these are chosen, and this question 
deserves closer examination. It is intuitively reasonable that efficient esti
mates, or estimates which are at least asymptotically efficient, will give 
better tests. The ESS, after fitting the line (5.3) may not be asymptotically 
efficient for the chosen T vector, nor will be the sample variance in the 
denominator except in the test for normality; this w ill affect the consistency 
of tests which use these estimates. De Wet and Venter (1973) have devised 
a general procedure for tests of distributions when only the scale is unknown, 
in which the ratio of two asymptotically efficient estimates is used. The 
authors gave asymptotic theory, and illustrated with tests for the Gamma 
distribution. The specific case for the exponential distribution is given in 
Section 5.11.5 above. However, computing formulas for the test statistic 
for other Gamma distributions, and tables for finite n are not available. 
Practical aspects of the method also remain to be explored, such as how the 
power is influenced by which estimates are used in the test ratio.

5.13 REGRESSION TESTS FOR OTHER DISTRIBUTIONS: 
GENERAL COMMENTS

The various techniques above for tests of normality and exponentiality have 
not been so extensively developed for other distributions, and the tests to 
follow, for the extreme-value, logistic, and Cauchy distributions, are all 
based on the simple correlation coefficients R^(X ,H ). H is used for compu
tational simplicity rather than m, although for some distributions (for ex
ample, the extreme-value, see Lawless, 1982) good approximations to m 
have been found and so tests could be developed; there may be some differ
ence in sensitivity between tests based on R^ (X, H) and those based on R^ (X, m ), 
as was found for the eзфonential distribution (Section 5.11.6). On this question 
more work needs to be done; also more comparisons are needed between cor
relation tests and others. The tables given in connection with the tests below 
were found from Monte Carlo studies with 10,000 samples for each n. The 
tests are given for Type 2 censored data: objections to tests for Type I cen
sored data are similar to those given in Section 5.7.3 in connection with 
tests for normality.
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5.14 CORRELATION TESTS FOR THE 
EXTREME-VALUE DISTRIBUTION

5.14.1 V e rs lo n l  

The null hypothesis is

Hq ; a random sample of X-values comes from

F o (x ;a ,ß ) = езф [- e x p  { - (x  -  o i ) / ß } ] ,  - « < x < « ,  ß >  О (5.21)

The test given is for complete or Type 2 right-censored samples; for left- 
censored data see Section 5.14.2. For this distribution Щ =
-  lo g [- lo g  {i/ (n  + 1 ) } ] .  This version of the extreme-value distribution has 
a long tail to the right and is used to model data in, for example, reliability 
studies. The test statistic Z = n { l  -  R ^ (X ,H )} can be calculated from the 
r  smallest observations; Hq is rejected if Z exceeds the appropriate value 
in Table 5.9. The table is entered, for Type 2 censored data, at p = r/n 
and at n.

5.14.2 Version 2

Another version of the extreme-value distribution is

Fo(x*;o',i3) = I -  exp [-exp  {(x^ -  a ) / ß } ] ^  -°° < x < «>, ß  > O (5.22)

This is the distribution of X* = -X , where X has distribution (5.21). For this 
distribution Hi = log [- lo g  { I  -  i/(n + 1 ) } ] .  The test statistic Z = 
n { l  -  R ^ (X ,H )}, calculated from the r  smallest observations (Type 2 censor
ing) is referred to Table 5.10. For left-censored data from (5.21), the signs 
can be changed and tested as right-censored data from (5.22), and vice- 
versa. These tables can also be used to give a test for the two-parameter 
Weibull distribution (density W(x;0,/3,m) of Section 4.11, also given in 
Equation (10.4)). This is a distribution with a long right tail, also used in 
reliability and survival studies. Here, left-censored data values are trans
formed by = -  log(X (i)) and the Y-values tested to come from (5.21),
since they w ill be right-censo red; sim ilarly, right-censored Welbull test 
data are transformed by = log (X^jj) and tested to come from (5.22). 
Gerlach (1979) has considered the test for (5.22) based on R^(X ,m ); the test 
is shown to be consistent and tables are given to make the test; tables for 
Z(X ,m ) are given by Stephens (1986). An example is given in Section 11.4.1.3.

5.15 CORRELATION TESTS FOR OTHER DISTRIBUTIONS

5.15.1 The Logistic Distribution

For the logistic distribution, F(x) = l/ [ l  + exp { - (x  -  o i ) / ß } ] ,  (-«> < x < <», 
ß > 0) and Щ = log {i/ (n  + I -  I ) } ,  i = I, . . ,  n. The statistic
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TABLE 5.9 Upper Tail Percentage Points for Z = n { l  -  R ^ (X ,H )} for a 
Test for the Extreme-Value Distribution, Equation (5.21), Parameters 
Unknown, for Complete or Type 2 Right-Censored Data; p = r/n is the 
censoring ratio

Significance level oi

n .50 .25 .15 .10 .05 .025 .01

20 1.62 2.81 3.52 4.07 4.90 5.69 7.19
40 2.58 4.12 5.18 6.09 7.48 8.92 10.47

P = 0.2 60 3.01 4.68 5.89 6.90 8.75 10.45 13.02
80 3.33 5.11 6.45 7.59 9.71 11.79 14.50

100 3.56 5.42 6.88 8.12 10.42 12.84 15.47

10 0 . 8X 1.38 1.75 2.04 2.52 2.93 3.39
20 1.27 1.98 2.51 2.94 3.76 4.56 5.46
40 1.62 2.47 3.09 3.66 4.66 5.59 6.85

P = 0.4 60 1.77 2.71 3.39 3.93 4.92 5.88 7.35
80 1.88 2.86 3.58 4.16 5.19 6.25 7.72

100 1.95 2.95 3.72 4.33 5.41 6.55 7.99

10 0.74 1.17 1.49 1.75 2.16 2.61 3.18
20 0.98 1.49 1.88 2.20 2.72 3.28 4.03

P = 0.6 40 1.15 1.73 2.15 2.49 3.08 3.77 4.66
60 1.23 1.82 2.25 2.61 3.26 3.92 4.77
80 1.28 1.89 2.34 2.71 3.35 4.04 4.91

100 1.32 1.94 2.41 2.78 3.41 4.12 5.03

10 0.64 0.99 1.25 1.46 1.79 2.14 2.58
20 0.79 1.19 1.48 1.71 2.14 2.58 3.29

P = 0.8 40 0.90 1.32 1.63 1.85 2.27 2.70 3.32
60 0.94 1.37 1.68 1.94 2.38 2.79 3.37
80 0.97 1.40 1.72 1.98 2.41 2.82 3.37

100 0.99 1.42 1.74 1.99 2.41 2.84 3.35

10 0.61 0.93 1.24 1.37 1.71 2.08 2.51
20 0.74 1.13 1.42 1.64 2.03 2.44 3.05
40 0.84 1.23 1.53 1.77 2.17 2.59 3.14

P = 0.9 60 0.88 1.28 1.57 1.80 2.19 2.59 3.17
80 0.91 1.31 1.59 1.81 2.20 2.60 3.18

100 0.92 1.32 1.60 1.82 2.20 2.60 3.18

10 0.61 0.94 1.23 1.41 1.76 2.13 2.60
20 0.75 1.14 1.44 1.68 2.11 2.57 3.20
40 0.85 1.28 1.60 1.84 2.28 2.73 3.33

P = 0.95 60 0.90 1.33 1.63 1.88 2.30 2.74 3.39
80 0.93 1.35 1.65 1.89 2.31 2.75 3.43

100 0.95 1.36 1.66 1.90 2.32 2.75 3.45

10 0.61 0.95 1.23 1.45 1.81 2.18 2.69
20 0.82 1.30 1.69 2.03 2.65 3.36 4.15

P = 1.0 40
60

1.04
1.20

1.67
1.93

2.23
2.57

2.66
3.18

3.63
4.33

4.78
5.69

6.42
7.79

80 1.32 2.14 2.87 3.55 4.92 6.54 8.86
100 1.41 2.30 3.09 3.82 5.38 7.22 9.67
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TABLE 5.10 Upper Tall Percentage Points for Z = n { l  -  R ^ (X ,H )}  for a 
Test for the Extreme-Value Distribution, Equation (5.22), Parameters 
Unknown, for Complete or Type 2 Right-Censored Data; p = r/n is the 
censoring ratio

n

Significance level a

. 50* .25 .15 .10 .05 .025 .01

20 1.52 2.79 3.54 4.02 4.69 6.24 7.72
40 2.76 4.43 5.71 6.66 8.22 9.82 11.33

P = 0.2 60 3.45 5.58 7.21 8.41 10.64 12.83 15.79
80 3.98 6.48 8.46 10.08 13.03 16.06 20.00

100 4.37 7.16 9.45 11.46 15.06 18.91 23.56

10 0.76 1.42 1.77 2.01 2.40 3.15 3.96
20 1.38 2.19 2.80 3.28 4.12 4.89 5.69
40 1.92 3.11 4.05 4.86 6.44 7.94 9.72

P -  0.4 60 2.32 3.79 5.04 6.06 7.99 10.09 13.05
80 2.63 4.32 5.80 7.10 9.65 12.39 15.93

100 2.86 4.72 6.37 7.92 11.09 14.39 18.25

10 0.77 1.23 1.56 1.83 2.25 2.63 3.10
20 1.11 1.80 2.31 2.73 3.48 4.27 5.28
40 1.49 2.44 3.25 3.93 5.33 6.67 8.57

P -  0.6 60 1.77 2.94 3.94 4.79 6.46 8.51 11.21
80 1.99 3.30 4.48 5.53 7.68 10.13 13.23

100 2.15 3.57 4.90 5.12 8.74 11.44 14.74

10 0.68 1.08 1.38 1.61 2.02 2.43 2.90
20 0.93 1.50 1.95 2.35 3.04 3.81 4.88
40 1.22 2.00 2.69 3.27 4.46 5.69 7.51

P = 0 . 8 60 1.42 2.35 3.19 3.96 5.35 7.15 9.43
80 1.59 2.54 3.59 4.49 6.21 8.31 11.04

100 1.71 2.85 3.89 4.88 6.92 9.20 12.30

10 0.64 1.02 1.30 1.54 1.93 2.27 2.80
20 0.86 1.38 1.81 2.17 2.87 3.59 4.51
40 1.11 1.82 2.44 2.99 4.10 5.27 7.04

P = 0.9 60 1.29 2.13 2.86 3.57 4.88 6.45 8.63
80 1.43 2.37 3.21 4.01 5.59 7.46 9.97

100 1.53 2.56 3.48 4.35 6.17 8.24 11.01

10 0.62 0.98 1.26 1.49 1.86 2.22 2.74
20 0.84 1.33 1.75 2.10 2.76 3.51 4.36
40 1.07 1.73 2.32 2.82 3.93 5.05 6.78

P = 0.95 60 1.23 2.01 2.73 3.38 4.61 6.11 8.22
80 1.36 2.25 3.04 3.79 5.27 7.04 9.43

100 1.46 2.43 3.28 4.08 5.82 7.77 10.38

10 0.61 0.95 1.23 1.45 1.81 2.18 2.69
20 0.82 1.30 1.69 2.03 2.65 3.36 4.15
40 1.04 1.67 2.23 2.66 3.63 4.78 6.42

P = 1.0 60 1.26 1.93 2.57 3.18 4.33 5.69 7.79
80 1.35 2.14 2.87 3.55 4.92 6.54 8.86

100 1.40 2.30 3.09 3.82 5.38 7.22 9.67
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TABLE 5о 11 Upper Tall Percentage Points for Z = n {l  -  R^(X,H)} for a 
Test for the Logistic Distribution, Parameters Unknown, for Complete or 
Type 2 Right-Censored Data; p = r/n is the censoring ratio

Significance level o¿

.50 .25 .15 .10 .05 .025 .01

P = 0.2

P = 0.4

P = 0.6

P = 0.8

P = 0.9

P = 0.95

P = 1.0

20 1.56 2.85 3.57 4.03 4.78 6.09 7.35
40 2.75 4.47 5.70 6.65 8.29 9.73 11.13
60 3.37 5.40 6.92 8.21 10.37 14.48 15.32
80 3.88 6.25 8.08 9.71 12.67 15.40 19.35

100 4.29 6.94 9.03 10.95 14.70 17.96 22.78
10 0.79 1.43 1.78 2.00 2.37 3.01 3.76
20 1.37 2.18 2.78 3.26 4.10 4.90 5.71
40 1.94 3.08 4.01 4.79 6.25 7.93 9.87
60 2.23 3.62 4.75 5.73 7.66 9.68 12.99
80 2.50 4.08 5.43 6.66 9.01 11.70 15.61

100 2.72 4.44 5.97 7.43 10.12 13.48 17.68
10 0.77 1.23 1.57 1.84 2.26 2.68 3.16
20 1.10 1.76 2.24 2.63 3.41 4.19 5.02
40 1.46 2.34 3.07 3.72 5.07 6.37 8.38
60 1.66 2.69 3.56 4.40 5.99 7.72 10.43
80 1.84 2.99 4.00 4.95 6.86 9.07 12.14

100 1.98 3.24 4.35 5.38 7.57 10.20 13.48
10 0.68 1.07 1.36 1.58 1.99 2.34 2.81
20 0.91 1.43 1.85 2.20 2.86 3.54 4.43
40 1.16 1.84 2.42 2.94 3.99 5.15 6.99
60 1.30 2.09 2.76 3.39 4.62 6.01 8.15
80 1.42 2.29 3.05 3.76 5.21 6.90 0.27

100 1.51 2.44 3.27 4.05 5.68 7.64 10.18
10 0.66 1.04 1.33 1.54 1.96 2.32 2.82
20 0.85 1.34 1.71 2.05 2.63 3.29 4.20
40 1.07 1.68 2.18 2.64 3.50 4.59 6.14
60 1.18 1.89 2.48 3.02 4.02 5.31 7.17
80 1.28 2.04 2.70 3.30 4.47 5.97 8.07

100 1.35 2.15 2.86 3.51 4.82 6.50 8.79
10 0.65 1.03 1.31 1.52 1.94 2.31 2.82
20 0.85 1.33 1.71 2.03 2.57 3.17 4.00
40 1.05 1.64 2.12 2.51 3.30 4.27 5.71
60 1.17 1.83 2.38 2.84 3.76 4.89 6.49
80 1.25 1.96 2.56 3.10 4.12 5.42 7.28

100 1.31 2.06 2.89 3.28 4.39 5.83 7.92
10 0.65 1.02 1.29 1.51 1.93 2.31 2.84
20 0.90 1.42 1.84 2.19 2.78 3.42 4.20
40 1.20 1.90 2.46 2.94 3.76 4.64 5.94
60 1.38 2.20 2.88 3.40 4.38 5.37 6.99
80 1.52 2.42 3.15 3.74 4.83 5.93 7.73

100 1.62 2.59 3.35 3.99 5.16 6.34 8.26
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TABLE 5.12 Upper Tail Percentage Points for Z = n { l  -  R 2 (X ,H )} for a 
Test for the Cauchy Distribution, Parameters Unknown, for Complete or  
Type 2 Right-Censored Data; p = r/n is the censoring ratio

Significance level a

.50 .25 .15 .10 .05 .025 .01

20 1.19 2.02 3.94 5.20 6.64 7.39 9.39
40 3.23 5.85 6.99 8.10 10.45 12.61 15.35

p = 0.2 60 4.90 8.85 10.78 12.03 14.22 17.40 20.91
80 6.76 12.00 14.91 16.70 18.99 22.12 26.71

100 8.50 14.85 18.76 21.18 23.60 26.19 31.84

10 0.67 1.17 2.01 2.57 3.21 3.84 4.83
20 1.65 2.99 3.64 3.97 5.11 6.15 7.44
40 3.48 6.12 7.64 8.64 9.71 10.66 13.09

P = 0.4 60 5.17 9.09 11.73 13.25 15.10 16.20 18.39
80 7.05 12.39 15.92 18.11 20.95 22.35 24.16

100 8.79 15.48 19.68 22.55 26.27 28.11 29.42

10 0.91 1.61 1.94 2.12 2.80 3.45 4.12
20 1.83 3.16 3.94 4.45 5.06 5.63 6.74

P = 0.6 40 3.66 6.35 8.13 9.29 10.74 11.52 12.61
60 5.40 9.51 12.30 14.10 16.51 17.78 18.51
80 7.27 12.90 16.62 19.15 22.49 24.20 25.24

100 8.99 16.00 20.51 23.73 27.88 29.97 31.56

10 1.10 1.86 2.37 2.68 3.05 3.72 4.67
20 2.07 3.57 4.58 5.27 6.12 6.59 7.27

P = O.8 40 3.94 6.96 8.97 10.47 12.28 13.21 13.78
60 5.69 10.19 13.40 15.48 18.19 19.78 20.68
80 7.63 13.65 17.74 20.51 24.43 26.47 27.54

100 9.42 16.81 21.53 24.96 30.08 32.45 33.59

10 1.34 2.48 2.99 3.35 3.97 4.36 5.08
20 2.39 4.26 5.52 6.43 7.45 8.06 9.56
40 4.45 7.94 10.38 12.11 14.11 15.24 15.87

P = 0.9 60 6.39 11.39 14.92 17.48 20.42 21.93 22.85
80 8.36 14.92 19.57 23.03 26.87 28.94 30.17

100 10.10 18.07 23.71 27.99 32.59 35.24 36.76

iO 1.50 2.78 3.45 3.86 4.49 4.86 5.32
20 2.84 5.24 6.77 7.81 8.98 9.78 12.35

P = 0.95 40 5.27 9.66 12.43 14.32 16.61 17.78 20.82
60 7.48 13.31 17.89 20.15 23.30 24.97 26.12
80 9.55 17.02 22.34 26.09 30.13 32.25 33.42

100 11.31 20.28 26.68 31.33 36.16 38.65 40.43

10 1.74 3.19 4.02 4.51 5.08 5.42 5.58
20 4.08 7.35 9.08 10.19 11.42 12.05 12.42
40 8.85 15.78 19.56 21.67 24.00 25.18 25.82

P = 1.0 60 13.79 24.29 30.00 33.13 36.33 38.06 38.92
80 18.58 32.50 39.91 44.19 46.46 50.66 51.97

100 22.72 39.66 48.46 53.80 59.12 61.70 63.50
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Z = n { I -  (X, H )}  iS found from a complete or Type 2 right-censored
sample, and referred to Table 5.11. The hypothesis that the sample comes 
from F(X) is rejected at the level o' if Z exceeds the given percentage point.

5.15.2 The Cauchy Distribution

For the Cauchy distribution, F(x) = 0.5 + [tan“^ {(x  -  a ) / ß } ] / T r ,  ( - «  < x < 
ß > 0 ) ,  and Hi = tan (тг[ { i / (n + I ) }  -  0 .5 ]), i = I, . . . ,  n. The statistic 
Z = n { l  -  R^(X, H )} is found from a complete or Type 2 right-censored 
sample and referred to Table 5.12.

5.15.3 The Exponential Power Distribution

Smith and Bain (1976) have given tables of null critical values of I -  R^(X,H) 
for the exponential power distribution, F(x) = I -  exp [ I  -  e x p  { (x  -  a)//J}],
(O' < X < » ,  ß > 0 ) .  These are for Type 2 right-censo red data, with r/n = 0.5, 
0.75, and I, and for n = 8, 20, 40, 60, and 80.
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Some Transformation Methods in 
Goodness-of-Fit *
C> P . Quesenberry North Carolina State University, Raleigh, North Carolina

6.1 INTRODUCTION

6.1.1 Hypothesis TestingProblem s

In this chapter let X i , X2 , Xj, be identically and Independently distrib
uted ( i . i .d . )  real-valued random variables with a common continuous distri
bution function (df) F . The classic simple goodness-of-fit problem is to test

Ho: F = Fo

Щ г  F  Ф T q
(6. 1)

where Fo is a specific continuous distribution function. The hypothesis testii^ 
problem of (6 .1) is often not a very useful model in practice. It is more 
meaningful in many instances to test that the distribution function F has some 
specified functional form without assuming that the values of all parameters 
are known.

Let  ̂= (01 ,. . . ,  öp) be a vector of real-valued parameters and ^o ”
{F ^ : в G ß }  b e a  parametric class of probability distribution functions. 
Moreover, we assume that ß is a natural parameter space, i . e . , that it 
contains all points 0 for which F^ is a continuous probability distribution 
function. Then the composite goodness-of-fit problem is to test

Ho : F G 5̂0 

F  ¢
(6.2)

♦Work supported in part by National Science Foundation Grant MCS76-82652.
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Let T = (tj ,̂ . . . »  Tp̂  ) be another vector of real-valued parameters and 
= ^ 1}  ^  another parametric class of continuous distribution

functions- The classes and are called separate families (Cox 1961) if 
the density of an arbitrary member of either class cannot be obtained as the 
limit of a sequence of densities from the other class • K and are sepa
rate families, then the separate families testing problem is to test

Ho : F G 

Hi : F G ^i
(6.3)

In words, this testing problem is to test that the sample is from a mem
ber of one class of distributions against the composite alternative hypK>thesls 
that it is from a certain alternative class. As a particular example let be 
the df*s of the scale parameter ejqjonentlal class of densities given by (6.24) 
for в unknown and = 0, and let be the df’s of the lognormal class of 
densities given by (6.35) for д = 0 and cr  ̂ unknown. For this choice of 
and ^ i , (6.3) is to test that the sample is from a scale-parameter exponen
tial distribution against the alternative that it is from a shape-parameter 
lognormal distribution.

Suppose there are available к independent samples:

X , X , . . . , X
11’ 12’ Ini

X^.,21’ 22’ ’ ”  ’ 2Пг
(6.4)

\ n k

The several samples goodness-of-fit problem is to test

H.: X,, -  Fo G
IJ

Negation of

i — I, . . . , k ; j  — I, -, n.
I

(6.5)

In words, this null h5pothesis is that all random variables (rv*s) have 
df*s of the same functional form; however, the parameters may change from  
sample to sample. The testing problem of (6.5) is an important generalization 
of the classical single sample goodness-of-fit composite null hypothesis test
ing problem of (6. 2). The several samples null hypothesis can also be con
sidered against a corresponding several samples separate families hypothesis 
testing problem as follows:



TRANSFORMATION METHODS IN GOODNESS-OF-FIT 237

Xy F^  ̂ E ; I — I 9 e . . , k ; j  — 1 , o . * , n .

X y  F j-̂  E  ^ k> j =  l ,  • • • »  П.
(6.6)

In the following sections we shall consider some techniques for testing 
the five types of problems described above. The approach used here may be 
described as follows for the classical goodness-of-fit problem of display
(6.2). The sample X i , . . . »  3¾ is transformed to a set of values U i, ...»
(N = n -  p, the number of observations minus the number of parameters) in 
such a way that when Hq is true, then U i, . . . ,  Un  are independently and 
Identically distributed uniform random variables on the (0 ,1) Interval—i.i .d .  
U(0,1) rv*s. The composite null hypothesis Ho of (6.2) is then replaced by 
the surrogate simple null h3qx)thesis that the U ’s are i . i .d .  U (0 ,1) rv ’s.

The reader who is interested only in the methodology of this approach 
may wish to go directly to Section 6.4, which considers studying the uniform
ity of the transformed values; and then to Section 6.5, where the formulas 
are given for the transformations for a number of families of distributions. 
Numerical examples are given in Section 6.6 to illustrate the application of 
this approach to some data sets.

6.1.2 The Transformations Approach

In this section we consider again a single sample X i , . . . ,  Хц with parent 
df F that is assumed under a null hypothesis to be a member of the para
metric class of fbio last subsection. Consider a set of transformations of 
the structure

U i = h^ (X^ , . . . ,X^ )

= 1*2 (X^........X^)
(6.7)

,.X^)

where N < n. Each Ц  for i E { l , . . . , N } i s a  real-valued measurable func
tion. Let Pp  denote the probability distribution of ( U i , . . .  >Uj^) induced from  
the parent distribution with df F , and recall that a test is sim ilar on Hq of
(6.2) if it has constant probability of rejecting for every F E • The fol
lowing are three properties of the U-transformations of (6.7) which we list 
for consideration.

(I) There exists a probability distribution Q such that Pp  = Q for every 
F E > i-e* > (U i, • • • ,U n ) has the same distribution for every F E *
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(2)

(3)

If Pp  = Q, then F (E * i - e . , ( U i , . . .  ,U n ) has the characterizing 
distribution Q only if F is a member of the class •
There exists a test based on (U ^ ,. • . ,U ^ ) for testing the null hypothesis 
Hq of (6.2) against a particular simple alternative hypothesis that has 
the same power as the most powerful sim ilar test based on (X^, • . . ,  Xn) 
for this same testing problem.

Condition (I) is very important because it assures that every size a. test 
based on (U i, . . .  ,Un ) Is also a sim ilar a test for the same null hyix)thesls.

Condition (2) is a theoretically interesting property of transformations 
of the structure of (6.7); however, it should be pointed out that this type of 
characterization property of transformations has not played an important 
role in the goodness-of-fit field. The apparent reason why this is so involves 
the following considerations. The actual test statistic w ill itself be a rea l
valued function of the values (U^, . . .  ,U n ) of (6 .7), i . e . , the test statistic is 
obtained by composition of a real-valued function with the transformations 
of (6.7). Unless the distribution of the test statistic is also a characterization 
of the distribution Q in property (2 ), then property (2) for the transformations 
of (6.7) is of little relevance. In other words, it matters little whether char
acterization is lost in the first or second step of the transformations. In this 
context, it should be observed that most of the goodness-of-fit statistics that 
are important in applied statistics do not characterize a null class of distri
butions. As a particular example, consider the chi-squared test statistic. 
Although chi-squared test statistics do not characterize null hypothesis 
classes of distributions, they have, of course, been and are of great impor
tance in applied statistics (see Chapter 3).

A number of transformations of the form of (6. 7) have been given in the 
literature for particular parametric families. David and Johnson (1948) con
sidered the probability integral transformation when parameters are replaced 
by estimates. They showed that the transformed values are dependent, and 
for many location-scale parameter families that the transformed random 
variables have distributions that do not depend upon the values of the param
eters .

A number of writers have given transformations for particular families 
of the structure of (6.7) that satisfy condition (I) for transformations. Sarkadi 
(1960,1965) gives transformations for the three univariate normal families. 
Durbin (1961) has proposed a transformation approach that eliminates the 
nuisance parameters by introducing a further randomization step. Störmer 
(1964) gives a method for transforming a sample from a N(^,o^) distribution 
to a sample of n -  2 values from a N (0 ,1) distribution. A number of trans
formations of the structure of (6.7) and satisfying property (I ) have been 
considered in the literature for one and two parameter exponential classes. 
Two of these transformations are considered by Seshadri, Csörgö and 
Stephens (1969), and one is shown to have property (2), also. Csörgö and 
Seshadri (1970), Csörgö and Seshadri (1971), and Csörgö, Seshadri, and
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Yalovsky (1973) have considered this transformations approach, and have 
given transformations for some particular normal, exponential, and gamma 
families of distributions with properties (I) and (2 ). A number of writers 
have considered the "recursive residuals" for normal regression models, 
which are of the structure of (6.7) when the variance is known. We shall dis
cuss these in subsection 6.5.7 below.

A general theory for obtaining transformations such that the transformed 
U*s are l . i .d .  U (0 ,1) random variables is given by O ’Reilly and Quesenberry
(1973) and extended to additional classes by Quesenberry (1975). These 
authors call the transformations involved conditional probability integral 
transformations —CP IT ’s , and we shall in this chapter consider only trans
formations obtained by this approach. We do not claim that the transforma
tions and resulting tests and other analyses obtained by this approach have 
advantages over all other transformations for particular classes of distribu
tions. Indeed, in some cases they w ill be found to give statistics equivalent 
to those of some other approaches.

6. 2 PROBABILITY INTEGRAL TRANSFORMATIONS

6.2.1 Classical Probability Integral Transformations

The well-known probability integral transformation theorem due to R. A . 
Fisher (1930) can be stated as follows.

Theorem 6 .1

If X is a real-valued random variable with continuous df F , then U = F(X) 
has a uniform distribution on the interval (0,1), l . e . , U is a U (0 ,1) rv.

(Historicalaside: Actually, Fisher did not explicitly discuss the transfor
mation in this paper; rather, he used the fact that a continuous distribution 
function F(T;0)  of a statistic T is a U (0 ,1) rv in deriving fiducial limits for 
a parameter. He also used the result in Theorem 6 .1 in Statistical Methods 
for Research Workers (Fisher 1932), in his method for combining tests of 
significance—again, without explicit discussion of the transformation itself.)

Thus if X^, O. . ,  Xjj are i . l .d .  with continuous common df F , then 
U i = F (X i), • • • » ^ (¾ ) l . i «d.  U (0 ,1) random variables. An impor
tant generalization of this basic theorem due to Rosenblatt (1952) is given in 
the next theorem.

If F is a multivariate distribution function we denote by F ( - ) ,  F(* I •). 
etc ., the usual marginal and conditional df’s.

Theorem 6.2

If ( Y i , . . . ,  Yjn) is a vector of m random variables with absolutely continuous 
multivariate distribution function F , then the m random variables
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U j -  F ( Y j) .  U j - F ( Y j I Y j) ...........U j ^ T I Y ^ Y j ............. Y _ , . j )

are i . i .d .  U(0,1) rv*s.

As a simple example to illustrate Theorem 6.2, let m = 2 and (Y i ,Y 2> 
have joint density function

f(yi г) = exp (-У 2) for 0 < yi < У2 < + «

Then

F (y i) = I  -  exp (-y i) for У1 > 0

and

Fiyzlyi )  = I - ехр(у1 - У 2 ), 0 < У1 < У2 <

Theorem 6.2 says that

Ui = F (Yi )  = I -  e x p (-Y i) and U 2 = F (Y 2 lY i )  = I -  exp(Yi -  Y 2)

for 0 < Yi < Y 2 < are i . i .d .  U (0 ,1) rv^s. This result is easily verified 
directly. Applying the standard transformation of densities gives

h(Ui ,U2) = ехр (-у 2> • ехр(у2) = I for 0 < Ui < I , 0 < U2 < I

The generality with which both of the preceding theorems hold should be 
carefully noted. We shall apply these in particular for cases when F is 
already езфИсШу a conditional distribution function.

6.2.2 Conditional Probability Integral 
Transformations: CPIT*s

The model assumptions we make in this chapter are more restrictive than 
those in O ’Reilly and Quesenberry (1973) (O -Q ), but they are sufficiently gen
eral to cover many important cases. We assume that the parametric class 
of distribution functions corresponds to a continuous ejqx^nentlal class (cf. 
Zacks, 1971, Section 2.5), and that T^ is a p-component vector that is a suf
ficient and complete statistic for в =  (% , • • • , 0p)- Denote by ^ ( x ^ , . ,x^)
the distribution function of (X^, . . .  ,X^) given the statistic Tj^. Then Fjj(x^), 

x i ) , O. . ,  ^ (X n I X j , . . .  ,Xj „̂;j )̂ are the marginal and conditional distri

bution functions obtained from ^ ( x ^ , . . .  ,x^). The following theorem is a 
direct consequence of Theorem 2.3 of O -Q  and can be obtained from The
orem 6.2 above.
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Theorem 6.3

The (n -  p) random variables

= W '  = ••

V p  = V V p ' ^ ’ - ' - * V p - i )

(6. 8)

are i . i .d.  U(0,1) rv^s.

We note that the assumption that (X^, . .  ' , ¾ )  are i . i .d .  is not necessary 
to obtain Theorem 6.3. It is sufficient to require that (X^, . .  • ,X^) have a 
full-rank absolutely continuous distribution. We give results below in sub
section 6.5.3 obtained by applying Theorem 6.3 to the order statistics of a 
sample from an exponential distribution.

A sequence (T jj)jj> i of statistics is said to be doubly transitive if each

of the pairs of values (Tn,Xn+l) and (Tn+i,Xn+i) can be computed from the 
other. For example, if Tn = ^  = (X i + • • • + Xn)/n then =
((11¾ +  X n+i)/ (n+_l), Xn+1) ,  and (^ .X n + 1) = (((n +  l ) ^ j ) / n .  Xn+1); and 
the sample mean Xn is doubly transitive.

The i . i .d.  assumptions on (X^, . .  • ,Xn) are necessary, in general, for 
the next theorem, which is obtained from Corollary 2 .1 of O -Q . Now, it is 
often rather difficult to apply Theorem 6.3 directly to obtain explicit formu
las for particular parametric families. The next theorem greatly simplifies 
the task of deriving the actual transformations for many important para
metric families.

Theorem 6.4

(Tn)n>l is doubly transitive, then the (n -  p) random variables

......... o „ -p  ■ W

are i . i .d .  U(0,1) rv^s.

(6.9)

6.2.3 Conditional Probability Integral Transformations,
Truncation Parameter Families

Some important classes of distributions which are not covered by the trans
formation theory of the preceding section are the truncation parameter fam
ilies considered by Quesenberry (1975). For these families we assume that 
the parent density defined on an interval (a ,b ), finite or infinite, is of one of 
the three forms:
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f(x;^i , a¿2, 0) = c(/ij ,/¿2, 0)h(x, 0); а < / Х х < х < Д 2 < Ь  

fj (х;д, в ) = Cl (м, 0)hi (x;0), a < м < x < b 

Í2(x ;m, 0) = C 2 ( ß , 0 ) h 2 ( x ; e ) ,  а < х < м < Ь

(6 . 10)

(6 . 11)

(6. 12)

Here a and b are known constants; м» Mi and ^^2 are truncation parameters;
0 is a p-component parameter vector; and h(x, Ö), hj (x, 0), and h2(x, 0) are 
positive, continuous, and integrable functions over the intervals (^¿!,Mz)» 
(M,b), and(a,M ), respectively.

For X;!̂ , . .  , Xn a sample we now set out a particular transformation 
to another set of values. Let r  denote the antirank of i . e . , r  must 
satisfy X r = X(n) ; and put

W  = X  •••, W  = X  , W  = X  W  = X^
I I r -1  r -1  r  ir^l n-1 n

Then we shall call W^, . . . ,  W n -i the sample with X(n) deleted. In words: 
W^, . . . ,  Wn_x are the sample members that are less than the largest order 
statistic and subscripted in the same order.

Next, let r  denote the antirank of i . e . , r  must satisfy X .̂ = X^i)* 
Define W x , . .  , W n -i in terms of this X .̂ in the same manner as above, 
and these values w ill be called the sample with X^x) deleted.

Finally, let r^ and Г2 denote the antiranks of X(x) and X^^), respectively; 
and put mi = m in {r i, Г2}, and m 2 = m a x { r i ,  Г2} .  Put

W  = X , . . . ,  W  = X  W  = X  .........W  = X
I I т ^ “1 т ^ ”! ^̂ 1 nij^l m2""" m2”i

W  . = X
m2-l

., . . . ,  W  ^ = X  
L* ’ n-2  n

These values W x, . . . »  W^_2 ^  called the sample with X(x) and X̂ ĵ j
deleted.

For Xx, » • • J Xji a sample from the density f of (6.10) and W x.........
Wn_2 sample with X ^ j and X̂ ĵ  ̂ deleted, the next theorem is from
Quesenberry (1975).

Theorem 6.5

Forf ixed (X(X). X(^)) = (X(x), X(^)), the members Wx, . . . ,  Wn-2 of the 
deleted sample are conditionally independent, identically distributed, con
tinuous r v ’s with common density function

g(w, 0) =

h (w ,0 ) I  (W)

n i ) *  (P)^

J  h(w, 0) dw 

'‘ (I )

(6 . 13)
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where = I if x^^j < w < x^^j, and is otherwise zero.

Let Tjj«2 be a complete sufficient ̂ statistic [a  function of (W;| ,̂. . .  ,W jj.2)l 
for в in the family of g(w, Ö), and let ^bat is,
Gn«2 is fbe Rao-Blackwell (MVU) estimating df of the df G(w, в) correspond
ing to the density function g(w, в ) -

From Theorem 6.4 above o r from Theorem 2 of Quesenberry (1975), 
the next result follows.

Theorem 6.6

If (T.).  ̂ is doubly transitive then the (n -  p -2) rv ’s 
J J >1

U._J, = G^(W^) j = p + l ,  . . . , n - 2 (6.14)

are i . i .d .  U(0,1) rv 's .

Transformations of samples from distributions with densities of the 
form of fj of (6.11) or Î 2 of (6.12) can be obtained in a sim ilar fashion. If 
the sample is from fj we fix X (i ) = x (i) and let W i , . . . ,  W n -i be the sample 
with X (I) deleted. Then for fixed X (i) =Х (ц  these values are conditionally 
independent, identically distributed, continuous rv*s with common density 
function

Si(W) -  — 5--------- ------------- (6.15)

/  hj^(w, 6) dw

^(1)

Finally, if the sample is from fj we fix Х^ц) = Х(ц) and let W^, . . . »  W n -i 
be the sample with X(j^) deleted. For fixed X(n) = Х(ц) these values are con
ditionally independent, identically distributed, continuous rv ’s with common 
density function

S , (w , --------- ----- ---------Й * -
(n)

J  h2(w, в )  dw 
a

(6.16)

In each of these two cases we apply Theorem 6.4 to the W j ’s to produce 
(n -  P -  I) i . i .d .  U (0 ,1) rv ’s. The transformations for some particular fam
ilies of truncation parameter distributions w ill be given in Section 6.5.
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6.3 SOME PROPERTIES OF CPIT ’S

6.3.1 Notation and Terminology

In this section we give a largely descriptive account of some of the more 
important properties of CPIT*s, and for this we shall use some notation and 
terminology that is not used elsewhere in this chapter.

Denote by ^  a parametric class of probability measures, corresponding 
to the class of df*s of Section 6 .1 for j = 0, I . The members of these 
classes are probability measures on a Borel set 9Б of real numbers and let 
V  denote the Borel subsets of X . Let (36^, be the usual product space, and

= { p “ ; p “  = P x  • • •  x p ,  P  e  #>.}, ) = 0 , 1
3 3

Let g :$ -^ $  be a strictly increasing I -to- I  function and g^ be de

fined by g (X|,. . .  ,Xĵ ) = (gx|,. . . ,  gXj )̂. For each function g assume there 
exists a functiong^ö-* Osuch that P ^ X C g ^ A )  = P^(XCA) for every A€U” 
and X* = (X|, . . . ,  X^). Let G denote a transformation group on SB, G the 
corresponding transformation group on35 ,̂ and G the corresponding transfor
mation group on Q. A transformation group on a space is said to be transitive 
if its maximal invariant is constant on the space. The U-values of Theorem  
6. 4 can be expressed as functions on SB . The next three theorems are from  
Quesenberrj^ and Starbuck (1976) (Q-S). In the following U ’ - ( U i , . . . »  Un-p).

Theorem 6.7

If G is a transformation group of strictly increasing functions on SB that induces 
a transitive group G on Í2, and conditions for Theorem 6.4 are satisfied, 
then U is equivalent to an Invariant statistic, l . e . ,

5 (X ,........X ) = U (gx ,........... ) a .s .  V g ei n  I n

From the distributional result of Theorem 6.3 and Basu (1955, 1960), 
the next result follows.

Theorem 6. 8

For T a complete sufficient statistic for ^  and U as given in Theorem 6.3, 
T and U are independent vectors.

The following result from Q-S shows that the U-transformatlons of 
Section 6.2 are efficient from the power viewpoint.
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Theorem 6*9

A most powerful sim ilar test exists for testing Hq of (6.2) against a simple 
alternative F = F ^ , and this test can be expressed as a function of (и ^ , . . . ,  
Un-p) only.

The Import of this result is that all information in the sample about the 
class of df*s is also in the U-values U i, . . . »  Un«p. This result and 
Theorem 6.8 shows that the CPIT transformations may be regarded as a 
technique whereby the information in the sample (X^, . . . ,  X^) can be parti
tioned into two vectors (U ^ T ), and the vector T contains all information 
about the parameters (ö i, • • • , 6^), the vector U contains all information 
about the class , and T and U are independent. Thus the values ( U i , . . . ,  
Un_p) may be used to make inferences about the class of distributions (is 
it normal? езфопепйа!? ), the statistic(s) T may be used to make inferences 
within the class about parameter values (estimate the mean?), and the inde
pendence of U and T can be e lic ite d  to assess overall e rro r rates.

6.3.2 Sequential Nature of CPIT 's

From the nature of the transformations in (6.8) and (6.9) it is apparent that, 
in general, the vector U of transformed values is not a symmetric function 
of the X sample. That is , the vector U is not invariant under permutations 
of the observations. For those cases when the transformations are not per
mutation Invariant, this property requires consideration on a number of 
points.

One point of concern when the u’s are not permutationally invariant is 
that a goodness-of-fit test or other analysis may lead to a conclusion that 
depends upon the presumably irrelevant indexing of the X*s. If two randomly 
selected orderings are used to compute U and then a particular goodness-o f-  
fit test (such as the Neyman smooth test discussed below) is computed on the 
two U vectors, the statistics are Identically distributed and dependent, but 
nonidentical. If we consider these two test statistics, then the situation is 
sim ilar to that when more than one competing test statistic is computed for 
the same testing problem. In particular, it is common practice today to com
pute a number of the goodness-of-f it test statistics, discussed elsewhere in 
this book, for each sample. A  quantity of relevance here is the probability 
that two tests will agree in their conclusions. Quesenberry and Dietz (1983) 
considered this probability for Neyman smooth tests made on the U ’s from  
random permutations of a sample. They gave empirical evidence that these 
agreement probabilities are very high in many cases of interest and are 
bounded below by the value 2/3 for all cases considered.

It is possible to obtain CPIT transforms that are invariant under permu
tations of the original sample. To obtain these transforms recall that in 
order to apply the approach of Rosenblatt it was necessary to assume only 
that the rv*s (X^, . . .  ,X^) had a full-rank continuous distribution. Thus to
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obtain permutation invariant transformations we can first transform an i . i .d .  
sample to its order statistics, say ( X ( i ) , . . .  ,X^j^)), and then
make СРГГ transformations using Theorem 6. 3 on these order statistics. 
However, for this case Theorem 6.4 is not applicable and it is a difficult 
task to find the transforms in practice. They have been found only for two 
rather simple cases of ejqponential and uniform distributions, that w ill be 
considered further below.

The discussion thus far has assumed that the sample is entirely sym
metric of given size n. In practice, we often have data that can be naturally 
ordered by some variable. Perhaps the most common ordering variable is 
time, and when this is so the observations themselves may arrive sequen
tially in time. When the data are ordered by time, or some other variable, 
then the СРГГ transformations approach has an especially strong appeal for 
it will allow the analyst to design tests and other analysis techniques specif
ically to detect mi specifications in the i . i .d .  model that are related to the 
ordering of the data. For example, one or more of the parameters might 
change with time. Some problems of this type are classical ones in statis
tics—there is a large literature concerned with slippage of normal means 
and with detecting heteroscedasticity of normal variances. However, we 
shall not consider these problems in this chapter.

6.4 TESTING SIMPLE UNIFORMITY

6.4.1 Introductory Remarks

The transformations of Section 6.2 can be used to construct sim ilar a  tests 
for the testing problems of (6.2) and (6.3) by making size a  tests of the 
surrogate null hypothesis that the U-values are themselves independently 
and identically distributed as uniform random variables on the interval (0,1),
i . e . , are i . i .d .  U (0 ,1) rv ’s. These transformed values of the U*s should be 
studied with care because they contain all test information in the sense of 
Theorem 6.9. It should also be observed that when the null hypothesis 
H(,: P  G falls, the distribution of the U^s may fail to be i . i .d .  U (0 ,1) in 
many ways. They may no longer be independent, nor identically distributed, 
nor uniformly distributed. Moreover, if the model properties of independence 
or identical distributions of the observations as assumed by the formal 
goodness-of-fit and separate hypothesis testing problems of (6 .2 )-(6 .6 ) are 
violated, then this w ill also result in transformed values that are not, in 
general, i . i .d .  U (0 ,1) rv ’s. Thus we can use these transformed values to 
study the validity of other model specification, in addition to violations of an 
assumed parametric density functional form. Now, the choice of tests to be 
made will, of course, depend upon the type of violation of model assumptions 
of concern. In some problems, we may not have reason to be concerned about 
pàrticular types of model violations, and we would like to perform an analysis 
with good sensitivity against a wide range of alternatives. Such an analysis
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can be made by studying the transformed values to determine if these are 
feasible values for i . i .d.  U (0 ,1) r v ’s. The analyses which we propose here 
for this purpose include graphical methods, and two omnibus goodness-of-fit 
tests on the transformed U values.

Subsequently, we shall use lower case u^s and write ц  = (u^, • • • 
for both the random variables and their observed values. Here N = n -  p, 
the number of observations minus the number of parameters in the model. 
A lso , when we consider models with normal distributions of the errors in 
subsections 6.5.5 and 6.5.7 (linear regression models) below, it will be 
seen that the values uj are closely related to quantities usually called resid
uals from the least squares fitted lines from these models. For this reason 
we shall call u the vector of uniform residuals from the parametric model, 
in general.

Next put

z. = Ф j = l . N (6.17)

for Ф a N (0 ,1) df, and Ф“* Its Inverse. By the Inverse of Theorem 6.1, when 
the Uj^s are i . i .d .  U(0,1) rv^s, then the zj ’s are i . i .d.  N(0,1) rv*s. Thus we 
can also test (6.3) by testing the surrogate null hypothesis that the zj^s are
i . i .d .  N(0,1) rv^s. We shall consider further tests based on the zj*s below 
when we consider particular parametric classes. We shall call the values zj 
normal uniform (NU) residuals. A principal reason for considering these NU  
residuals is that the problem of testing normality is the most extensively 
studied problem in the goodness-of-fit area. See Chapter 9 of this book, and 
we will recommend tests of normality below. Hester and Quesenberry (1984) 
have found that a test based on these NU residuals has attractive power prop
erties for testing for heteroscedasticity, i . e . , for either increasing or de
creasing variance for ordered regression data.

6.4.2 Graphical Methods for Symmetric Samples

Graphical methods are very useful for studying the uniformity of the values 
U i, . . . ,  U^ on the unit Interval. As a first step the data can be plotted on 
the (0 ,1) interval; or, if N is large it will be more convenient to partition 
the (0, 1) interval into a number of subintervals of equal length and to con
struct a histogram on these subintervals. The data pattern on the unit inter
val, or the shape of the histogram constructed, conveys important information 
about the shape of the parent density from which the data were drawn relative 
to the shapes of the densities of the null hypothesis class. We next consider 
this in more detail.

In order to study the significance of particular patterns of the u-values 
on the unit interval, we first suppose that the u’s were obtained from the 
classical probability integral transformation of Theorem 6 .1 by transforming 
a sample X i , . . . ,  using a continuous df Fq (x) with corresponding density
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function fo (x). However, if X^, .. , is actually a sample from a parent 
distribution with df Fj (x) and density function fj (x), then the u*s w ill not 
constitute a set of i . i .d.  U(0,1) rv^s, unless Fq = Fj . Let (a,b ) be an inter
val on the real line where fo (x) < f  ̂(x) for every x in (a ,b ). Then the expected 
number of u’s in the interval (Fq (a), F q (b)) w ill be greater than under uni
formity* Conversely, if fo(x) > fi(x ) for x in the interval (c ,d ), then the ex
pected pattern of points in (Fq (c), Fq (d)) w ill be more sparse than under 
uniformity. Thus the splatter pattern of u i, . . . ,  u n  on the unit Interval 
should be interpreted as follows. If the data are too dense on an interval 
(Fo(a), F q (b)), this Implies that the true density function fj exceeds the dens
ity function fo on the interval (a,b ) and, conversely, when the data are too 
sparse on (Fo(a), Fo (b)) the true density fj is less than ^  o n  (a ,b ).

Next, suppose that the u^s were obtained from a sample . . . ,  by 
the CPIT transformations of Theorem 6.4 for a parametric class . Then 
the data patterns have the same interpretations as for the classical probabil
ity integral transformations just discussed. This is true because the trans
forming function used for the ith observation is an estimator of the parent df. 
Indeed, this transforming function is a minimum variance unbiased (MVU) 
estimator of the parent df based on ( X i , . . . ,  Xj ) whenever the parent df is a 
member of . (See Seheult and Quesenberry (1971).)

If U (I ), . . . ,  U(N) are the order statistics of a sample from a U (0 ,1) 
parent, then U(i) is a beta random variable with parameters (i, n -  i + I ). 
Thus U(I) has mean and variance given by

i/(N + I) and 1(N + i -  1)/(N + 1)^(N + 2)

respectively, and its distribution function is the incomplete beta-function. If 
the points (u(i), i/(N + 1)) are plotted on Cartesian axes, these points should 
approximate the line g(u) = u for 0 < u < I .  Quesenberry and Hales (1980) 
have given graphs called concentration bands for N  = 2, 5, 10, 15, 20, 30,
40, 50, 60, 80, 100, 150, 200, 300, 500 that are helpful guides for judging 
the significance of these uniform probability plots.

The discussion made above in this subsection allows us to anticipate the 
pattern of points that the uniform residuals w ill make on the unit interval 
when a particular alternative density is considered. For a given data set this 
allows a direct interpretation of the data patterns observed in uniform and 
NU residuals both in histograms and in uniform probability plots. Some ex
amples of data patterns In uniform probability plots w ill be given in the 
numerical examples of Section 6. 6.

6.4.3 Test Statistics for Uniformity and Normality

The statistical literature contains a large number of goodness-of-fit test 
statistics which can be used to test that a set of values u^, . . . ,  u n  consti-
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TABLE 6.1 Empirical Critical Values for

N/a 0.1 0.05 0.01

2 0.164 0.181 0.195
3 0.158 0.191 0.242
4 0.152 0.187 0.254
5 0.152 0.185 0.256
6 0.151 0.187 0.260
7 0.151 0.187 0.262
8 0.152 0.188 0.262
9 0.152 0.189 0.270

10 0.151 0.185 0.265
OO 0.152 0.187 0.267

tutes a sample from a U (0 ,1) distribution. We are here interested in tests 
which have good power against a wide range of alternative shapes. Monte 
Carlo power studies of tests of uniformity on which we shall base our choice 
of test statistics have been given by Stephens (1974), Quesenberry and M iller
(1977) (Q -M ), and M iller and Quesenberry (1979). We recommend two test 
statistics for use in testing uniformity of the u-values, and our choices are 
the statistic of Watson (1961) and the smooth test of Neyman (1937).

The Watson statistic was found in Q -M  to have good power against a 
number of classes of alternatives, even for small sample sizes. This statis
tic is given by

N
= (1/12N) + { (2i

i=l
1)/2N U

(i/
N(u -  0.5)^ (6 . 18)

where u = (u^ + • • • + u n )/N. Stephens (1970) found empirically that a linear 
function of given by

U^OD " " f -0.1/N + 0.1/N2} { i + 0.8/N} (6.19)

has critical values that are approximately constant in N  for N > 10. Table
6.1 gives approximate significance points for U ^ qj  ̂that were obtained by 
Q-M  by Monte Carlo methods, and the Stephens approximation for N > 10.

In a classic paper Neyman (1937) proposed a test statistic that is defined 
as follows. Let тг̂. denote the rth degree Legendre polynomial, the first five 
of which are, for 0 < u < I,
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TTo(U) = I

TTj (u) = n/12(u -  1/2)

TTj (U) = «^5(6 (U -  1/2)2 _ 1/2)

TTj (U) = ^7(20(u -  1/2)2 _ з^ц _ 1/2))

TT̂ (U) = 210(u -  1/2)4 _ 45(u _ i/ 2)Z + 9 /3

Then put

N
V = Z  v K )  » r  = I , . . . ,  к 

j=i  ^ J

and

p2 = (1/N) Z V
r= l

M iller and Quesenberry (1979) (M -Q ) showed that each of the tests 
for к = 2, 3, 4 have good power against a number of classes of alternatives. 
Ne3nnan showed that p^ has an asymptotic (k) distribution under the uni
formity null hypothesis and a noncentral distribution under the alternative.

Following recommendations of M -Q  we shall use p| as a general omnibus 
test statistic for the uniformity null hypothesis. Table 6.2 gives some signif
icance points for p4 obtained by M -Q  by Monte Carlo methods.

We shall consider only the statistics and p| for testing uniformity 
because they appear on the basis of the above noted power studies to be two 
of the best general omnibus tests of uniformity. In those studies it was noted 
that one weakness shared by many goodness-of-fit tests (including p|) is that 
for small sample sizes (sometimes for N as large as 15), and some impor
tant alternatives, the tests are biased. We have not observed a case where 

gives a biased test for any sample size, nor one for which p| gives a 
biased test for N larger than 10. Thus we recommend only if N < 10, and 
we will compute both and p| for larger sample sizes. A practical advan
tage of p| is that it has an approximate (4) distribution as N increases, and 
so its observed significance level, p-value, is easily evaluated (see Table
6.2). These points will be illustrated in the numerical examples of Section
6 . 6 .

Instead of (or in addition to) the graphs and tests using the uniform 
residuals, we can make graphs and tests using the NU residuals defined in 
(6.17) above. For most purposes, we feel that the graphs of uniform resid
uals are more easily interpreted than those of NU residuals. It seems to this 
writer that it is a bit easier to judge if a histogram agrees with an assumed 
uniform parent than with a normal-shaped parent. A probability plot of the
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TABLE 6.2 Empirical Critical Values for p|
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N/a Oel 0.05 0.01

2 7.19 9.52 16.14
3 7.34 9.51 15.80
4 7.46 9.50 15.43
5 7.53 9.49 15.12

6 7.57 9.48 14.86
7 7.60 9.47 14.65
8 7.62 9.47 14.47
9 7.63 9.46 14.32

10 7.64 9.46 14.19

11 7.65 9.45 14.09
12 7.65 9.45 14.00
13 7.66 9.44 13.93
14 7.66 9.44 13.87
15 7.66 9.43 13.82

16 7.66 9.43 13.78
17 7.66 9.43 13.74
18 7.67 9.42 13.71
19 7.67 9.42 13.69
20 7.67 9.42 13.67

30 7.68 9.40 13.58
40 7.68 9.40 13.52
50 7.69 9.40 13.48

OO 7.78 9.49 13.28

NU residuals requires normal probability paper, whereas the uniform resid
uals requires no special paper. Thus the uniform residuals are more con
venient to plot with widely available software.

Aside from graphs of NU residuals, we can also make omnibus tests of 
a wide variety of parametric models by testing the normality of these resid
uals. There are a number of reasons to consider tests on NU residuals in place 
of, or in addition to, tests on the uniform residuals. The problem of testing 
normality for a simple random sample is the most extensively studied prob
lem in the goodness-of-fit field, and excellent tests for this problem are 
readily available (see Chapter 9 of this handbook). A lso, for at least some 
of the many important problems of testing null hypothesis parametric models 
with normally distributed e rro rs—such as the multiple samples problems, 
regression models of Section 6.5.7, or the ANOVA model of Section 6.5.8— 
the NU residuals have a useful tendency to retain data patterns from the
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original data. For example, Hester and Quesenberry (1984) have e4 >loited 
this property to construct efficient tests for heteroscedasticity for normal 
regression models.

Any of the multitude of goodness-of-fit tests for the completely specified 
null hypothesis testing problem of (6 .1) may be used to test normality of the 
NU residuals. However, it has been shown by both Stephens (1974) and Dyer
(1974) that the test for composite normality usually has better power against 
most alternatives, even when the parameters are known. We have done some 
simulation work in stud3dng the efficiency of the Anderson-Darling (AD) test 
on NU residuals, and it appears that this characteristic of goodness-of-fit 
tests to show better power when parameters are not assumed known can be 
expected to obtain here, also. Finally, we must choose the particular tests 
of normality to make on the NU residuals. At the present state of knowledge, 
we feel that reasonable choices of test statistics would be the Shapiro-Wllk 
test or the AD test.

Another point that should be recalled in interpreting the analysis of 
residuals discussed here is the following. We generally consider testing the 
goodness-of-fit hypothesis testing problem as stated in display (6.2), and 
this means, of course, that we assume that the observations are l . i .d .  How
ever, with real data it w ill often be the case that we cannot really be sure 
that these assumptions are valid, and thus in practice in these cases the 
classical goodness-of-fit null hypothesis of (6.2) should be expanded to in
clude the i . i .d .  assumptions. That is, it is desirable to validate the entire 
model including these sampling assumptions.

6.5 TRANSFORMATIONS FOR PARTICULAR FAMILIES

6.5.1 Introduction

In this section the CPIT transformations are given for a number of parametric 
families of probability distributions. Lower case letters are used to denote 
both random variables and their observed values here and in the next section, 
which considers numerical examples. In all cases we assume that a sample 
X^, . . . ,  Xjj is available from an unspecified member of the class of distri
butions under consideration. We shall denote by (w^^,. . . ,  Wj^.^) the sample 
with X(n) deleted, and use similar notation for the other cases when x^^) is 
deleted or both x (i) and x^^j are deleted. (See Section 6.2.3 for details of 
this transformation.)

6.5.2 Uniform Distributions 

Densities:

=  (l/{ß2 -  M l ^ J ( X ) (6 .20)
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for -во < jUj < •
Case I, Ati = а̂ ю known, /!3 unknown.

For W^, . . . ,  Wji_i the sample with x(n) deleted put

j = I. n -  I (6.21)

Case П, Ml unknown, a¿2 ~ M20 known.
For W i, . . . ,  Wji_i the sample with x (i ) deleted put

“j = <**20 -  -  *(1 )) * j = I . . . . .  n (6 .22)

Case Ш , both a¿i and ^ 2  unknown.
For W i, . . . ,  Wji_2 the sample with both x^i) and х^ц) deleted put

X ( I ) ) ,  3 = 1, . . . ,  n -  2 (6.23)

For these transformations for uniform distributions, we note that the 
lack of invariance with respect to permutations of the X*s cited in subsection
6.3.2 does not obtain. That is, two permutations of the X ’s w ill give the same 
values for the elements of the ц vector, though not in the same order. That 
is, the ordered values of the components of ц w ill be the same, and any analy
sis or test that is symmetric in the components of u w ill be unaffected by a 
permutation of the X̂  s.

6.5.3 E3ç>onential Distributions 

Densities:

f(x;A¿, Ö) = (I/6) exp {-(x  -  ц ) / в } 1 (X) (6.24)

for -во < At < eô  and в > 0*

Case I, At unknown, 0 =  Oq known.
Let W i, . . . ,  Wji»! be the sample with X(i) deleted.

u. = I -  еч> {-(w . -  j = I .  . .  , n -  I (6.25)

Note that the remarks about the effect of permuting the X*s on the u*s 
above also obtain to these u^s, v i z . , if the X ’s are permuted we still get the 
same set of values { u i , . . .  *Uj^_i} from (6.25). For cases П and HI that 
follow, we give the transforms obtained from the sample X i , . . . ,  from  
Theorem 6.4, as (6.26), and, also, transforms obtained by applying The
orem 6.3 directly to the order statistics (x (i ), . .  • ,x^^p, as (6.27); these 
latter formulas were obtained by O^Reilly and Stephens (1984).
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(6.26)

Case П, 9 unknown, Д = Mo known.
Put x| = Xj -  i = 1» . . . ,  n.

/j -1 / 3  \}- l

......... ”

Next, put Y i  = X(i) -  MO* I = I . • • • > У0

. I  -  (n -  j + l)y  /(y. + • • • + У ) J “  ^
U = 1 - } -----------------------------------------------------------— Л  , j  =  l ,  . . . , n - 1  (6.27)
'"j j i - ( n - 3 + i ) y . y ( y . +  - - - + y ^ ) (

Case Ш , M and  ̂ unknown.
First, let Wĵ , . . . ,  Wn_i be the sample with x (i ) deleted and put 

= Wi -  X (i), 1 = 1, . . . ,  n -  I.  Then the transformations for this case are 
given by (6.26) with Xi replaced by w [  and n by n -  I .

Next, put Y i ^ i  = X(i) -  X (I), 1 = 1, . . . ,  n. Then the transformations for 
this case are given by (6.27) with these y*s, and n replaced by n -  I .

6.5.4 Pareto Distributions 

Densities:

0¿ l+ûf
f (x ;a ,y ) = { a y  /x )I^^ (x), a  > 0 , y > 0 (6.28)

K the transformed values In Xi, i = I ,  . • . ,  n, are considered, then these 
transformed values are a sample from the exponential family of (6.23) where 
в =  I / a  and M = In y.

Case I, у unknown, o¿ =  aQ known.
Let W^, . . . ,  be the sample with X(i) deleted.

•  I  -  (X,„ / » , ) “ •

for j = l ,  . . . , n  — I*

Case П, a  unknown, у = Уо known.
Put x| = In Xi -  In Уо; I = I , . . . ,  n. Then the CPIT transforms are given 

by (6.26) using these x-^s.
Put yi = In X(i) = In У0 , i = I, . . . ,  n. Then the order statistics CPIT is 

given by (6.27) using these y^s.

Case Ш , a  and у unknown.
Let Wĵ , . . . ,  Wjj_i be the sample with X(i) deleted, as above in Case I,

(6.29)
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and put Xj = In for 1 = 1 .  • . . ,  n -  Io Then the CPIT transforms are 
given by (6.26) usmg these x|’s and n replaced by n -  I .

To obtain the order statistics transforms for this case put y j_ i  =
In X(J) -  In X (I), n = I, . . . ,  n, and use these y*s in (6.27) with n replaced 
by n -  I.

6.5.5 Normal Distributions 

Densities:

f(x; д,сг^) = (l/o•^/^) exp { - (x  -  д)^/2сг^} (6.30)

for -«> < oo, and OT̂ > 0.

Case I, ß  unknown, = (Tq known.
Let Xj = (x i + • • • + X j)/ j  for j  = I, 

N(0,1) distribution.
n and Ф denote the df of a

u._i  = ф { ( j  -  1)^(X^ - (6.31)

for j = 2, . . . ,  n.

Case П, Œ unknown, м = /½ known.
For this case only we put

sf = Z (X - . j = I, . . . , n
J i= l

and let Gj; denote a Student-t distribution function with v  degrees of freedom. 
Then

V l "  j = 2 .  . . . .  n (6.32)

This can be generalized somewhat, as follows. Suppose that is a mean 
square estimator of that is independent of the X*s, and that p S f ;/ a ^  has a 

distribution. Then we put

s* = {[(j - + + j - 1)}̂

and

*>j_l =  • j = 2. • • • . n (6.32')



256 QUESENBERRY

Case Ш , M and o-̂  unknown. 
For this case put

J J
X. = (1/j) Z  X,. S = (1 / 0 -1 )) Z (X. -  X ) 
J I=I -" i= l  ^

Then

“j-2  = -  « / « S  -  V l> ' '^ j - 1 ^ ’  ̂=
(6.33)

Again, let S p  be an independent mean square estimator of such that 
vSp/<j^ is a (^) Then put

s *  = { [ (  j -  2)S^_^ + vs^/(i; + j -  2 )}^

and

“j-2  = (6.33*)

In computing the above quantities it is helpful to use the following !^dating 
formulas. For xj as defined above, and for

V  -  2 (SS.) = ¿  (X. -  X.)

then

- 2
X. = [ ( j  -  l)x._^ + x.]/j, (SS.) = (SS^_^) + [ j/ (j  -  l)](x . -  Í . ) (6.34)

Youngs and Cramer (1972) and Chan, Golub, and Le Veque (1983) dis
cussed these formulas; the latter authors were primarily concerned with 
numerical accuracy.

6.5.6 Lognormal Distributions 

Densities:

f(x;^,cr^) = (xcr n/ ^ ) “  ̂ e x p  {-(In  x -  д)^/2о^} 

for - «  < Д < OU, and (7̂  > 0.

(6.35)
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The values In X]̂ , • • • , In constitute a sample for the normal family 
of (6.30)» and transformations for the three cases can be obtained by replac
ing (XI» . . . »  Xjj) by (In XI» . . . »  In Xq) in the transformations for the cor
responding normal cases above.

6.5.7 Normal Linear Regression Models

”  (У1» • • • >Уп)* ^ vector of independent rv*s, ^  an n x p matrix of 
full rank (n > p)» and £ = (^i* • • • ,^p)* a vector of p parameters» we con
sider the family of normal distributions

y. ^ N(x^£ .(t2), 3 = 1. (6.36)

for the jth row of Хд. The matrix Xj denotes the matrix consisting of the 
first j rows of Xjj. We shall give transformations here for two cases» v i z . , 
for (7  ̂ known and unknown.

Case I, ¢7̂ = (7q known.
For this case it is readily verified that the statistic t ¿ = is a

complete sufficient statistic for £• Moreover, the UMVU estimatiiig distri
bution function is itself the df of a normal distribution with

mean = x!(x! X .)“^x !y. » variance = (j5[1 -^ ! (X l X.)"^x .]
3 J ° J J J

Using this result with Theorem 6.4 gives the following results. Put

y. - x : ( x : x . ) - i x : y .
A = .. Д 1 3 3____ 3Z 1 -

 ̂ (7J1 - x ! (X !x . ) - ^x . ] ^Ql J j/ ^jJ
(6.37)

and

U = Ф(А ), j =  P +  I ,  . .  
J-P 3

(6.38)

Certain well-known updating formulas [Placket (1950), Bartlett (1951)] 
are very convenient for the computation of Aj as well as for the development 
below. For

= (X! X .)”^X!y. , the least squares estimate of g  from the first j ob- 
 ̂ servations

S? = [I -  X.(X1 X .)“^X l]^ . , the usual least squares sum of squares for 
 ̂  ̂ 3 3 3 3 3 residuals from the first j observations.

then the updating formulas are
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/Vt V  \ - I  =  /X* X   ̂ -̂--------T“̂ — ----------
<^3-1 3-1  ̂ I +

^3 3“1 3 3 3 3  3 3 -1
S? = S? + a l A }
3 3 - 1 ^ 3

Using these relations, Aj can be written in the alternative form

y. “ x!b. ^
____3- ГЗ 3-1A. =

 ̂ (tJ 1+^ : (X :  ,X. J -^x. ]
0 3 3-1 3-1 3

è

(6.39)

(6.40)

(6.41)

(6.37*)

Put Wj = c7oAj, and these Wj*s are the quantities sometimes called 
recursive residuals, and have been considered by a number of writers in
cluding Hedayat and Robson (1970), Brown, Durbin, and Evans (1975), and, 
recently, by Galpin and Hawkins (1984). These writers have generally not 
assumed that is known. Then in the form (6.37*) the Wj*s can be shown to 
be i . i .d .  N(0,(j^), which also follows easily from the CPIT results given 
above.

Case П, CT̂  unknown.
From O -Q , Example 4.3, we put

I .(i -  P -  I) (yj
B. = -----

 ̂ { [1  - x ! (X :x . ) " ‘ x.]S? -  (y. - x î b . ) * } ’
J J J  r  J J J J

(6.42)

and

u. I = G -  i(®-) > j = P 2, J-P-I J-P-I J
(6.43)

Using the updating formulas again, we express Bj in the alternative form

B. = (6.42*)

Note that the quantity (yj -  x jb j . i )  in the numerator of (6.37*) and (6.42*) 
is the residual of yj from the least squares line fitted using the first j -  I 
points. This is a normal rv with mean zero, and by examining (6.37*) and 
(6.42*), we see that Aj and Bj are the standardized and Studentized forms of
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this rv, respectively. Moreover, by again using the updating formulas, we 
can show that

B. = ( j -  P -  l )^ A y ^ ( Д  = ( 3 -P  -  [ Д  w?) (6.44)

for Wj the recursive residual defined above.
It should be noted that the formulas given above in Section 6.5.5 for the 

univariate normal distribution for the cases when cr̂  is known are, of course, 
special cases of the formulas given in this section for the univariate regres
sion model.

6.5.8 Normal Analysis of Variance Model

The material in this section is largely from Quesenberry, Giesbrecht, and 
Burns (1983) (QGB). We consider к mutually independent samples, xy .
i I, . . . ,  k, j I,

X .. ~  f f^ ) ,  i  =  I ,  . . . ,  к

, n i , as in (6.4), and the family of distributions

(6.45)

In words, this is a fixed-effects, one-way, normal e rrors, analysis-o f-  
varlance model. Define

n = n, + • • • + n, , V.. =  n +  
I  к  IJ I

K.. = (x _  + ••• + x..)/j, SS.. = Д (x. -X..)^
IJ I l  i j '  Ij Ш  i j '

and for Vy > 0,

Ч г W Ii
X SS + SS.,. ,,

(6.46)

(Remark: Readers familiar with the QGB paper w ill note that the iqpdat- 
Ing formulas in (6.34) above have been used to rewrite the formula given for 
A y  in that paper in a more convenient form .)

Case I, (7̂  = Oo known.Uj j  = * { l * J J  -  Xjj][j/(3 -  = * { [ X j .  -  X j(j_l)][(3  -  (6.47)
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Case П, (7̂  unknown«

U.. = G (A^.) 
'> ''i)

for i = I  and j = 3,

(6.48)

Til and i = 2, . . . ,  k, j = 2,

A case can arise which is, in a sense, intermediate between cases I 
and П above. Suppose there is an external mean square estimator of 
available such that vSj,/(r^ is a rv. Then put

S . . | û SS + SS„. ,, + VS^ 
“ “a  И 3-1) *')/¾

i

and

“ij
= G * Ü ( j  -  l )/ j ]* (x «  - X , , ,  ,, )/ S * }

Ij
i ( j - l ) '

(6.49)

The question can be raised as to what is to be gained by using (6*49) 
rather than (4.48) since, under the null ЬзфоШее1е model, we obtain the 
same number of l . i .d .  U (0 ,1) rv ’s. The answer is that when some of the 
model assumptions are incorrect the anomalous data patterns resulting 
should be more distinct and analyses based on them more sensitive. Another 
point is that even under the null hypothesis the dependence of the u*s upon 
the ordering of the data is weakened. This point can be seen by observing in 
(6.49) that as — OO the distribution function in (6.49) converges to Ф and 
thus (6.47) is the limiting case of (6.49).

6.6 NUMERICAL EXAMPLES

6.6.1 Introduction

In this section we use some of the transformations of the last section in 
numerical examples. In all of these examples the computations were per
formed using programs written by the author for this purpose.

6.6.2 Salinity Data

A large scale program by North Carolina State University to study environ
mental impact in the Cape Fear Estuary includes a sampling over time by 
weeks of the larval density in the estuary. Accompanying data includes 
salinity measured in parts per thousand (ppt) at the time of collection of the 
larval specimen. The salinity data consists of several samples, and each
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TABLE 6.3

Obs.

Sample Number

6

1
2
3
4
5
6
7
8 
9

10
11
12

18.3
16.9
15.9
16.0
15.8
14.5
18.6
21.8
18.3
18.5
17.1
16.6

19.8
22.0
22.5
21.3
20.0
19.1
18.8
22.4
22.9
21.5
21.4
20.9

11.1
12.710.28.6
7.9

10.9
13.7
12.4
12.910.1
9.9

27.0
26.4
28.5
25.5
28.1
26.3
26.6
24.5
27.8
28.7
28.7
26.8

13.1
12.6
18.7
19.4
17.4
16.9
15.5
16.7
17.7

9.1
13.6
16.4 
14.3
14.010.2
11.7
12.6
12.0
11.1

sample consists of measurements made over a relatively short time period 
(approximately 24 hours), and the samples are taken at intervals of at least 
one month apart. It appears reasonable to consider each sample to be an 
independent random sample from a common parent distribution, and to 
assume that the functional form of the parent density is the same for all 
samples. However, the means and variances can be expected to vary widely 
from sample to sample.

There are available six samples, given in Table 6.3, for studying the 
functional form of the parent distributions.

Normal Analysis

We consider the null hypothesis Hq of (6.5) with F the df of a N(// ,̂(7?)

distribution, i . e . , we consider the null h5̂ othesis that each sample is from  
a normal parent, but allow each of these parents to have different means and 
variances (cf. Quesenberry, Whitaker, and Dickens (1976)).

We have transformed each of the samples of Table 6.3 using the trans
formations of equation (6.33). Since a sample of size nj gives nj -  2 trans
formed values, there are a total of N = n̂  + • • • + n¿ -  12 = 54 transformed 
u-values. These 54 u-values are given in Table 6.4, and are graphed against 
the expected values (i/(N + 1)) = (i/55) in Figure 6.1.

The values of the modified Watson statistic and the Neyman
smooth statistic p| are both much too small for significance at the 10 percent
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TABLE 6.4 Pooled and Ranked u-Values, Normal Analysis

0380 .1431 .2625 .3487 .4572 .5908 .6861 .7918 .9080
0734 .1630 .2676 .3884 .4716 .6030 .6989 .8066 .9106
0988 .1823 .2892 .3894 .4779 .6196 .7223 .8197 .9274
1012 .1972 .2918 .3971 .5638 .6288 .7607 .8680 .9366
1159 .2177 .3139 .4201 .5690 .6380 .7797 .8770 .9765
1233 .2450 .3473 .4364 .5705 .6641 .7908 .8926 .9922

^  = 0.013 
MOD

pj = 1.631

FIGURE 6.1 Salinity data. Normal analysis.
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level. The P4 statistic is approximately a (4) rv and the observed signifi
cance level is

P(p| > 1.631) = P(x^(4) > 1.631) = 0.80

Consider Figure 6 . 1 and recall that the points should approximate the 
line if the underlying parent fámily is normal. The fit is excellent, and from  
this and the small values of U^ioD and P4 we conclude that normal distribu
tions fit these data very well. Indeed.

Even though we have concluded that normal distributions fit these data 
well, we shall in the remainder of this subsection consider fitting two other 
two-parameter families to the data in order to illustrate the use of the 
transformations.

Uniform Analysis

We have transformed each of the samples of Table 6.3 using the transforma
tions of (6.23) for a two-parameter uniform family. The 54 u-values ob
tained are given in Table 6.5 and are graphed against the null hypothesis 
expected values in Figure 6.2. This uniform probability plot is typical of the 
pattern we obtain when normal data are transformed using the transforma
tions for a uniform family. This S-shaped pattern can be anticipated from  
the discussion of data patterns in subsection 6.4.2, since both distributions 
are S3mimetric and on the range of the sample the normal density has thinner 
tails near the extremes, and is higher than the uniform density in the center.

The value of in Table 6.5 falls between the upper 10 and 5 percent
points, and the observed significance level of p j is

P(p| > 6.610) = P(x^(4) > 6.610) = .158

From these statistics and from Figure 6 .2  it is clear that the uniform 
distributions do not fit the data well, and certainly not as well as normal 
distributions. It should be borne in mind here that the uniform distribution 
as an alternative to normality is one that is rather difficult to detect.

Exponential Analysis

We have transformed each of the samples of Table 6 . 3 using the transforma
tions of (6.27) for two-parameter exponential distributions; see Case DI in 
subsection 6.5.3. The 54 pooled and ranked values obtained from these trans
formations are given in Table 6- 6 . These values are plotted in Figure 6.3 
against the expected values. This probability plot is typical of the pattern 
obtained when normal data are transformed using exponential family trans
formations—recall the discussion in subsection 6 .4.2.

This value of U ^ qj  ̂ is highly significant since the upper I percent point 
for U|ioD is -267- Moreover, P(p| > 28.260) = P(x^(4) > 28.260) = 0.00001.
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TABLE 6.5 Pooled and Ranked u-Values, Uniform Analysis

0732 .2055 .3288 .3973 .5122 .5517 .6324 .7500 .8621
0735 .2381 .3448 .4265 .5172 .5616 .6341 .7759 .8780
1207 .2439 .3562 .4286 .5205 .5952 .6585 .7805 .8971
1507 .2740 .3562 .4524 .5205 .6029 .6712 .7857 .9024
1781 .2877 .3793 .4795 .5476 .6098 .7059 .8276 .9525
1918 .2927 .3966 .5000 .5479 .6164 .7123 .8571 1.0000

p| = 6.610

FIGURE 6.2 Salinity data. Uniform analysis.
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TABLE 6.6 Pooled and Ranked u-Values, Exponential Analysis

1199 .3843 .4254 .4857 .5489 .6009 .6753 .7266 .7952
1780 .3871 .4318 .5182 .5550 .6186 .6870 .7301 .8066
1790 .3967 .4397 .5313 .5617 .6189 .7073 .7574 .8102
2864 .4138 .4546 .5322 .5719 .6294 .7131 .7606 .8233
3345 .4146 .4684 .5365 .5926 .6439 .7174 .7619 .9134
3539 .4175 .4771 .5386 .6000 .6725 .7256 .7794 .9242

=-747MOD
p| = 28.260



266 QUESENBERRY

From these values and Figure 6.3 it is clear that the two-parameter e x p o -  
nential distributions fit these data very poorly.

6.6.3 Simulated Data

The appendix gives three samples of 100 observations each that have been 
drawn from normal, exponential, and uniform distributions. These samples 
are named NOR, NEX, and UNI, which we shall abbreviate further to N, E, 
and U in this section. For each of these three samples we have computed 98 
u-values using the appropriate transformations for two-parameter normal, 
exponential, and uniform families. This gives nine sets of u-values. We have 
partitioned the (0 , 1) interval into ten subintervals of equal lengths, and de
note by Mi the number of u^s that fall in the subinterval ((i -  1)/10, I/10] 
for i = I , . . , ,  10 for each set of u-values. These values and those for U?,
p| and the observed significance level of p|, called Sig., are given in Table 
6.7. The label (N, E) on row 4 means the normal sample was subjected to 
exponential transformations, for example.

The first three rows of Table 6.7 give results when the sample from a 
distribution is subjected to the transformations for a class to which that dis
tribution belongs. The expected cell frequencies are 9.8, and none of the 
test statistics is significant at any of the usual levels. The other six rows 
all give level .05 significant tests for both U ^ qj) and p|. A ll except (U ,N ) 
have observed significance levels for both statistics that are very small, 
indeed. A more detailed analysis could be carried out by plotting the 98 
u-values for each case as was done in the last example in Figures 6 . 1 , 6 . 2 , 
and 6 . 3.

TABLE 6.7 Analysis of Simulated Samples

M l М 2 М3 M4 M5 M 6 M7 M8 M9 MlO ^  pi
MOD Sig.

(N ,N ) 12 12 5 10 7 8 17 3 13 11 .068 0.818 .94
(U .U ) 10 10 14 10 5 9 8 8 11 13 .040 1.547 .82
(E .E ) 13 11 10 10 10 8 10 5 13 8 .093 3.521 .47
(N .E ) 0 3 4 9 12 15 27 20 8 0 1.587 63.041 2.4E(-12)
(U .N ) 14 15 9 11 9 7 I 8 18 6 .221 13.174 .01
(E .U ) 54 21 12 7 3 0 I 0 0 0 3.340 281.416 4.5E(-12)
(N .U ) 3 8 13 12 18 19 9 10 5 I .770 30.046 4.8E(-6)
(U ,E ) 8 5 8 10 9 13 13 21 11 0 .416 22.083 1.9E(-4)
(E .N ) 0 12 27 17 7 8 5 7 6 9 .767 42.259 1.5E(-8)
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TABLE 6.8

Data

Sample A 

Ranked u-values

Data

Sample B 

Ranked u-values

Normal Uniform Exponential Normal Uniform Exponential

210 196
190 236
182 .060 .053 .1 1 1 246 .022 .147 .184
230 .067 .105 .191 187 .024 .216 .281
236 .077 .228 .356 193 .083 .224 .318

214 .145 .263 .386 231 .122 .319 .411
246 .244 .298 .404 199 .161 .405 .418
186 .365 .298 .500 147 .165 .422 .456
168 .419 .351 .563 177 .225 .457 .489
162 .524 .404 .604 232 .263 .491 .496

196 .563 .474 .625 155 .273 .491 .531
226 .731 .509 .715 195 .296 .543 .534
156 .789 .561 .758 179 .372 .560 .562
202 .825 .614 .758 208 .422 .569 .590
190 .868 .649 .761 167 .445 .595 .616

236 .891 .649 .768 130 .616 .629 .643
220 .901 .702 .777 225 .621 .672 .654
320 .909 .702 .798 183 .724 .819 .667
242 .918 .754 .801 187 .727 .871 .669
270 .980 .789 .868 203 .809 .879 .735

156 .822 .914 .744

6.6.4 The Bliss Data

The appendix gives data from Bliss (1967) on the body weight in grams of 
21 -day-old white leghorn chicks at two dosage levels of vitamin D. We have 
randomized each of the samples labeled series A and series B . Table 6 .8  
gives the data in the order in which it was analyzed here. Table 6 .8  gives 
also the transformed u-values when the samples are subjected to two- 
parameter normal, uniform, and e:qx>nential analyses. The test statistics 
u|joD  observed significance level, Sig., of p|, have
been computed for each sample as well as for the pooled samples and are 
given in Table 6.9. Graphs of the pooled u-values are given in Figures 6.4, 
6.5, and 6.6 for the normal, uniform, and exponential classes, respectively.
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TABLE 6.9 Test Statistics for B liss Data

Transformation Sample MOD P4 Sig.

Normal A .128 4.707 .32
B .060 4.329 .36

Pooled .068 3.257 .52

Uniform A .110 4.347 .36
B .135 4.269 .37

Pooled .200 7.634 .1 1

Exponential A .224 9.852 .04
B .423 15.550 .004

Pooled .470 18.333 .001



>
-D

S. 0 . 4  —

FIGURE 6.5 Bliss data. Uniform analysis.
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TABLE 6.10 Ranked u-Values for Fisher Data

.0001 .0870 .3685 .6630

.0107 .1419 .4275 .7599

.0163 .1532 .4384 .7848

.0414 .2273 .5188 .9046

.0635 .2275 .5899 .9640

.0636 .2702 .5946 .9842

.0768 .2940 .6403

MOD 0.117 Pi = 12.16
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The probability plot in Figure 6.6 as well as the test statistics for the 
exponential case in Table 6.9 easily eliminate the exponential class from  
consideration for fitting these data. Comparison of the graphs in Figures
6.4 and 6.5 suggests that the normal class fits better than the uniform class, 
and this conclusion is supported by the values of and p| computed for
the pooled u-values in Table 6.9. The statistic is significant at the
. 05 level for the uniform class but is much too small for significance at even 
the . 10 level for the normal class. The probability plot of Figure 6.4 sug
gests that the true distribution (assuming that the i . i .d .  assumptions hold, 
of course) has a density with slightly thicker tails than a normal density, but 
it does look pretty symmetric. Figure 6 .5 suggests that the true density has 
thinner tails on its interval of support (where the density is positive) than the 
tails of the uniform density on its interval of support, but again the density 
appears to be symmetric.

6.6.5 Regression Data

In this section we give three examples to Illustrate the use of the transforma
tions of (6.37) to test the regression model assumptions of (6.36). It should 
be borne in mind that we are testing M  of the assumptions of the normal 
linear regression model.

Fisher^s Data

In this example we consider data given by Fisher (1958, p. 137) on the re la 
tive effects of two nitrogenous fertilizers in maintaining yields in bushels of 
wheat over a period of 30 years. Fisher uses a simple linear normal regres
sion model for these data and suggests that a more complex (curved) regres
sion line might give a better fit.

We have applied the regression transformations of (6.43) to these data 
in the order that they are given by Fisher. Here n = 30 and p = 2 , and the 
number of u-values is the number of observations less the number of param
eters in the model (two regression coefficients and the variance), i . e . ,
N = n -  p -  l  = 30 -  3 = 27. The ranked u-values and test statistics
and p| are given in Table 6.10, and the ranked u-values are plotted against
expected values in Figure 6.7.

The value = 0.117 is much less than the upper 10 percent point
of 0.152 given in Table 6.1, and is not significant at this level. Using the 
chi-squared approximation to the distribution of we obtain Р(р| > 12.16) = 
P(X^(4) > 12.16) = 0.016, and this value is significant at the 2 percent level 
but not at I percent. The graph of Figure 6.7 also raises doubts about the 
appropriateness of the normal linear model. This pattern suggests that the 
erro r distribution is not symmetric and is skewed to the right.
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TABLE 6.11 U-Values for Wallace-Snedecor Data

.029 .266 .687 .933

.034 .350 .717 .961

.106 .534 .819 .992

.200 .603 .826

.262 .641 .886

MOD .063 p| = 2.389

FIGURE 6 .8  Wallaee-Snedeeor data. Regression analysis.
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TABLE 6.12 U-Values for Snedecor-CkDchran Data

273

.057 .147 .211 .453

.101 .179 .258 .498

.138 .201 .429 .631

XJ2
MOD 0.225 p| = 9.464
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Wallace and Snedecor Data

Wallace and Snedecor (1931) give 25 observations on a dependent variable Y , 
and five independent variables (Xj ,X 2 ,X 3 ,X ^jX g). Ostle (1954, p* 220) also 
gives these data and uses them in an example to illustrate a standard least 
squares analysis of a normal multiple linear regression model. We have 
applied the transformations of (6.43) to these data in the order given by Ostle. 
Here n = 25 and the number of independent variables is 5, so the number of 
u-values is 2 5 -7  = 18.

The analysis is given in Table 6 .11 and Figure 6 . 8. The values of 
Um o d  p I much less than their upper 10 percent points, and the pat
tern in Figure 6.8  does not give cause to suspect the model.

Snedecor-Cochran Data

Snedecor and Cochran (1967, p. 140) give the initial weight x and the gain in 
weight у of 15 female rats on a high protein diet, from the 24th to 84th day 
of age and suggest considering a normal linear regression model. The ranked 
u-values for these data are given in Table 6 .12 and are plotted against ex
pected values in Figure 6.9.

The number of observations here, 15, is rather small and gives only 12 
transformed u-values for testing the model. With so little data only rather 
large violations of the model will be detected. Recall that for this small 
number of u^s that many tests are biased for some alternatives. The Um o d  
statistic is unbiased for all known cases and is our preferred test statistic 
here. The observed value of Um o D ”  *^25 here falls between the upper 5 
and I percent values, and P(p| > 9.464) = .05. The pattern of points in 
Figure 6.9 also raises doubts about the adequacy of fitting these data with a 
normal simple linear regression model. We conclude, even with so few ob
servations, that the normal simple linear regression model assumptions 
are unwarranted.

6 . 6.6 Further Examples in the Literature

Some of the transformations of Section 6.5 have been used in numerical 
examples in the literature. Quesenberry, Whitaker, and Dickens (1976) used 
the transformations (6.33) to study the normality of 11 samples of peanut 
aflatoxin data. Quesenberry, Giesbrecht, and Bums (1983) used the trans
formations (6.33) and (6.48) to study the analysis of variance model assump
tions for small samples (size 4) of tall fescue obtained as part of a forage 
management study. The variable considered was neutral detergent fiber.

The CPIT transformations for multivariate normal models were given 
by Rincon-Gallardo, Quesenberry, and O ’Reilly (1979). Applications of these 
formulas for multiple multivariate samples were considered by Rincon- 
Gallardo and Quesenberry (1982).

(Author’s note: This chapter was written in 1977 and revised in 1984.)
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M om ent (V b i, b j) Techniques

K. О. Bowman Oak Ridge National ^bo ra to ry , Oak Ridge, Tennessee

L . R. Shenton UniversityofGeorgia, Athens, Georgia

7.1 INTRODUCTION

For the random sample X i , . . . ,  Xj^, with mean 

n
= Z  X /n

j= l ^

we define the central moments

Ч = Z  (X. - m  )V n , i = 2, 3, 4 (7.1)
j= l ^

The sample skewness { ^ ib i)  and kurtosis (b2) defined as

n/Ь- = m  
I 3 2

‘'г  =

(7.2)

and it is readily seen that they are invariant under origin and scale changes. 
The corresponding measures for a specified density are denoted by \Tßi 
and For a normal distribution = 0, /З2 = 3, and in random samples 
from it there may be wide variations from these values, especially for small 
samples (n < 25). Moreover, the sample may arise from some nonnormal

279
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distribution, such as a uniform, negative exponential, or Weibull, etc. S y m 
m e t r i c  distributions (or those with non-zero densities extending over negative 
and positive variate values) are likely to produce samples with small skew
ness, whereas distributions corresponding to positive valued random vari
ables (such as the negative exponential) are likely to produce samples with 
large skewness. In sampling from fairly symmetric distributions, one might 
expect the kurtosis to reflect the nonnormality. Thus a combination of the 
test statistics ^ГЬl and Ьз might provide a more comprehensive test than 
either taken by itself.

This chapter w ill be mainly concerned with tests of goodness of fit based 
on N/bi, Ьз in sampling from the normal or other distributions such as mem
bers of the Pearson system.

The reader may be reminded that of the classical test statistics, Student*s 
t, F -ratio, correlation coefficient (and perhaps mean and variance), the skew
ness and kurtosis statistics are the only ones whose distributions in normal 
sampling are still now known exactly. However, Milholland (1977) has 
arrived at an approximation to the null distribution of N/bj for samples of at 
most 25; this is undoubtedly a breakthrough, although the mathematical ex
pressions are very complicated, and it seems unlikely that the method can 
be applied to sampling from more general populations. In nonnormal sampling 
very few exact results are known for the distributions of s l h i and Ьз or their 
joint distribution.

7.2 NORMAL DISTRIBUTION

Early work goes back to Karl Pearson (1902) who gave in general sampling 
expressions for the dominant terms (n”  ̂asymptotics) in the variance of bj 
and Ъ г , and also the correlation p(bi ,Ьз). The idea was to use, for example, 
N/Var (b j) and NTVar (Ьз) as e rro r assessments, but it was far too early in 
the development of the subject to consider questions of the validity of the 
of the asymptotics o r their uses.

A quarter of a century later an important development cams from  
E. S. Pearson (1930) who used the work of Fisher (1928) and Wishart (1930) 
on k-statistics to develop a Taylor series expansion (in terms of the k -statis- 
tic discrepancies ki -  /cj , 1 = 2, 3, 4) for NZbj and Ьз* For example, defining

у = (n -  l) '^ {b i/ (n  -  2)}

Pearson showed for the second and fourth central moments of у (in normal 
sampling) that

/ Ч . 6 ^ 22 70
Mz(y) = I  + “Т “ “ Г +   ̂ n n  ̂ n^

and
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.  1056 , 24132
ß i< y )  = 3 -  ^ -------

the odd moments being zero. He developed sim ilar eg ress ion s for the 2nd, 
3rd, and 4th central moments of b 2 , along with Ефг) = 3(n -  l)/ (n  + I ) .  To 
damp-out higher order terms, Pearson used samples of n > 50 for n/Bj , 
n > 100 for ¿2 so as to assess the lower and upper 1% and 5% of the distri
butions in normal sampling. Thirty or so years later (Pearson, 1965), he 
gave a set of ^accepted" percentage points; for a sample of 50 there is no 
change in the third d.p. entries for ^Tbi at the 1%, 5% levels; for b2 and 
n = 100 there is no change in the second d.p. entries; in all, quite a remark
able achievement.

The next step forward came from Fisher (1930) who showed that in 
normal sampling the standardized moments m^/m^/^, r  > 3, are distributed 
independently of the second moment m 2 (Fisher used k-statistic notation). 
Thus, for example, E (b i) = Em|/Em| follows from the independence of 
m|/m| and n ^ ; here E means the mathematical expectation operator. In 
this manner, the exact moments of and b2 can be found. In fact, Fisher 
derived the first six cumulants of ^ I h i , Hsu and Lawley (1939) the fifth and 
sixth moments of b2 . Later, Geary and Worlledge (1947) gave the seventh 
noncentral moment of b2; actually they give . Some of the coeffi
cients are quite large, that of n  ̂ being a 13-digit integer multiplied by 25515 
(the whole expression has had scant usage to date).

Knowing exact moments, it was a natural development to search for 
approximating distributions, reaching out toward percentage points of the 
distributions. Four-moment fits were studied by Pearson (1963) and at the 
time he had the choice of the Pearson system, Gram -Charller series system 
based on the normal, and the Johnson Su translation system (Johnson and 
Kotz, 1970). For n > 30, the Student-t density gave an acceptable approxi
mation for \ l h i , the criterion being the closeness of agreement between the 
standardized sixth and eighth moments for the model and the true values. 
Johnson's Su, although troublesome to fit, seemed to be equally acceptable 
to Pearson (1963, p. 106). Recently, D'Agostino (1970) has shown that 
Johnson's Su for n > 8 gives a very acceptable and simple approximation; 
in fact

Z = Ô In { Y / a  +  nJ(1+ ( Y / o i) 2 ) } (7.3)

is approximately a standard normal variate with zero mean and unit standard 
deviation, where

¢2 = 3(n^ + 27n -  70)(n + l)(n  + 3)/{(n -  2)(n + 5)(n + 7)(n + 9)}

= - I  + -  2)

Ô = 1 / Æ  W  , a  = \ T {2 / (W ^  -  1)} 

Y  = 4 { [ n  +  l)(n  + 3)bi7(6n -  12)}
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For the kurtosis the problem is more difficult because the statistic Ьз 
is one-sided (its range being from 0 to « )  and very skew in general; thus for 
n = 25, ^ T ß i(^ 2 ) = 1*75, /ЗгФг) = 9.90 in comparison to ^ Г ß l{^ ÍЬ l) = 0,

(N^bi) = 3.58. Briefly, Pearson Types VI and IV (or Johnson^s Su) can be 
regarded as acceptable approximations to the distributions of b2 for n > 40 
according to unpublished work of C. T . Hsu (quoted by Pearson). Hsu pointed 
out that for n > 30, the (ß i ,ß ^ )  points for b2 were close to the Type V  line 
(Pearson, 1963, p. 106). Noting this, Anscombe and Glynn (1975) suggest a 
linear function of a reciprocal of a -variate as an approximation to b2 for 
n > 30 or so; they do not make any comparisons with Johnson*s Su approxi
mation. A brief description of the Pearson system is given in Appendix I.

7.2 .1 Onmibus Tests

It is fairly obvious that the behavior of \ I h i , b 2 springs from the values of 
>ßz population) and the sample size. For example, sampling from

a uniform population (n/^j = 0 , /?2 = 1 o8) is not likely to produce large values 
of \/bi, whereas sampling from a negative e^)onential {^Tßi = 2 , /?2 = 9) 
could result in large N/bj and b2 • Thus the skewness and kurtosis statistics 
are in general correlated (see 7. 5), and although for normal sampling the 
correlation is zero, they are still dependent variables (E(N/bib2) = 0 , but 
E (b ib 2) E (b i)E (b 2) ) .  Put otherwise, there w ill be situations in which ^ Ih i  
will dominate the test decision about normality, b 2 playing a minor role, and 
vice versa. For example, monthly rainfall amounts in certain climates are 
well fitted by a negative е^фопепАа! distribution so that one might e ^ e c t  the 
skewness to play a major role in testing for non-normality.

The use of both skewness and kurtosis as a test statistic arose from a 
study of D^Agostino and Pearson (1973); background theory is given in 7.6.

7 .2.2 The K| Test Statistic

Calculate ^IЪl and b2 as defined in (7.2). If a pocket computer is available, 
it is a simple matter to input X i , . . . ,  ¾  and evaluate the first four sample 
moments along with N/bj and b2 . We assume for the omnibus test that n > 20. 
Plot the couplet (N/bj ,b 2) on the 90% and 95% contour charts (Figures 7 .1(a), 
7 .1(b)). If the point is internal to the appropriate contour (approximate inter
polation for n should not result in much loss of accuracy in the decision 
process), then accept the hypothesis of normality; the reader should be re 
minded that this procedure involves only one test for normality and is not 
necessarily error free. Note also that the contours of acceptance are sym
metric with respect to N/bj, the negative half of the diagrams being omitted. 
Obviously, the sign of N/bj (m3 may be negative) plays no part in normality.
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7.2.3 Numerical Examples 

7.2.3 .1  Example

Sample values: Xj = I, i = ±  I ,  ± 2 , . . . ,  

(A) m = 10 (B) m = 25

n = 20 n =  50

mj = 0 mi = 0

m 2 = 38.5 m 2 = 221

m3 = 0 m 3 = 0

m^ — 2533 • 3 m^ = 86145.8

*Л>1 = 0 ^ T b i = O

Ьг = 1.71 Ьг = 1.76

Conclusion

±m

(A) is borderline at the 90% level whereas (B) is significant.
Comment: The samples nearly follow discrete uniform distributions, 

so the nearness of Ьз to 1 . 8 is not surprising.

7.2.3.2 Example

Sample values are the first 20 of each of the first four data sets in the 
appendix.

NOR UNI EXP LOG

mi 100.37 6.13 4.29 100.90

88.8095 8.1844 16.8497 306.6382

m3 316.32 -8.4149 92.1552 487.247

m4 16803.04 108.81 1317.94 323979.6

NTbi 0.378 -0.359 1.33 0.09

bz

K |j
I 90% 

' 95%

2.130

Nsb

NS*’

1.624 4.642

S^

S^

3.45

NS*»

NS*’

= significant.
^NS = not significant.
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Comment

It is interesting to see how the single tests using 'v/bj ,Ьз separately would 
perform - Using the D'Agostino approximation for N/bj under normality, 
have for n = 20,

we

/?2 = 3.5778, = 1.2706, a  = 2.7187, ô = 2.8899

and

=  1.2856 Sinh (0.3460 Z) (Z G N (0 ,1))

The .90 and .95 levels of N/bj are 0.589 and 0.772, respectively. Thus EXP  
is significant, and the other three not significant. As for Ьг, using D'Agostino 
and Pearson (1973, 1974), we find the approximate levels (n = 20):

P  .01 .025 .10 .15 .20 .85 .95

Ьг 1.64 1,73 1.94 2.04 2.12 3.40 4.18

We now see that for NOR and UNI the interest is in values of Ьг significantly 
lower than 3, whereas for EXP and LOG, the interest lies in values of Ьг 
larger than 3; thus the tests become directional, a concept introduced by 
Pearson. Clearly Рг(Ьг < 2.13) is about .20, Рг(Ьг < 1.54) < 0.01,
Рг(Ьг > 3.40) = 0.15, and Рг(Ьг > 4.15) = 0.05 approx. For the four cases, 
the single test summaries are:

NOR UNI EXP LOG

^ГЬl NS

NS

NS

S

S

S

NS

NS

in good agreement with the omnibus test.

7 .2 .3 .3  Example

Sample values, series A from B U S  (appendix)

n = 20 
m^ = 209.6 
m2 = 892.24 
m 3 = -1201.25 
m^ = 1758724 

N/bi = -0.045 
Ьг = 2 .2 1
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Conclusion

Not significant at 90% level for the three tests. Note that under normal 
sampling, N/bj has a  = 0.473, 02 = 3.58, and Ьз has ß [ =  2.714, a  = 0.761, 
n/01 = 1.738, and = 8.54. Evidently, there is a very good chance that 
-0.05 < bi < 0.05. For the kurtosis, using a 4-moment Pearson curve as an 
approximant pr (2.18 < Ьз <3 .05 ) = 0.5 approx., so the observed value is 
quite acceptable.

7 .2 .3 .4  Example

Sample values, first 50 of Sxj(0, 3) (appendix)

n = 50 
mi = -0.024 
т з  = 0.1084 
m^ = -0.00118 
m^ = 0.0401 

>̂ >J = -0.03 
bz =3 .42

Conclusion

Not significant for the single tests nor the onmibus. Note that under normal
ity, \/bi has (7 = 0.326, 02 =3 .45 , and Ьз has ß [ = 2.882, (7 = 0.598, n/0i = 
1.582, and 02 = 8.42. Clearly, the observed N/bj is not significant. A  
4-moment Pearson curve for Ьз gives Рг(Ьз > 3.63) = 0 .1  approx., so that 
the observed value is quite acceptable.

7 .2 .3 .5  Example

Sample values are rainfall amounts at Tifton, Georgia for the month of 
January over 30 years (1928-1957). Data from U.S. Department of Commerce, 
Weather Bureau.

Rainfall: 1.36 4.25 2.52 4.03 3.50 3.82
(inches) 5.11 2.09 3.18 4.90 1.44 0.72

5.41 2.41 2.77 3.94 1.20 5.42
2.54 5,27 1.74 4.84 1.27 3.35
6.06 5.55 5.02 5.94 2.57 0.81

n = 30 
nil ~ 3.4343 
m.2 = 2.6857 
Л̂Ьl = —0.05 
Ьз =1.71
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Conclusion

The omnibus test rejects at 90%. Also РгФг < 1*73) = 0.025, so the kurtosls 
test rejects.

7.2.4 Further Comments

There is a computerized version of the test in Appendix 2 . This could be 
Included as a subroutine in a statistical data package and does not depend on 
graphical displays.

Also, we describe in 7.6 the construction of another set of test contours 
for normality based on a model for the joint distribution of /̂b̂  and Ьз. Over
all, this new set of contours leads to about the same decision as the k | set.

Given the mean, s .d . , skewness, and kurtosis of a distribution, approx
imate percentage points may be quickly evaluated using a Pearson curve fit 
(Bowman and Shenton, 1979a, 1979b). The standardized percentiles are given 
by rational fraction approxlmants and are suitable for use on a portable 
calculator.

7.3 NONNORMAL SAMPLING

The state of the art for this case is far less developed than for normal sam
pling. Contours of acceptance under various hypotheses are shown below in 
Figures 7.3, 7.4, 7.5, 7.7, and 7.8; for each of these the sample values 
NTbi, Ьг 3̂ ®̂ plotted and judged against the appropriate percent and sample 
size. In particular. Figure 7.8 shows 90, 95, and 99 percent contours for 
samples of 75 from a skew Type I distribution.

An overview of 90% contours (n = 200) for several Pearson populations 
is shown in Figure 7.9. Note the significant changes in area enclosed for a 
normal (n/^1 = 0, /З2 = 3), uniform {^Tßi = 0, /!3 = 1.8) and a population close 
to the Type in  line (circled as 8) . It is evident that discrimination between 
populations using an omnibus test based on ^ fb i and Ьз raises many unsolved 
problems.

For a discussion of various aspects of this situation, the reader should 
turn to 7.6. The remainder of this chapter deals with theoretical aspects of 
the omnibus contours, including evaluation of the moments of ^ ÍЬ l and Ьз, 
their correlation, and the construction of equivalent normal deviates (based 
on Johnson^s Su system) for \ lh i and Ьз.
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7.4 MOMENTS OF SAMPLE MOMENTS

7.4.1 Series Developments

The Independence property of the skewness (and kurtosis) and variance 
breaks down in nonnormal sampling so that it is no longer ^ s s ib le  to ex
press, for example, E ( \ ib i)  as the ratio of Е (т з ) to E (m j Thus we have

to resort to multivariate Tay lor-expansions. The general problem of evalu
ating moments of functions of moments has been structured on a recursive 
basis by the present authors and D. Sheehan (1971). The flavor of the results 
is contained in the following cases:

(a) Univariate; Moments of the mean mj

If

Ag = E(m^ -

& = E(X  -
S I

(7.4)

then

r= l
(7.5)

where refers to the coefficient of n"*  ̂in Ag, and A^^ = 0 for к > s, 
к < 0. In particular

A j = Mj/n, A j = Mj/n^

A 4 = 3a|/n^ + (a4 -  3a|)/n^

(b) Bivariate

S tд(к) -  У  f  P)fMa Â"̂^
V l . t  "  -4k „ t k V l - X . t - M  \.M

(k+X+M-s-t)

X=O ß =0

S t

(7.6a)
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t

E
X-O
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(k+\+/x-s-t)

(7.6b)

where [(s  + t + 1)/2] < 1 < s + t, A g ^  = 0 for к < 0, or к > s + t, = 1 
unless A. = Д = 0 when Ôq,o = 0 and [x] Indicates the largest integer < x .

A  and a have sim ilar meanings as in (a); for example,

"^r.s = -  it’ ) V g  -  i«2)®

V , - E ( x - „ ; , V - „ ÿ *

would be a possibility, or sim ilar expression involving linear sums of non
central sample moments and the corresponding expressions for samples 
n = I .

Using this approach, we have set up, using a computer, the first eight 
moments of \ ih i and the first six moments of Ьг up to and including the term  
in n“® in the sample size. Moments of \ Ih i involve four-dimensional arrays 
(corresponding to the first three sample moments and the sample size); sim
ilarly those of Ьз involve five-dimensional arrays. As for the moments of 
the population sampled, the first 40 are needed for the eight moments of ^ J h i , 
and the first 44 for the six moments of b2 ; it is preferable to set up recursive 
schemes for these.

7.4.2 niustrations (Bowman and Shenton, 1975a)

(a) Population: Uniform Distribution (n/^j = 0, = 1.8)
(M2g + i (*^ l ) = 0 by symmetry)

M^(NZbi) ~  

Mj(NZbi) ~  

M8{^Zbl) ~

2.0571^ 2.2629^ 1.8042------ + —
n

I . 2696EO l . 4.7687E01
n

1.3058E 02 . 1.0406E 04
n® n^

1.8804E 03 . 2.5831E 04

5.2943E 05

4.6669E 05

1.0269E 06

1.8986E 07
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(b) Population: Pearson Type I (\Tßi = 0.2, =  3 .1 )

E(^Tbi) -  0.2 -•
1.4211 6.5992 3.9728EO l . 3.9971E 02

n n^ n^

5.9343E 03 . I . 14875E 05 2.7672E 06 . 8.0796E 07
5 „6 ” г.7

Var(NZbi) -

Дз(^Ь1) ^

(c) Population:
(nT̂ i = i . o.

Ефг)

А*б(Ьг)

(d) Population:

Ефг^ЬО

Var (b '̂v/bi)

t̂з{b2̂ ЛJl)

n=’ n” n

6.7573 6.1810EO l . 6.9918E02
n n^

8.5309E 09 
«8

5.9716E01 3.0573E03 . 1.0889E05 . . 3.1041E11
n2 n  ̂ n^ n«

1.3698E02 1.5310E03 3.1549E05 5.5277 E 12
n  ̂ n  ̂ "  n'* ” n®

Normal Mixture pN(v,cr^) + (1 -p )N (v4 o ^ )
/З2 = 4 .0 ), P = 0.8706, V = -.2961, v ' = 1.9917, = 0.4103)

2.3142 9.7524E01 9.6665E02 .4  ----------------------- 5--------- -- -------------3----------+
n n  ̂ n”*

8.5535E 03 5.2878E 05 ^ 6.0489E 06
n  ̂ n"

2.2836E 06 . 5.6775E 08

+ • • • -

2.5635E 15

4.0862E 08 
n®

5.3930E 12 
n®

n  ̂ n  ̂ n'

: Pearson Type I, ^Tßi = 1.0, ß^ = 4.0

9.7966 4.9612 E02 . 6.1251E03
~ 4 ------------- ------------2--------**■--------- 3--------n n  ̂ n^

5.6987E 02 . 3.9918E 03 4.9240E 05

,8

+ . . .  + 5 .7413E 07

n n‘

2.9913E05 . 1.0895E07 
-------^ --------------------

9.7426E 03 . 3.1439E 08 
n* a»

+ . . . + 3.4572E 10
n-'

8.0078E11

9.9575E 13 
n̂

7 .4 .3  Safe Sample Sizes

Our early work in using these expansions to approximate the distributions of, 
for example, N/bj and Ьг, relied on inflating the sample size to damp-out 
higher order terms. Thus in the tables of Bowman and Shenton (1975a), safe 
sample sizes are indicated for each moment, using the rather arbitrary rule 
that the critical sample size is one which adjusts the size of the highest order
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to the lowest order terms to be approximately one-tenth. For example, in 
sampling from Type I with \Tßi = 0.6, = 3.2, the safe sample size for
E { \ l b i )  is n = 10, and

E('Vbi) -  0.6 -  0.3082 + 0.0444 + 0.0227 -  0.0302 

+ 0.0175 + 0.0186 -  0.0606 + 0.0414 (7-7)

Similarly, in sampling from Pearson Type I with •sTßi = 1.4, ß^ = 3.4, the 
critical size is n = 100 for МзФг), and

ДбФг) 3.4419 + 3.7942 + 2.5590 + 1.4111 + 0.7088 + 0.3417 (7.8)

Clearly, in both cases the sample sizes are only just adequate to damp-out 
the n“® terms. Pearson (1930) used rather sim ilar damping factors; for ex
ample, for normal samples he gave

a(N/bi) -  0.3464(1 -  .0600 + .0024 -  .0001) 

when n = 50, and

ß z ^ z )  3 + 5.4000 -  2.0196 + 0.4704

(7.9)

(7 . 10)

when n = 100. In the case of cr it looks as if a sm aller sample size could have 
been used.

For our illustrations in 7.4.2 the safe sample sizes are for

(a) 8, 8, 10, 18
(b) 18, 28, 28, 61, 86
(C ) 21, 43, 102
(d) 36, 57, 72, 179

Evidently using the series indiscriminately would be disastrous.

7.4.4 Rational Fraction and Other Approximations

Asymptotic or slowly convergent series may be approximated by the ratio of 
polynomials in the variable (in our case, n the sample size), and there has 
been a resurgence of interest in the last decade in the subject, basically 
Initiated by Pad^ (his thesis was published in 1892). Briefly, the domain of 
convergence of Padá approxlmants (which include Stleltjes continued fractions 
as a special case) is generally more extensive than is the case for series 
developments; for series in 1/n, this suggests the possibility that sm aller 
values of n may hold for Padá approxlmants. Genuinely divergent series (or 
what appear to be so from the pattern of the first few terms) seem to be quite 
common in statistics; at least that is our experience, but from a knowledge
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of a few terms (8, 15, or perhaps 30), one must not expect to arrive at a 
precise answer; rather, one looks for an optimum assessment.

For fuller accounts of the general Pad^ approach the reader is referred  
to Baker (1965, 1970, 1975). An extensive bibliography on Padá approxima
tion and related matters is given by Brezlnskl (1977, 1978, 1980, 1981). 
General comments and cautionary remarks on summing divergent series are 
given by Van Dyke (1974), and problems of e rro r analysis for convergent 
and divergent series are discussed by Oliver (1974).

An interesting account of the properties of continued fractions (special 
case of the Pad^ table) is given by Henrici (1976) who, among other things, 
pays much attention to the rate of convergence; continued fraction as develop
ment for rapidly divergent series fairly frequently converge slowly—remark
able property at worst. A brief account of Pad^ methods with special re fer
ence to statistical series is given in Bowman and Shenton (1984).

Discussion on divergent series for moments of statistics is to be found 
in Shenton and Bowman (1977a), and Bowman and Shenton (1978, 1983a,
1983b, 1984). A summation algorithm due to Levin (1973) has turned out to 
be successful (Bowman et al. 1978b, and Bowman and Shenton 1983c) with 
series of alternating sign and moderately divergent (as for example with the 
factorial series I -  x l!  + x^2! -  x^3! . . . ) .  Cases considered include the 
standard deviation from exponential, logistic, rectangular, and half Gaussian 
populations.

Pad^ algorithms have been used to find low order moments of ^ Ib i and Ьг 
required in the Su approximations.

7.5 THE CORRELATION BETWEEN bi AND

7.5.1 As3nmptotlc Correlation

Early work goes back to Pearson (1905) who gave, for general sampling, the 
first-order as5rmptotics for Mz Фг)» and the correlation

. , ( Щ  -  m ß *  -  ^ ß z ß s + 6/3,/31 + 3 ß iß 2  -  6¾ + I Z ß l  + 24ßi) R(bi ,Ьз) ------------------------------------------ T------------------------
[Mz (bl ) Mz(̂ z)I

(7.11)

where

ßs = M3M5/MJ, ß4 =  Мб/м|. ßs = M3M7/MI. ßb = Мв/м|

Note, as far as first-order terms go, this is the same as the correlation 
between ^Tbi and Ьз •
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7.5.2 More Exact Results

Further coefficients of higher powers of can be used in 

. n  , , Е(Ь2‘Л>1) -  E(Uj)E(KZbi)
(7.12)

by the method of moments of sample moments. Each of the four terms in 
(7.12) is developed as a series in descending powers of n, and a summation 
technique applied in each case (7.4.2(d) gives examples of moment series 
for the statistic b2^/bl). Due to digital programming complexities the series 
for E ( b 2 ^ ^ l )  could only be taken as far as n“̂  ; those for N/bj and Ьг were 
taken as far as n”®. A selection of results is given in Table 7.1.

The surprising feature is the largeness of the correlation especially at 
parameter points ( ^ i  ,/З̂ ) not In the neighborhood of the normal point (0 ,2 .0 ). 
Even at (0.2, 3.0) there is a correlation of 0.43. Note that in normal sampling 
the correlation is zero, but bj and Ьз are correlated. Thus (Shenton and 
Bowman, 1975) in normal sampling.

cov(bi,b2) =
216n(n -  2)(n -  3)

(n +  l)2(n-b 3 )(n+  5 )(n+ 7) 

and the correlation is

(7.13)

P(bi»b2) =
54n(n^ -  9)

(n -  2)(n + 5)(n + -  I (n >  3) (7.14)

Returning to Table 7.1, also note that sample size beyond 50 only changes 
the correlation slightly. More extensive tabulations (Bowman and Shenton, 
1975a, Table 5) suggest that in sampling from Pearson Type I distributions 
with samples n > 50, the correlation between ^ГЬl and b 2 is 0.8 or more if 
the skewness (^/Pl) of the sampled population exceeds around 0.7. This prop
erty shows that in sampling from Pearson Type I distributions the dot dia
gram of (N/bj ,b 2> will consist of an elongated narrow band for s f b i  > 0 .7  or 
so (doubtless, if ^2 is also large and the Pearson curve considered is Type 
Ш  or Type IV, then the narrow band may broaden, but we have insufficient 
data to be sure of this). The dot diagrams of the couplets {^ÍЪl ,b 2> in F ig
ures 7.3, 7.4, and 7.5, below, support these properties (note that a limited 
investigation of a sim ilar grid of values ß i  у ß z) for normal mixtures showed 
no significant change in the pattern of behavior of the correlation coefficient).



TABLE 7.1 Covariance and Correlation between \íbi and Ьз
ln Pearson Sampling

ß z

n

50 75 100 250 500 1000

0.20 1.20 (a) 0.0344 0.0218 0.0159 0.0061 0.0030 0.0015
(b) 0.6963 0.7478 0.7788 0.8467 0.8740 0.8887

0.20 1.80 (a) 0.0229 0.0150 0.0112 0.0044 0.0022 0.0011
(b) 0.5141 0.5274 0.5343 0.5473 0.5518 0.5541

0.20 3.00 (a) 0.0871 0.0665 0.0534 0.0242 0.0126 0.0064
(b) 0.4325 0.4573 0.4699 0.4930 0.5007 0.5046

0.40 1.20 (a) 0.0816 0.0509 0.0370 0.0140 0.0069 0.0034
(b) 0.8876 0.9192 0.9363 0.9698 0.9818 0,9880

0.40 3.00 (a) 0.1459 0.1085 0.0859 0.0379 0.0195 0.0099
<b) 0.6962 0.7142 0.7226 0.7369 0.7414 0.7435

0.60 1.40 (a) 0.1377 0.0851 0.0616 0.0232 0.0114 0.0056
(b) 0.9379 0.9571 0.9669 0.9850 0.9912 0.9943

0.60 3.00 (a) 0.1671 0.1191 0.0921 0.0387 0.0197 0.0099
(b) 0.8176 0.8252 0.8287 0.8345 0.8363 0.8372

0.60 3.40 (a) 0.2697 0.2163 0.1772 0.0837 0.0444 0.0229
(b) 0.8431 0.8317 0.8359 0.8447 0.8473 0.8485

0.80 1.80 (a) 0.1959 0.1210 0.0876 0.0330 0.0162 0.0080
(b) 0.9559 0.9688 0.9750 0.9860 0.9897 0.9915

0.80 2.40 (a) 0.1306 0.0850 0.0630 0.0246 0.0122 0.0061
(b) 0.9188 0.9263 0.9301 0.9367 0.9388 0.9399

0.80 3.00 (a) 0.1674 0.1133 0.0853 0.0342 0.0171 0.0085
(b) 0.8778 0.8813 0.8831 0.8867 0.8879 0,8885

0.80 3.80 (a) 0.3178 0.3219 0.2725 0.1346 0.0726 0.0378
(b) — 0.9063 0.8918 0.8927 0.8936 0.8939

1.00 3.00 (a) 0.1920 0.1257 0.0932 0.0365 0.0181 0.0090
(b) 0.9271 0.9325 0.9352 0.9402 0.9418 0.9426

1.00 4.00 (a) 0.4262 0.3322 0.2693 0.1239 0.0649 0.0332
(b) 0.9117 0.9141 0.9151 0.9166 0.9170 0.9172

1.40 3.00 (a) 0.7534 0.4229 0.2947 0.1049 0.0506 0.0249
(b) 0.9688 0.9813 0.9867 0.9949 0.9973 0.9984

1.40 4.00 (a) 0.4001 0.2602 0.1922 0.0746 0.0369 0.0183
(b) 0.9546 0.9601 0.9628 0.9676 0,9691 0.9699

(a) Covariance, (b) Correlation. 
—  Eb2 not well approximated at

Moments are based on asymptotic 
this point for n = 50.

series.



7.6 SIMULTANEOUS BEHAVIOR OF N/bi AND

7.6.1 Johnson’s Su Distributions and ^ Ih i and Ьз

We have given in (7.3) the Johnson Su transformation for \ lb i under normality 
due to D ’Agostino. The transformation works well for.n  > 8 or 9.

We have tested out the Su system (Shenton and Bowman, 1975) as an 
approximant to the distributions of ^ ¡Ь l and Ьз in nonnormal sampling, in
cluding normal mixtures of two components and other distributions. Su gives 
excellent results even for relatively small samples (n > 30 or so) and for dis
tributions (determined by specified values of and ß^) for which 0 < \Tßi 
< 1 .2  and 1.2 < /З2 < 4.0 approximately. The kurtosis statistic is less well 
fitted due no doubt to its one-tailed nature. But in general for moderate sized 
samples, Su provides an acceptable fit.
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7 . 6.2 The Su Transformation

Following Johnson’s notation (1949), Su has density

p(y) = (0/(271)2) ^  yZjèj e x p (-iz ^ ) (7.15)

where
I

Z = V + In { y +  ( l  + y^ )2 } 

so that

y = Sinh { (z  -y )/ ô }

and Z e  N (0,1). The first four moments are, defining In o) = l/ô^, =y/ô,

Ml (y) = sinhfí 

Mz(y) = (^  -  l)(c j cosh(2í2) + 1)/2 

Мз(У) = -(со -  1)^n/co{ co(cj + 2) sinh(3fí) + 3 slnhn }/4  

M4(y) = (со -  l )^ {d 4 cosh(4í2) + d2 cosh(2í2) + do }

(7.16)

where d^ = cô (cô  + 2oô  + Зы̂  -  3)/8, d2 — 500̂ (00 + 2) ,  do = 3(2co + l )/ 8 .
Suppose now that X is a statistic (or random variable) with mean , and

7  S
cumulants K2 , K3 , and K4 . From the standard cumulants (Ks/K2) ,
S = 3, 4 , determine y , ô by matching these with the skewness and kurtosis 
of Su (quite accurate rational fraction approximations to со and Q  have been 
given (Bowman and Shenton, 1980a) in terms of ^ ß i , ¢2 and capable of im
plementation on a portable calculator, preferably programmable). Similarly,
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solutions are available for the neighboring S3  system (Bowman and Shenton, 
1980b); otherwise, see Johnson (1965) or Pearson and Hartley (1972) for 
facilitating tables). Define t = (X -  ^)/X, and determine ¢, X  setting 
Aii(t) =/^i(y) and Mz (t) =Mz(y)- Thus

X^ = K ^ / ß ^ iy )

Í = Kj -  X ß [ (у)

and the first four moments of t are now those of у given in (7.16).
In particular there are the approximate transformations,

N/bi = +Xi Sinh [(Xs(NÍbi) -r i)/ ô i] 

bz = Í2 + Sinh[(Xs(b2) -yz)/Ô2l

where Xs(^/bl), Xs (b2) are equivalent normal deviates based on Su» To 
determine the eight parameters | i , X j, . . . ,  Ô2 we need the first four 
moments of ^ ÍЬ l and b2 (mean, variance, ^ Г ß l, in standardized moments). 
These are determined by the Taylor series approach (see 7 . 4), and to set up 
the two sets of moments we require 40 moments of the population sampled in 
order to take the moment series out to terms of order n“® (36 for NÍb^, 40 
for b 2)* The series are summed either by the ”safe sample size” technique 
or the Pad^ algorithm. Malfunctions of the summation technique can some
times be detected by lack of smoothness in assessments of a moment for a 
set of equally spaced sample sizes.

7.6.3 Omnibus Test Contours 

The tests we shall consider are:

Normal
Sampling

Nonnormal
Sampling

A . K | .

B: K» = X | (A j )  *  X j(b ^

C: Kg, and K^, treated as x^-variates with 2 d .f. will be 

labelled Xg and x^* respectively

S e  I -  E*

where

R =P (X gi-Jb j), Xgib^))

E: treated as x (̂*  ̂= 2) w ill be called Xq
SR
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(In the sequel we shall also describe a bivariate model for the joint distribu
tion of N/bj, Ьз from which acceptance contours are constructed.)

Case C is the D^Agostino-Pearson test—a fàirly obvious concept since 
the components are squares of approximate normal variates—so that per
centage values can be used to test significance. They used extensive simu
lations to assess the distribution of b2 (sample sizes n = 20(5) 50,100,200) 
from which Xe(b2), the equivalent normal deviate for Ьз, could be estimated 
at various probability levels. However, the statistics Xg(^/bl) and Хе(Ьз) 
are not independent (D*Agostino and Pearson, 1974); and whereas this per
haps has little effect on the test contours for large samples, it does have to 
be taken into account for most applications.

The test statistics in A, B, and D are to be regarded as mappings, so 
that probability levels are to be discovered by Monte Carlo simulations. A 
is a quick and easy statistic to simulate if we want a rough test; all that we 
require are the Johnson transforms for N/bj and Ьз followed by simulating K| 
(see Appendix). B is an improvement on A and C, since it uses the empirical 
equivalent normal deviate ХеОЬз)« D is intended as an approximate testing 
statistic but is still fairly complicated to construct. First of all, for a given 
sample size, we must carry out simulations to assess the correlation between 
Xs(NZbi) and Xs(b2), since this correlation is intractable mathematically.
Next, we simulate Kg to determine a set of percentage points, and finally, 
we map the regions in the (N/bj ,Ьз) plane. For present purposes, the x|r  
version is adequate.

In the next paragraph we set out some supporting material for the sta
tistics involved in A , B, and C. Readers who prefer to follow the main devel
opment may move to 7.6 . 5.

7.6.4 Comments on Moments of Statistics in the 
Test Statistics in Normal Sampling

Moments of N/b^, Ьз, etc. under normality are given in Tables 7.2 and 7.3 
(Bowman and Shenton, 1975b). Xg(NZbi) has moments very close to the normal 
even for n = 20. Xg(b2) is more discrepant but is satisfactory for n > 50; the 
Improvement using Хё(Ьз) is evident, especially for the smaller samples.
The theoretical moments of NZb̂  and Ьз are derived from the Taylor series 
developments and show gratifying closeness to the simulation results. Those 
for the “fype statistic (A and B) on the assumption of independence should 
be = 2, (7=2 , ^IWl = 2, /?2 = 9. The discrepancies (Table 7.2) are marked 
for n small and persist for and even at n = 100.

The upper percentage points in Table 7.3 of Xg(NZbi), Xs(b2), and Xe(b2> 
are close to the normal values. However, for the lower percentage points, 
whereas the agreement for Xg(NZbi) is satisfactory, that for Xg(b2) is quite 
discrepant, especially for small samples; by contrast the percentage points 
for Xe(b2) are in good agreement for all sample sizes studied. Thus Kg will 
give too much weight to large discrepancies especially for small samples.



TABLE 7.2 Moments of 'v/bj, and Related Variates in Normal Sampling Based on 50,000 Simulations^ tSD
CD
OO

Sample size 
n Variate

Moment parameters

(T •^ßi ß i

20 N/b̂ 0.000 (0.000) 0.472 (0.473) -0.001 (0.000) 3.64 (3.58)

Xs(^/bl) OoOOl 0.998 -0.002 3.03

^2 2.708 (2-714) 0.767 (0.761) 1.840 (1.738) 9.52 (8.54)

Xs(b2) -0.018 1.033 -0.257 4.09

^ (Ь г ) -0.008 1.000 0.040 3.22

k 1 2.063 2.653 5.012 72.38

k | 1.995 2.441 4.297 43.38

25 NÍb^ -0.003 (0.000) 0.437 (0.435) -0.015 (0.000) 3.59 (3.58)

Xs(^Zbi) -0.006 1.003 -0.004 3.00

b2 2.765 (2.769) 0.740 (0.731) 1.834 (1.747) 9.41 (8.90)

Xs(b2) -0.015 1.026 -0.149 3.51

Xe(b2> -0.009 1.005 0.053 3.18

k | 2.058 2.505 3.385 21.63

2.016 2.433 4.078 37.37

50 0.000 (0.000) 0.327 (0.326) 0.002 (0.000) 3.57 (3.45)

Xs(^Zbi) 0.001 1.001 0.001 3.06

W
Q

>

W
Д
W

O



100

Ь2 2.880 (2.882) 0.609 (0.598) 1.678 (1.582) 8.90 (8.42)

Xs (Ьг) -0.042 1.011 0.055 2.89

ХеФг) - 0.020 1.011 0.057 3.06

к| 2.026 2.291 3.300 22.36

2.024 2.358 3.683 29.80

^ibi 0.000 (0 . 000) 0.238 (0.238) -0.016 (0 . 000) 3.30 (3.28)

Xs(»íbi) 0.002 1.001 -0.015 3.01

Ьг 2.939 (2.941) 0.461 (0.455) 1.324 (1.277) 6.99 (6.77)

ХзФг) -0.009 1.010 0.057 2.82

ХеФг) - 0.011 1.012 0.007 2.96

К| 2.023 2.198 3.075 20.51

к| 2.027 2.231 3.030 19.68

^Parenthetic entries refer to theoretical values of the moment parameters. Most of the simulation for (^/bl, Ьз) 
and the statistics was carried out on IBM system 360 model 91 with occasional checks on a CDC 6400 sys
tem. The basic uniform variates were generated by a multiplicative congruential method; recommended starting 
values and multipliers are given in a Computer Technology Center Report, Union Carbide, Oak Ridge, Tennessee, 
by J. G. Sullivan and B. Coveyou. Pseudo-random normal deviates were derived from the uniform variates, using 
a rejection method attributed to von Neumann (Kahn, 1956, p. 39). This method sets up xj = log (1/¾) (i = 1,2) 
and accepts Xj if (Xj -  1)^ < 2x3 , where Mj and ^3 are identically and independently distributed uniform variates 
on (0,1); a normal variate follows by giving Xj an equal chance of being positive or negative.

i
H

à

Htí
о

f
О)

toCD
CD
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TABLE 7.3 Percentage Points of 'Vbj, Ьз and Related Variates 
in Normal Sampling Based on 50,000 Simulations

Sample
size

n Variate

Percentage points

5% 10% 90% 95% 99%

20 ^/bl -1.151 -0.772 -0.587 0.583 0.767 1.151

X g(^b i) -2.326 -1.644 -1.278 1.271 1.636 2.328

Ьг 1.642 1.828 1.948 3.657 4.143 5.394

ХзФг) -2.631 -1.717 -1.299 1.261 1.631 2.359

Хе(Ьг) -2.316 -1.651 -1.289 1.262 1.618 2.333

K| 0.020 0.101 0.208 4.702 6.787 12.756

K| 0.020 0.103 0.214 4.473 6.352 11.654

25 NZbi -1.065 -0.713 -0.543 0.544 0.710 1.052

Xgi-VTb,) -2.338 -1.650 -1.282 1.284 1.643 2.313

Ьг 1.722 1.912 2.028 3.675 4.137 5.381

ХзФг) -2.601 -1.704 -1.303 1.264 1.634 2.382

ХеФг) -2.321 -1.670 -1.289 1.268 1.634 2.370

к| 0.020 0.101 0.212 4.695 6.728 12.44

к| 0.021 0.103 0.217 4.514 6.354 11.66

50 -v/b. -0.789 -0.530 -0.408 0.408 0.535 0.795

Xs(N/b, ) -2.329 -1.636 -0.128 0.128 1.647 2.345

Ьг 1.964 2.143 2.251 3.631 4.000 4.925

Xs(bz) -2.305 -1.707 -1.358 1.251 1.623 2.327

Xe(bz) -2.311 -1.671 -1.310 1.283 1.645 2.355

к| 0.021 0.106 0.217 4.515 6.146 11.15

K^e 0.021 0.107 0.217 4.529 6.259 11.30

(continued)
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TABLE 7*3 (continued)

301

Sample
size

n Variate

Percentage points

5% 10% 90% 95%

'/Bi -0.569 -0.389 -0.301 0.300 0.389 0.561

Xs(^Гbl) -2.332 -1.642 -1.285 1.281 1.640 2.305

bz 2.180 2.342 2.439 3.527 3.796 4.399

Xs(bz) -2.257 -1.671 -1.327 1.298 1.671 2.330

Xeibj) -2.367 -1.675 -1.323 1.291 1.665 2.335

k | 0.023 0.110 0.221 4.513 6.018 10.36

k | 0.022 0.107 0.215 4.552 6.133 10.49

Standard
normal -2.326 -1.645 -1.282 1.282 1.645 2.326

(V = 2) 0.020 0.103 0.211 4.605 5.992 9.210

but in general there is little to choose between K| and k | for n greater than 
about 100.

The changes in the upper percentiles of k | as the sample size increases 
are shown in Table 7.4. For a sample of 1,000, the 99% value is still some
what larger than the corresponding value for = 2 ).

It is thought that the Kg and possibly K| approximation deteriorates from  
the chi-squared for percentage points more extreme than those studied here.

TABLE 7.4 Upper Percentage Points for Kg for Large  
Samples Based on 50,000 Simulations

Sample size 
n 90% 95% 99%

150 4.497 5.950 10.010
200 4.507 5.997 9.944
250 4.522 5.961 9.737
300 4.561 6.021 9.972
500 4.595 6.029 9.574

1000 4.629 6.032 9.444
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7.6.5 Omnibus Contours for A, B, C (Normal Sampling)

The form of the joint distribution f (^Vbj, Ьг) and the test contours may be 
gained from a dot diagram of 5,000 runs of samples of 20 (Figure 7.2). 
Superimposed on the diagram are the 90, 95, and 99% contours based on Kg, 
k |, and ” 2). The parabolic shape adumbrated in the dot diagram is 
striking and (from unpublished graphs) becomes less sharp for larger 
samples (this feature w ill be mentioned in the sequel). It is also to be noted 
that there is evidence that the conditional distribution of \ lb i for Ьг small 
is unimodal, whereas as Ьз increases it becomes markedly bimodal. Con
tours at 90% and 95% levels of acceptance for numerous sample sizes are 
given in Figure 7.1. To use them, merely compute \ I b i , Ьз and enter and 
interpret with respect to the appropriate sample size contour. Slightly im
proved contours are given below in Figures 7.6b and 7.6c, constructed from  
an entirely different model.

7.6.6 Omnibus Contours Under Nonnormal Sampling

Omnibus contours D (see 7.6.3) and dot diagrams of 1,000 points as illus-

2 5

2.5

FIGURE 7.2 Dot diagram and 90, 95, and 99 percent contours in normal
sampling for n = 20. K|-----, K| — , x| — -.
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trations have been constructed In the following cases (the assumption that 
Is approximately a -variate (i^ = 2) was made for simplicity):

Pearson Type I: = 2/7 ß z =33/14 n = 100 (Figure 7. ЗА)

Normal Mixture: 
(2 components)

^Tßi = 2/7 ß z =  33/14 n = 100 (Figure 7.3B)

Normal Mixture: -vT̂ l = I ß z = 2 . 6 n = 50 (Figure 7.4)

Normal Mixture: density — 0.9N(0,1) + 0.1N(3,1) n = 100 (Figure 7.5)

FIGURE 7.4 90, 95, and 99 percent contours XsR i^o^mal mixture \Tßi = 1.0, 
= 2.6, n = 50.
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FIGURE 7.5 90, 95, and 99 percent contours (x|r ) for the normal mixture 
f ( .  ) =0 .9N (0 ,1 ) + 0.1N(3,1); n = 100.

TABLE 7.5 Number of Couplets Outside the 90, 95, 
for Five Populations

x|j^-Contours

Number of ( s ih i > points 
in 1000 outside the contour

Figure Population 'v/ßi ß z n R 90% 95% 99%

7 .ЗА Type 2/7 33/14 100 0.571 89 46 9
7.3B N .M . 2/7 33/14 100 0.470 85 41 6

— N .M . 1.0 2.2 70 0.998 67 37 16
7.4 N .M . 1.0 2.6 50 0.979 97 48 15

— Uniform 0.0 1.8 50 0.000 100 57 16

^Type I has indices 2 and 3; N .M . = Normal Mixture.
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The odd parameter points in the Type I case appear because they correspond 
to a density f(n) = kx(l -  x)^, chosen for ease of simulation.

Comments

(1) The contours do not seem to change markedly for different populations 
(Figure 7.3).

(2) The remarks on the effect of the correlation between NÍb̂  and Ьз made 
in 7.5.2 are illustrated in Figures 7.4 and 7.5.

(3) A visual count of the number of couplets outside the three percentage 
levels for five populations for the x|j^ contours is given in Table 7.5. 
The agreement is satisfactory.

A different set of contours based on another model is now described.

7.7 A BIVARIATE MODEL

7.7.1 Genesis

We noticed (7.6.5) that in normal sampling there is evidence (Figure 7.2) 
that the contours of equal probability lie on parabolic arcs and that the omni
bus contours have the wrong concavity for Ьз > 3 or so . Again there is evi
dence of a change from unimodality to bimodality of the \ lh i arrays for 
given Ьз as Ьз increases. So this suggests considering a model with the Su 
transformed normal curve for the marginal of ^ i h i . As for the conditional 
distribution of Ьз given ^^bl, we carried out simulations of 50,000 samples 
of 10, 20, 30, and 50, from which the Ьз-arrays appeared to have a gamma- 
type density bounded by Ьз = I + bj (all distributions for which four moments 
exist, and samples are such that Ьз > I + b^). In addition, the means of the 
Ьз arrays (N/b̂  constant) formed a parabolic arc almost parallel to the bound
ing parabola. Moreover, the mean and variance of the Ьз arrays increased 
with Increasing (N/bj) whereas the skewness decreased.

7.7.2 The Model for General Sampling

We define a bivariate product density by (Shenton and Bowman, 1977)

f(NTbi, b j) = wi-v/bi) g(bz I ^/bi) (7.17)

where w («) refers to the Su approximation to the marginal probability density 
function of N/bi, and g(«l •) t o  sl conditional gamma distribution. Specifically,

w (\^ i) =
+ (bi -

T  exp ( - i  Z^) (7.18)



g i b j  - ^ i )  = к{к(Ьг -  1 -  b l ) }  ® ^ '^ i)"^ (l/ r {0 (N / b i)}) exp {-k (b j -  1 -  b j ) }  

where

(1) Z = y  + ô slnh-4(NTbi - í ) A } ,

(2) к > О, ö(^/bl) > О for all real N/bj,

(3) Í ,  X, у, and Ô are the parameters associated with Johnson^s Su for the 
distribution of N/bi.

For our present study we assume a quadratic form for 0(*)> namely,

0(N/bi) = a + Ь^Л>1 + cbi о  0)

SO that the unknowns in the model (bearing in mind (3)) are now a, b, c, 
and k. The simplest method to determine these (there are several) is to use 
^(Ьз), var (Ьз), E (b2N/bi), and БОЬзЬ^); examples of the latter are given in 
7.4. Define
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**r.s = E (b ^ -E (^ Г b У (b 2 -E ib g ) ) ' (7.19)

V = E('s/b,)'^b^ 
r , s  '  I ' 2

Then from (7. 17) after simplification

Î oi = I + a/k + (b/k)Vio + (1  + c/k)«/^

Mil = (Ь/к)Й20 + ( 1  + CA )  (1̂ 30 -  1̂ 20̂ 10 )

/i02 = (I + c/k)*(v45 -  1¾) + 2(1 + c/k)(bA)(i/3o -  v ^ V y ,^ )  

+ (b/k)^Mjo + (a + bi'io + c v ^ ) / ] x }

Mzi = (Ь/к)Мзо + (1  + -  М» + Zi'ioM»)

For example, in deriving ~  ~  ’̂oi » we use

(7.20)

»'02 = I  W(Nfbi)d(Nfbi) /  {bz - I - bi + (I + bi)}2 g(bi lNfbi) dbz
- «  1+bi

The equations (7.20) can be solved explicitly and in sequence

^ = (Mzo/̂ zl “ ^30̂ 11)/ (^20̂  "  ^30¾)

Q ~ (A ÎI  ̂ “ А̂ 21̂ з)/ (^20^ “ ^30̂ 3)
(7.21)
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P = >'oi -  q^io -

к = (p -  I  + qt'io + (r  -  l ) v ^)/(Aioj -  -  rqaj -

where

P = I + a/k, q = b/k, r  = I + c/k

% ~ 3̂0 “ 2̂0*̂ 10 » ^  ”  4̂0 "

D = P «  -  m|) + Zi'ioMso

In this way having determined к we deduce a, b, and c from p, q, r .
To determine the parameters in the model, we must find the Su for 

and in addition E (Ьз), E(N/bib2), уагЬз, and

Ma = E(bib2> -  E(bi)E(b2> -  2E(^Л),)E(^Гb,b2) + 2E(b2)(EN/bi)^

These in the general case (nonnormal sampling) are found by the series 
approach described in 7.3.

Note that since g(b21 ^/bj) is the conditional distribution of b2, it follows
that

E(b2lN/bi) = P + qN/bi + rbi 

var (b2 |N/bi) = (a + bN/bj + cbi)/k^
(7.22)

so that since c >  0 (see 7.7.2 (2) and r  = I  + c/k, the conditional mean and 
variance ultimately Increase with I Ф > 1 1.

Again since the correlation between bj and b 2 is given by

Pibi.bj) = (Ma + 2Kiÿiu)/{(7(bi)ff(b2)} (7.23)

and since the moments involved here have been used to determine the model 
parameters, it follows that the model exactly reproduces r { \ I b i , b j) and 
r (b j , b j ) ;  it does not, however, respond directly to the skewness and kur- 
tosis of b - , .

7.7.3 The Model Under Normality 

In this case it is known (Fisher, 1930)

= 6(n -  2)/((n + l)(n  + 3))

= 3 + 36(n -  7)(n^ + 2n -  5)/{(n -  2)(n + 5)(n + 7)(n + 9)} 

Voi = 3(n -  l)/ (n  + I)

Mo2 = 24n(n -  2)(n -  3)/{(n + l)* (n  + 3)(n + 5)}

Ma = 216n(n -  2)(n -  3)/{(n + l)^ (n  + 3)(n + 5)(n + 7)}
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SO that, after simplification from (7.21)

a = (n -  2)(n + 5)(n + 7)(n2 + 27n -  70)/(6A) 

b = 0

C = (n -  7)(n + 5)(n + 7)(n2 + 2n -  5)/(6Д) (7.24)

к = (n + 5)(n + 7)(n^ + 37n^ + I ln  -  313)/(12Д)

Д = (n -  3)(n + l)(n2 + 15n -  4)

Since C > 0 for the existence of the density, we must have n > 7, in which 
case there is always a unique solution. It is also evident that as the sample 
size increases a and c — n/6, whereas к — n/12, so that p and r  approach 3. 
Parameters of the model are shown in Table 7. 6 and comparisons of the con
ditional means and variances (theory versus simulation) in Table 7.7.

Comparison of the omnibus test contours K| (equivalent to K| for n > 25) 
and those for the bivariate model for n = 100 are given in Figure 7.6a. The 
new contours are more responsive to the bimodallly property noticed in the 

arrays for Ьг > 3. Theoretically, the \ Ib i arrays for given Ьг from the 
model have a density of the form

ф(х) = c e ^  (d^ -  x^)^^^^ ^/Г(а + bx^) (x^ < d^, a ,b  > 0; x = N/bi)

and for certain parameter combinations this can show multimodality.
A  visual count of the Monte Carlo coi^lets (NZb^, Ьз) outside the 99, 95, 

and 90% bivariate contours gave 11, 52, and 94 occurrences. Another run 
for 1000 samples of n = 50 gave 11, 60, and 100 occurrences for the same 
three levels.

Contours of 90 and 95% in the N/bi, b 2 plane for samples n = 20(5) 65,
75, 85, 100, 120, 150, 200, 250, 300, 500 and 1000 are shown in Figures 
7.6b and 7.6c.

A  very interesting study by Tietjen and Low (1975) displays several 
three dimensional plots of the joint distribution of ^ Ih i and h z , along with 
a set of contours at the 95% level, sample sizes ranging from 4 to 50, the

TABLE 7.6 Parameters of the Model in Normal Sampling

n a C к P r

10 5.385 0.774 5.045 2.06 1.15
30 8.797 4.208 5.778 2.52 1.73
50 12.184 7.493 7.311 2.67 2.02

100 20.578 15.763 11.395 2.81 2.38



TABLE 7.7 Conditional Means and Variances for the Model in Normal Sampling

CO
O

Sample size n = 10 Sample size n = 50

Range of ^/bl E ib jl^ b i) V ar(b2 l*^ i) C E(b2l^/bl) Var(b2 I ̂ i ) C

-0.02 < Ф )1  < 0.02 2.07 (2.11) 0.21 (0.21) 2695 2.67 (2.68) 0.23 (0.21) 5108

0.18 < N/bj < 0.22 2.11 (2.14) 0.21 (0.19) 2581 2.75 (2.78) 0.23 (0.22) 3747

0.38 <NTbi < 0.42 2.25 (2.30) 0.22 (0.21) 1999 2.99 (3.04) 0.25 (0.26) 1885

0.58 <^/bl < 0.62 2.48 (2.58) 0.22 (0.24) 1411 3.40 (3.48) 0.28 (0.29) 645

0.78 < ^ Ih i < 0.82 2.81 (2.90) 0,23 (0.23) 822 3.96 (4.04) 0.32 (0.33) 188

0.98 < 'v/bj < 1.02 3.22 (3.41) 0.24 (0.24) 481 4.69 (4.46) 0.37 (0.16) 32

^Parenthetic entries refer to Monte Carlo simulations, the number of samples drawn in each range being c. >
iz:
>

W

O
îz:
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FIGURE 7-6a Normal sampling. Contours of 90, 95, and 99 percent content, 
n = 100. (Remarks on the test samples are given in Sec. 7 .8 .)
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FIGURE 7.6b Normal sampling, bivariate contours, 90 percent level, 
n = 20 (5) 65, 75, 85, 100, 120, 150, 200, 250, 300, 500, and 1000.
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FIGURE 7.6c Normal sampling, bivariate contours, 95 percent level.



TABLE 7.8 Illustrations of the Bivariate Model for N/bi and b2^
COh-lvU

Moments Coefficients

RegressionNTbi bz Joint for ^ ih i Gamma

Pearson type

ß [ = 0.3660 Ml = 2.7187 Mii = 0’ 1095 ô = 4.766 a = 15.110 E(b2iNTb,) =
^2 = 0.0752 М2 = 0.3280 M21 = 0.0280 У  = -1.711 b = 1.207 2.32 + 0 . I l ^ T b i  +  1.70bi

^Tßi = 0.2260 Л =  1.198 C = 8.011
ß^ =  3 .2 5 1 0 f = -0.083 к  = 11.412

Pearson type

Ml = O Ml = 1.8513 Mii = O 0 =  6.422 a = 22.957 E(b2lNTbi) =
М2 = 0.0421 М2 = 0.0345 M21 = 0.0049 у =  1.1301 b = 0 1.80 + 1.31bi

NTßi = 0 Л =  0 C = 9.071
/3j = 3.1006 ¢ =  0 к = 28.839

Normal mixture®

m1= 0.2037 Ml = 1.2517 Mii = 0.0232 0 =  5.590 a = 32.202 E (b 2 l^ i )  =
/l¿2 = 0.0503 М2 = 0.0178 M21 = 0.0063 у = -0.819 b = 0.010 1.15 -  1.08bi

4 ß i  = 0.0806 X= 1.220 C = 17.432
ß2 = 3.1431 í = 0.021 к = 211.431

N ~ ß i = 0.4, /?2 = 2.8, n = 50.
bjSj = 0, ^2 ” I '®  (rectangular), n = 50.
^Two components, equal variances; N~ßi = 0.2, /?2 = 1-2, n = 75.
^Numerical results are rounded to three or four decimal places for convenience from machine output in double 
precision.

I
!2:

и
g

О
¾
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results being mainly based on Monte Carlo simulations. Their contours do 
have shapes sim ilar to concentric parabolic arcs, although the gradient 
change is sharp at the intersections.

7.7.4 The Model Under Nonnormalily

Illustrations of the parameters in a few cases for the bivariate model are 
given in Table 7.8.

In Figures 7.4 and 7.7 there is a comparison of the xsR contours and 
bivariate contours for a normal mixture population. There is little to choose 
between the two. Again an example of the bivariate contours for another

FIGURE 7. 7 Comparison of bivariate contours and omnibus contours 
(Figure 7.4) for a normal mixture, = 1.0, = 2.6, n = 50; 90, 95, and
99 percent levels.
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FIGURE 7.8 Population: Normal mixture ^Tßi = 0 . 2 , 02 = 1 . 2 , n = 75; 
90, 95, and 99 percent bivariate contours (r(N/bi , b2> = 0.75).

normal mixture is given in Figure 7.8. In each figure there are 1000 simu
lated couplets (N/bi, Ьз), and there is good evidence of the agreement between 
the contours and the trend and density of the dots.

7.8 EXPERIMENTAL SAMPLES

The editors have provided 17 random samples of 100 from specified popu
lations for discussion. The corresponding values of N/bj, Ьз are plotted in 
Figure 7.6a. If we work at the 99% level, we should reject populations 2 , 3, 
5, 11, 12, 14, 15, and 17 immediately without further complicated calcula
tions . This brings out the striking simplicity of the omnibus test approach.

Moreover, if we had some prior knowledge of the population sampled, 
we could (if it is specified by (n/0i , ¢3)) construct omnibus test regions from  
x|r  or the bivariate model to assess significance. For example, sample 12 
is drawn from a normal mixture with n/0j = 0.80, = 4.02; the Xgj^ con
tours are shown in Figure 7.5. The sample values = 0.73, Ьз = 3.49 
are well inside the 90% contour.
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In Figure 7.9, we give illustrations of the 90% bivariate contours for 
n = 200 in sampling from Pearson Type I distributions (the moderately large 
sample of 200 is used merely to contain significant pictures on the scale 
used). Note that for symmetric populations the size of the acceptance region 
decreases sls ß 2 decreases. Moreover, there is a transition to an elongated 
shape especially for \Tßi large and /З2 -  -  I  small; however, this elongated
shape broadens considerably as /З2 Increases. The actual area contained in 
the contours (those for 95, 99% not shown) turns out to be (see Figure 7.9 
for the distribution numbers):

Distribution 90% 95% 99%

I 0.0815 0.1064 0.1646
2 0.1201 0.1566 0.2418
3 0.7718 1.0161 1.6046
4 0.4413 0.5771 0.8970
5 0.9312 1.2492 8.8236
6 0.0899 0.1179 0.1846
7 0.2313 0.3024 0.4695
8 — — 16.2689

These confirm fairly obvious notions in attempting to discriminate be
tween distributions (Pearson Type I in this case) using N/bj and b2 . For

FIGURE 7.9 Examples of different shapes of bivariate contours of 90 percent 
content for several Тзфе I populations (n = 200); numbers 1-8 (small circles) 
indicate (V ß i, ^2) of population sampled.
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example, there should be no problem (with moderate sample sizes) in decid
ing between a normal distribution and symmetric alternatives for which 

<1 *8  (distributions 3, 2, I ). However, with moderate skewness, the 
regions overlap especially for moderate values of /З2 ( l « e . , distributions not 
close to the ’im possible” boundary) and very emphatically in the vicinity of 
the Type Ш boundary.

For comments on the tests described here and other tests for departures 
from normality from the power point of view, the reader is referred to 
Pearson, D ’Agostino, and Bowman (1977).
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APPENDIX I

The main Pearson distribution types (Elderton and Johnson, 1969) are:

Type Equation Limits f o r  X

ba,
I - a i  < X < a 2

Ш f(x) = exp(-x/a) X > 0

IV
/ x2\"“

f(x) езф {-Ь arc tan(x/a)} -O O  < X < OO

V f(x) = Уох”™ езф (-а/х) 0 < к < X < 00

VI f(x) = Уох“ *(х  -  a )"“ i a < X < OO
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Restrictions on the parameters are omitted, but in all cases the probability 
integrals must exist. As for the structures, Type I can be bell-shaped, J, 
or U-shaped, the range being finite. The other types have unlimited ranges 
and generally, at most, one mode.

APPENDIX 2

A 2 .1 A  Computer Version of the Kg Test Under Normality

Let Xg(NZbi) and Xg(b2) be the normal deviates corresponding to the skew
ness ( ^ 1  ) and kurtosls (Ьг), respectively. Then Kg is

We shall need the moments of N/bj and •
The first four moments of are

) = 0

Í̂2(^Л)l) = 6(n -  2)/{(n + l)(n  + 3)}

%(N/bj) = 0

Similarly those for Ьз are

(Ьг) = 3(n -  l)/ (n  + I)

= 24n(n -  2)(n -  3)/{(n + l)* (n  + 3)(n + 5)}

-  ^ 1728n(n -  2ИП -  3)(n^ -  Sn + 2)
%  (n + 1)  ̂(n + 3)(n + 5)(n + 7)(n + 9)

-  ________________ 1728n(n -  2)(n -  3)iT(n)______________
i*4(02) (jj + + 3)(„ + 5)(n + 7)(u + + + Щ

where тг(п) = n® + 207n^ -  1707n® + 4 IOSn^ -  1902n + 720-

(Al)

(A2)

(A3)

A2.2 General Case for Su

To ñt a Johnson Sy to a statistic T (or random variable), let its moment 
parameters be m1(T),  ̂ ' ^ i ( T ) ,  and/J^(T), where

^/■^x(T) = Мз(Т)/(М2(Т))®/*

^г(Т) = í»4(T)/(/í2(T))2
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For simplicity in the following, we shall write ^ T ß i,  for (T) , /S^(T), 
re^)ectively.

A2 . 2 > I Quick Approximate Solution

We define w = exp (1/6^), Q  =y/ô - Using ß i and compute

' ^ { ß l ^ ß z )  = П1(^,У2)/П2(/51,Г2) 

where for i = I, 2, with =  ßz -  3,

- ~ l i  А У л0<r+s<3

The parameters }  are given in Table A l .
r , S

Then an approximation to w is

w* = V[Ñ/fÍ̂ 7r̂ 5̂l(̂ 7̂ ¡rr2> - 1]

(A4)

(AS)

(For 3 < ^2 < 75 and bounded by the lognormal line in the ( ß i , ¢2) plane, 
the error for w* is 0.006%.)

TABLE A l  Coefficients

rs Numerator Denominator

00 1.333848465690817 1.0

10 -5.455870858760243 (I) -3.621879838877379 (I)

Ol 4.120727348534858 (I) 2.677096382861022 (I)

20 4.557065299738849 (2) 2.215014552020006 (2)

11 -7.219603313144450 (2) -3.727562379795881 (2)

02 2.459166955114775 (2) 1.266073347716621 (2)

30 -3.989549653042761 (4) -9.985226235607946 (5)

21 1.018227677593445 (3) 2.517660829639101 (4)

12 -8.686256219859072 (4) -2.555913695361249 (4)

03 2.000771886697820 (4) 6.266097479093280 (5)

2-Parenthetic entries taken negatively give the power of 10 
by which the corresponding entry is to be multiplied.
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=Л
Now compute Q *  from  

Sinh n* 

where 3

D(w*) -  I  -  W * ) 
2w* /

(A6)

^  _  [B(W) + ^/TЩw) -  4A (w )C (w )}] 
2A(w)

and

A(W) = 2 (ß z -  2w’ -  3w^ + 3) 

B(W) = 4(w^ -  l)(w^ + 2w + 3)

C(W) = (W^ -  l)^(w^ + 2w + 3)

(AT)

(sinh"*x = In { x  + 'v/(x2 + 1 )}, X real)» Go to A2.2.6 to determine | and X and 
complete the approximate solution.

A2.2.2 Exact Solution from Bivariate Iteration

(1) Determine w.
(2) Determine Q .
(3) Go to A 2 .2.6.

Starting value for w 

Compute

Wi= /̂[̂ /(2/32 - 2) - 1]

Ui = 1 + ^ { P  + n/Q} - ^ { - P  + 'n/Q}

(P  = 2/32 + 7, Q = (4/З2/З + 3)2 + P^)

A = I -  -v/ î -  2)

B

(A8)

W 2= [ -A  + nÍ(A 2 -4B )]/2  

Then a starting value is

Wo = (Wi + W2)/2

A better starting value in general is that given in (AS). Note that if ( ß i , ß z)
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is close to the lognormal line (AS), the iterative process may abort (this 
line is defined by w = I  + ß ^/(w + 2)^ and ß 2 2w^ + 3w^ -  3 ). At this
stage check if there is, in any event, a Johnson Su curve to match ( ß i , ¢3).

There is no solution if 

ß *  >  ß i

where using (AS)

ß* = (Wi -  1)(W2 + 2)2 

A2. 2.3 The Iterates for w and П

(I) From (A6), using Wq for w f, compute sinh Ц, and Q q , with the 
restrictions

(i) Q q is taken to be <0  if ^/ l̂ > 0 .

(ii) is taken to be > 0 if •sTßi <  0 .

(iii) Q  itself is taken to be zero if iSj = 0 ; in this case

W = ^/{^/(2^2 -  2) -  1 }

Go to A2.2.6 from wMch | = (T ), \ = n/{2/í2(T)/(w 2 - 1 ) }

(2) Using Wo, ^  compute ^/^f(Wo , « o )  from

fiw (w  -  1)1 [w(w + 2) Sinh (ЗП) + 3 sinh П]'v/ßf(w,ß) = -Ь=----- ------- ---------------- (AlO)
[w cosh (2П) + 1] 2/г

Solve for a new w (say Wi ) the equation

' ^(ßi .ßilVf)  =  <Hßi ,ßzi^o)  

where

ß z - f (w ^  + 2w 2 + 3)

ß i

Thus

Wi = ^/îv|2ßг -  2ßi<i{ßit ßz'>'^o) -  -  1] ( A l l )



326 BOWMAN AND SHENTON

Return this new value to (I) and continue the cycle to meet whatever tolerance 
Is deemed reasonable; for example, at the sth cycle, demand

IW -  W J  < C (c = 10“® or so)
S S - I

One could also require a tolerance based on the larger of Iwg -  Wg_il and 
I ß g  -  f^ s - l  ̂ •

A2 ♦ 2 > 4 Examples

Check a few cases using the final computed values of w and Q  in (7.16) to 
determine n/^i and ¢3 .

A2.2«5 Illustrations

Example 1» Computed on HP97 (see ESS, Vol. 4, p. 312)

A random sample of 15 is drawn from a population with density

( a )  e " ^ * ^ “ V o ! r ( p )  (X > 0, p, a  > 0)

P is a maximum likelihood estimator of p and the solution of 

, . ,  (Arithmetic Mean)
lnP-^(P) = '” ÍGeometricMe^;

Given the moments of p are

fi\ = 1.2044 

P2 = 0.2299 

^Г¢l = 2.1680 

/З2 = 14.4765

Then

W j = 1.469166402

= 2.376230596 > n/^1 , so there Is a solution 

Wo = 1.758256474, I w „  -  I < 0.000000001

Wi 1.579959821 * * *
W2 1.597436626 * * *
Wj 1.595876511 * * *
W4 1.596017234 * * *
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Ws 1.596004551
We 1.596005695
W7 1.596005591
We I . 596005602
W9 1.596005601
Wio 1.596005601
Wii 1.596005601
n — -0.905955881

t
1.204400000
0.229900000

Л 0.358105885 * * *

I 0.736127663

iterates

Feed-back

W  1.596005601 * * *
Si -0.905955881 * * *

М1(У) 1.307636524 * * *
U z(y) 1.792734830 * * ♦
n/̂ 1 2.167999999 * * *

14.476500001 * * *

Example 2. HP97 (see ESS, Vol. 4, p. 312)

The density of a random variable X  is P(x) = 1/2 exp -  I x l , -«. < x < <«..

with moments: ц [ = 0, Pj = 2, = 0, and ß^ =  ß

Then Su is given by

^Z 6.000000000 * * *

W o 1.315956418
W 1.470468517 ♦♦♦
Ô 1.610431098 %:|c4e

t
M l 0.000000000 * * *

Mz 2.000000000 * * *

Л 1.855132999
0.000000000
1.470468517
0.000000000

Feed-back

W 1.470468517
Í2 0.000000000 ♦♦He

0.000000000 ♦♦♦
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0.581138830
ß l 0.000000000

ß z 5.999999997

A 2 . 2 . 6  The Scale and Origin Parameters

Use the first two moments of the statistic T , ß [(T ) and Mz(T) to determine

X  =
(T)

~ (w  -  l)(w  cosh (2ÍÍ) + I)

f = Ml (T) + Xn/w  sinh Í2

and

Z = 7 + Ô sinh~^^^  V ^ )

F l  = 4.50225 + 5.39716 X IQ -^n+ 8.59940 X 10’ ®n^

95% F2 = 6.22848 + 1.52485 X 10"½ + 1.38568 X 10"^n^

F3 = 10.8375 + 2.80482 X 10"^n + 4.97077 X lO-'^n^

A2.3 The Test

Construct K| = X|(N/bi) + Хдфз)- Bowman and Shenton (1975b) have accumu
lated extensive simulation results for K| for n = 25 (5) 100 (10) 250,300, 
500,1000. A quadratic regression for each of the percentage points 90, 95, 
and 99 has been worked out to provide acceptance levels for k | under the 
null h5̂ othesis for n = 30 (I) 5000. The quadratic regressions are, for 
30 < n < 1000.

(A12)

Hence for a given value of n, ‘\ i b i , Ьз proceed as follows:

(1) Compute Ô, a  from (7.3), thence ô i , X j, and finally X s ( ^ i ) .

(2) Compute Xjj, Уг» and thence Хз(Ь2).

(3) Construct k | = Xg(NZbi) + Xg(b2) and compare with the levels F I, F2, 
F2 for the given n.

It is thought that there may be a use for this computerized version as a 
sub-routine in a data analysis package, since the omnibus charts are visual 
aids. There would be an automatic print out of significance at the three 
levels.

Lastly, note that the S j j  transformation for the skewness statistic 
-v/bi = under a normal population assumption is given explicitly



(in terms of the sample size n) from the parameters 

Yi = ^ l{ { n  + l)(n  + 3)bi/(6n -  12)}
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^ 3(n^ + 27n -  70)(n + l)(n  -b 3) 
(n -  2)(n + 5)(n + 7)(n + 9)

W  = n/{-^(2B2 -  2) -  1 }

Ô = 1/lnW

0! = 'v/{2/(W^ -  1)}

Then

Xs(NZbi) = Ô In {Y i/ a  + *7(1 + Y i/0!)2)} 

is an approximate normal variate.
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8.1 INTRODUCTION

The uniform distribution plays a special role in goodness-of-fit testing. It 
sometimes arises, as for most tests, in the natural occurrence of certain 
types of data; but it appears also because there exist many ways of trans
forming a given sample of X-values, from a distribution other than the uni
form, to produce a set of U-values, which is uniformly distributed between 
0 and I .  This distribution is written U (0,1 ). A  test that the X-sample comes 
from a certain distribution can then be reduced to a test that the U-sample 
comes from U (0 ,1). For most of this chapter we therefore discuss tests of

a complete random sample of n U-values comes from U (0 ,1) (8 .1)

Tests for a uniform distribution with unknown limits are given in Section 8.16, 
and tests for censored uniforms are summarized in Section 8.17. An enor
mous literature exists on the properties of a uniform sample, its order sta
tistics, and its spacings, and no attempt will be made to reference this 
entire literature. Two articles with extensive references are those by Barton 
and Mallows (1965) and Pyke (1965). References given in subsequent sections 
will mostly be concerned with a particular test o r group of tests, and the 
provision of tables.

331
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8.2 NOTATION

The uniform, or rectangular, distribution for a random variable U' with 
support over a < u’ < b has the density f(u’) = l/(b -  a), a < u’ < b, and this 
density w ill be denoted by U (a ,b ). The transformation U = (U  ̂ -  a)/(b -  a) 
yields a random variable U with density U (0 ,1). The distribution function 
of U is

F(U) = u, 0 < U < I (8 .2)

The distribution in (8.2) will be called the standard uniform distribution; U ’ 
or U will be described as a uniform random variable, or simply as a uniform 
and a random sample from U (0 ,1) will be called a uniform sample, with 
notation Ux, i = 1> • • • , n; when these are placed in ascending order the 
order statistics U (i) < U^2) < • • • < U(n) will be called ordered uniforms.

Either Ui or U/jj might be regarded as the components of a vector U.
It is convenient to define U(0) = 0 and U^n+1) = !• The notation will also be 
extended to sample values which are to be tested to be U (0 ,1).

Spacings. When a uniform sample is ordered, the spacings Dj are de
fined by:

D = U  - U  
I (I) (i -1 )’

i = l , n + I (8.3)

In particular, D i = U^i) and D^+i = I -  U^^)* An important result is that the 
spacings Di have the distribution of a sample from the езфопепйа! distribution 
F(u) = I -  exp (-u/jS), (u > 0), with ß  = l/(n + I ),  conditional on the constraint 
Z jD i = Spacings are discussed in Section 8.9.

Many of the statistics to follow Involve calculations of maxima, or of 
sums. Unless otherwise stated, the index used (usually i) in these езфгеееюпе 
will run from I to n.

8.3 TRANSFORMATIONS TO UNIFORMS

Some of the most important transformations from a non-uniform distribution 
to a uniform distribution U(0,1) are:

a) The Probability Integral Transformation, and the related half-sample 
method, considered in Chapter 4;

b) The Conditional Probability Integral Transformation discussed in 
Chapter 6;

c) The J and K transformations, discussed in Sections 10.5.4 and 10.5.5, 
which take exponential random variables to uniform random variables.
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There are also methods by which uniform random variables U may 
themselves be transformed to a new set of values U* or U” which also has 
the U (0 ,1) distribution. Two of these are transformations G and W  below.

8.4 TRANSFORMATIONS FROM UNIFORMS TO UNIFORMS

8.4.1 TheG-Transformation

Suppose U^j), 1 = 1, . . . ,  n, is an ordered random sample from U (0 ,1), and 
IetDi^, k = l ,  2, . . . ,  n + I , be the spacings. Suppose further that these 
spaclngs are themselves ordered, so that D (i ).  (2)» •••* ^(n+1) constitutes
the ordered spacings, and define D (0) = 0. Then construct new variables Dj. 
from

D* = (n + 2 -  r)(D . . -  D, r  = I , . . . ,  n + I
r  ' (r) (r -1 )' (8.4)

The set is another set of unordered uniform spacings (Sukhatme, 1937). 
From these, we can clearly build up another ordered uniform sample:

j
"  Z  » j = I , . . . ,  n

This transformation, which we call the G transformation, takes a set U  of 
ordered uniforms and produces another set U* of ordered uniforms; we can 
write Û  = GU. A useful purpose of the G transformation is to increase 
power of a test for uniformity. Suppose the parent population of the U-values 
is not uniform, but close to uniform. Durbin (1961) showed that, loosely 
speaking, transformation G makes large spacings larger and small spacings 
sm aller so that, when the transformation is applied to the U-set the resulting 
set U ’ will usually appear further removed from uniform. A test for uniform
ity would then be more powerful applied to U  ̂ than to U. There is, of course, 
a limit to this argument: if the original sample U were far removed from  
uniform, the transformation will possibly make the resulting U ’ appear more 
like uniform, and power would be lost. A more complete discussion of how 
the spacings might look before G loses power rather than gains it is in 
Seshadri, Csdrgo"*, and Stephens (1969). In practical terms, G will increase 
power if the set tested might be thought to be close to the uniform distribu
tion, but not if it is far away.

8.4.2 The W  Transformation

Another transformation to produce uniforms from uniforms is the W  trans
formation. This is given by
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” 1' ■ ' " ( « л * « »  • i = I, >, n

with ü(n+l) defined to be I. The resulting U” set is a uniform sample, not 
ordered. Formally, we may write U” = W U. Wang and Chang (1977) have 
discussed the use of W  in connection with tests for the e^iponential distribu
tion (see Chapter 10); it arises also in the work of 0*Reilly and Stephens 
(1982).

8.5 SUPERUNIFORM OBSERVATIONS

When a test is made for uniformity, the alternative is often that the sample 
comes from a distribution which gives spacings more irregular than those 
from a uniform sample. The implication for testing is that for most test 
statistics a one-tail test is used. There are, however, some occasions when 
a sample should be tested as too regular to be uniform; such a sample will 
be called superuniform. Stuart (1954) entertainingly refers to superuniform 
observations as ”too good to be true ." One situation in which one wishes to 
detect superuniformity arises when there is a suspicion that values unhelpful 
to a certain hypothesis have been deliberately removed from the sample; 
hopefully this situation will be ra re . However, there are other cases where 
superuniform observations can arise quite naturally, with important impli
cations in test situations. They can occur, for example, when transforma
tions are made (for example, the J transformation of Chapter 10; see 
Section 10.6).

.6 TESTS BASED ON THE EMPIRICAL  
DISTRIBUTION FUNCTION (EDF)

Tests based on the EDF of a set of observations are discussed extensively 
in Chapter 4. Those which apply to a test of uniformity are the Case 0 tests 
of Section 4.4. In the present context, the values U(i) will replace the Z(i) 
in equations (4. 2) and subsequent equations of Sections 4. 5 and 4 . 7.

If it is desired to guard against superuniform observations, the lower 
tall of EDF statistics should be used. Significance levels for a given value of 
a test statistic may be found from Tables 4.2 and 4.3, as described in 
Section 4 . 5. 1.

Statistics V  and U^ were introduced as omnibus tests for observations 
on a circle (see Section 4 .5 .3 ), but they may be used in the same way as the 
other statistics, for testing Hq in (8.1) above. The various EDF statistics 
can be e3q>ected to possess different powers when the true population is not 
the uniform distribution. Power properties are discussed further in Sec
tions 8.13 and 8.14.
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E 8. 6 Example

In Table 8 .1 are given 10 values of U (i), the order statistics of a random 
sample of U-values; these values will be subjected to the various tests for 
the uniform distribution U (0 ,1) to be given throughout this chapter« Also 
Included in the table are the EDF statistics calculated from equations (4. 2 ). 
The modified values of the statistics, for Case 0, are then:

= .270, D "*  = 1.258, D* = 1.258, V * = 1.573,

W * = .582, U * = .217, A * = 2.865

Reference to Table 4 .2.1 shows the significance levels corresponding to 
these values to be approximately:

D" ;̂ > .2 5 ; D "; .045; D: .09; V: .13;

W^: .025; U^: .03; A^: .03

The fact that , U^, and all have much the same significance levels is 
unusual; it reflects the fact that the sample is highly non-uniform in several 
features. The fact that D " is much more significant than D"*” shows that the 
drift in the values is toward I rather than 0. This is also shown by the mean
Ü = .686.

Another example of a test for U (0 ,1) is given in Section 4 .4 .' Here the 
test is a Case 0 test for normality; because the distribution tested is com
pletely specified, the test reduces to a test that the values of Z j given in 
Table 4.1 are uniform. Also, in Chapter 10, tests for exponentlality are

TABLE 8 .1 Set of Values Û ^̂  and Derived Statistics

Values U: .004, .304, .612, .748, .771, .806, .850, .885, .906, .977

2 EDF statistics: D"̂ ; .096; D": .448; D; .448; V; .544
(Section 8.6) , 554. u2; .207; A^: 2.865

3 Mean: U =  .686

4 Values Vj: -.087, .122, .339, .384, .316, .261, .214, .158, .088, .068 
(Section 8.8.1)

5 Statistics C ^ i .384; C": .087; C: .384; K: .471 
(Section 8.8.1)

6 Spacings Dj; .004, .300, .308, .136, .023, .035, .044, .035, .021, .071, .023

7 Statistics; G(IO) = .214; Q = 0.361
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converted, by transforming the data by transformations J and K, to tests 
for uniformity.

8.7 REGRESSION AND CORRELATION TESTS

The e x p e c t e d  value of U (i), on Hq , is m^ = i/(n + I ). A useful technique for 
testing uniformity is to plot the ordered observations against mi, and then 
to see how well these fit a straight line. When the limits of the distribution 
are not known, the simple correlation coefficient may be used (see Sec
tion 5.5). When the limits are known to be (0 ,1), the straight line, say L, 
will join the origin O to the point P  = (I ,  I ). Quesenberry and Hales (1980), 
using the beta distribution of a typical order statistic, have given a useful 
pictorial method of testing, by giving bands around L  in which the observa
tions can be e3q>ected to lie. Test statistics may also be based on the devi
ations from L , that is, on the vj in the next section (see Section 5.6).

8.8 OTHER TESTS BASED ON ORDER STATISTICS

8 .8 .1 Comparisons of Order Statistics with 
Expected Values

A measure of the displacement of each variable U(i) from its e^)ected value 
mi = i/(n + I) is

(8.5)

and statistics for testing Ho can be based on the vj. Some statistics which 
have been suggested are

C = max. V. ; C = max. ( - v j  ;
I l  1 1

+ — + — 
C = m ax(C , C ) ; K = C + C ;

Tl = S.v?/n; T 2 = 2. Iv.l/n

(8. 6)

I I I I

The test procedure is to calculate the Vj from (8.5), then the statistic 
from (8.6), and refer to the upper tall of the appropriate null distribution. 
For the same reasons as for EDF statistics, only the upper tail is usually 
used in the test for uniformity; for superuniform observations, the lower 
tall would be used. Tables for significance points for C*", C” , and C have 
been given by Durbin (1969a), and tables for K by Brunk (1962) and by 
Stephens (1969b). From the exact points for each n, Stephens (1970) calcu-
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Iated modified forms, sim ilar to those for the EDF statistics in Section 8.6, 
so that the C and K statistics may be modified and used with only the asymp
totic points; these points are the same as for the corresponding EDF statis
tics. The modified forms and the asymptotic points are given in Table 8.2. 
Johannes and Rasche (1980) have recently given more detailed modifications 
for C"*", C ", and C.

The C -statistics arise in a natural way when testing the periodogram in 
tim e-series analysis; see, for example, Durbin (1969a, 1969b). Statistic Tj 
arises if U(i) are plotted against mi and a test is based on the sum of squares 
of residuals (see Section 5.6).

Hegazy and Green (1975) have given moments and percentage points for 
statistics T l and T 2 above, and also for the statistics t J and T 2 , calculated 
using the same formulas as for T j and T 2, but with v  ̂= U(j) -  (i -  l)/ (n  - 1); 
they also gave some power studies for these statistics.

The statistics discussed in this section have much in common with EDF 
statistics, and overall they have much the same power properties.

E 8 .8 .1 Example

The values vj for the data set in Table 8 .1 are included in the table together 
with the statistics  ̂ C“ , C, and K. When these are modified as in 
Table 8.2, the significance levels of the test statistics are: C*": .01;
C : ^ .25; 0: .02; IC: ^ .20.

TABLE 8.2 Modifications and Upper and Lower Tall Percentage Points for 
Statistics C^, C ", C, and K (Section 8.8.1)

Statistic
T Modified form T*

Significance level a

0.15 0.10 0.05 0.025 0.01

Upper tail
+

C (C^ + 0.4/п)(\Гп'* 0.2 + 0.б8/^/n) 0.973 1.073 1.224 1.358 1.518

c" (C“  ̂0.4/n)(N/n+0.2+0.68/N/n) 0.973 1.073 1.224 1.358 1.518

C (C+0.4/n)(\^+0.2+ 0.68/Vn) 1.138 1.224 1.358 1.480 1.628

K {K-l/(n-^ l)}K (n +  I)-+ 0.1555+0.24/NT(n+ 1)} 1.537 1.620 1.747 1.862 2.001

Lower tall

C (C + 0.5/n)(N/n+ 0.44 -0.32/%¾ 0.610 0.571 0.520 0.481 0.441

K {K -l)/(n+l)| K(n + 1) + 0.41-0.26/-/(114 1)} 0.976 0.928 0.861 0.810 0.755

Adapted from Stephens (1970), with permission of the Royal Statistical 
Society.
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8.8.2 Statistics Based on One Order Statistic

On Ho, the order statistic U (r) has a beta distribution Beta (x; p, q) with 
density

f(x) = [Г (Р +  q)/{r(p)r(q)}]xP"V - 0 < x <  I

where Г(р) is the gamma function; for statistic U (r) the parameters are 
P = r  and q = n -  r  + I .  Thus in a sample of size n = 2k + I, the median 
U(k+i) has density

n! 0 < x <  I

with mean 0.5 and variance l/ {4 (n  + 2 )}.
The following result connects the Beta(x;p, q) and F2p,2q distributions.

If X has the Beta (x;p, q) distribution, then у defined by у = qx/ {p (l -  x ) }  
has the F2p^2q distribution; equivalently, z = l/y = p (l -  x)/(qx) has the 
F2q,2p distribution.

It follows that Z = { (n  -  r  + l )U (j. ) }/ {r (l  -  U (r ))} has an Fs^t distribution, 
with degrees of freedom s = 2r and t = 2(n -  r  + I ) . It is therefore possible 
to base a test for uniformity on one of the order statistics, rejecting if Z is 
too large or too small compared with the F -distribution percentage points; 
the median U with r  = n/2 or r  = (n +  1)/2) has sometimes been sug
gested. The test is useful if, for some reason, not all of the sample values 
were known, but only, for example, the smallest values; but in general it 
appears to be a relatively weak method of testing for uniformity, given a full 
sample. This is revealed, for example, in Chapter 10, where tests for expo- 
nentiality are converted to tests for uniformily and then the mean Ú or the 
median U used as test statistics: by and large, Û performs much better 
than U.

8.9 STATISTICS BASED ON SPACINGS

Another group of statistics for testing Hq is based on the spacings Dj defined 
in Section 8.2. These tests have often been introduced in connection with 
testing for exponentiality rather than as direct tests for uniformity. The 
reason for this is that an e^onential set of n values can be transformed, 
by means of the J and K transformations of Sections 10.5.4 and 10.5.5, into 
the n spacings produced by n -  I ordered uniforms U (i). Some tests for 
exponentiality are tests based on these spacings, using the distribution theory 
of spacings between uniforms. The treatment of spacings statistics will
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therefore be shared with Chapter 10. In this section we discuss only the 
Greenwood statistic and some modifications.

8.9.1 The Greenwood Statistic

This statistic was itself introduced by Greenwood (1946) in connection with 
testing that the intervals between events (the incidence of a contagious dis
ease) were e¾юnential, that is, that the times of the events constituted a 
Poisson process (see Chapter 10), but it has also received attention specif
ically as a test for uniformity. The statistic is

n+1
G(n) = Y j D?

i= l

Distributional properties of G(n) were investigated by Moran (1947, 1951); 
recently, percentage points have been given by Burrows (1978), Hill (1979; 
see the correction 1981), Currie (1981), and Stephens (1981). Percentage 
points for nG(n) based on these results are given in Table 8.3. Large values 
of G(n) w ill indicate highly irregular spacings and small values w ill indicate 
superuniform observations; G(n) is well suited to detect superuniforms. For 
large n, nG(n) is approximately normally distributed, with mean /х = 2п/^(п+2) 
and =  4/n, but this limiting distribution is attained very slowly.

The expected value of Di is l/(n + I ) , and a possible test statistic might 
be the dispersion of the spacings defined by

G*(n) = S j {D .  - l / ( n +  1)}^

However, it is easily shown that G*(n) is G(n) -  l/(n + I ),  so that G*(n) is 
equivalent to G(n). Several other statistics are also equivalent to G(n); see 
Section 10.9.3.2.

8.9.1 .1  The Greenwood Statistic Adapted for Censored Data

Suppose a sample is given, right-censored at value U (r ), and define

Hj (̂n) = D^. Kimball (1947, 1949) discussed distribution theory and

gave moments of Hj^(n). Clearly Hj.(n) could be used as a test statistic for 
uniformity; also, because of the exchangeability of uniform spacings, the Di 
in Hk(n) could be replaced by any set of available spacings between adjacent 
order statistics, even if some of the U(i) were missing. A further modifi
cation is

( I - V ) ) '
°г<”) = «г<“) " Т Г 7 ^ (8.7)
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TABLE 8.3 Upper and Lower Percentage Points for nG(n) (Section 8.9.1)

Sample
size

n

Lower tail
Í Significance level a

Upper tail 
Significance level a

.01 .025 .05 .10 .05 .025 .01

2 0.672 0.680 0.694 0.722 1.381 1.539 1.673 1.780
3 0.776 0.796 0.825 0.870 1.635 1.852 2.075 2.269
4 0.855 0.885 0.923 0.974 1.800 2.037 2.311 2.560
5 0.919 0.954 0.997 1.050 1.915 2.160 2.461 2.737
6 0.973 1.009 1.055 1.112 1.995 2.246 2.559 2.849
7 1.017 1.060 1.104 1.162 2.053 2.306 2.615 2.921
8 1.055 1.095 1.145 1.205 2.097 2.349 2.670 2.967
9 1.088 1.129 1.180 1.241 2.131 2.381 2.700 2.997

10 1.117 1.159 1.211 1.272 2.157 2.404 2.717 3.008
12 1.198 1.234 1.272 1.326 2.204 2.441 2.683 3.015
14 1.233 1.272 1.312 1.368 2.227 2.457 2.691 3.014
16 1.263 1.304 1.346 1.403 2.242 2.464 2.691 3.003
18 1.288 1.332 1.375 1.433 2.251 2.466 2.685 2.988
20 1.311 1.356 1.400 1.459 2.258 2.465 2.677 2.970
25 1.358 1.405 1.451 1.510 2.265 2.456 2.651 2.920
30 1.395 1.444 1.490 1.549 2.265 2.443 2.624 2.873
40 1.453 1.502 1.548 1.605 2.258 2.415 2.573 2.790
50 1.495 1.544 1.589 1.644 2.248 2.389 2.531 2.723
60 1.529 1.577 1.621 1.674 2.238 2.367 2.495 2.669
80 1.579 1.625 1.666 1.716 2.220 2.331 2.441 2.587

100 1.616 1.659 1.698 1.745 2.205 2.304 2.400 2.528
200 1.714 1.750 1.781 1.818 2.159 2.226 2.289 2.371
500 1.811 1.836 1.858 1.884 2.107 2.147 2.183 2.228

Adapted from Burrows (1979) and from Stephens (1981), with permission of 
the first author and of the Royal Statistical Society.

This reduces to G(n) above when r  = n. Lurie, Hartley, and Stroud (1974) 
investigated statistic S  ̂ = (n + 2 ){(n  + l)Gp(n) -  l }  and gave moments and 
some null percentage points obtained by curve-fitting. For complete samples 
S  ̂ had previously been discussed by Hartley and Pfàffenberger (1972). The 
statistic Is clearly equivalent as a test statistic to G r(n ), and the moments 
of S  ̂ can be used to give moments of Gr(n). The moments of % (n ) and of 
Gj.(n) have been used by the author to fit Pearson curves to the null distri
bution to give percentage points for G^in). These percentage points are given 
in Stephens (1986).
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TABLE 8.4 Upper Tail Percentage Points 
of the Q Statistic (Section 8.9.2)

n

Significance level a.

.50 .10 .05 .01 .001

2 .659 .811 .859 .932 .977
3 .527 .691 .736 .831 .920
4 .447 .586 .635 .727 .829
5 .388 .505 .551 .642 .739

6 .343 .442 .433 .573 .691
7 .307 .393 .429 .512 .622
8 .278 .355 .387 .463 .551
9 .254 .322 .350 .423 .506

10 .234 .294 .319 .378 .461

11 .217 .272 .294 .351 .434
12 .202 .251 .272 .318 .392
13 .189 .234 .253 .298 .371
14 .177 .220 .237 .279 .348
15 .168 .206 .222 .259 .321

16 .159 .195 .209 .245 .294
17 .150 .184 .197 .230 .278
18 .143 .174 .187 .218 .268
19 .137 .166 .177 .206 .257
20 .131 .158 .168 .196 .246

21 .125 .151 .162 .187 .232
22 .120 .144 .154 .178 .218
23 .115 .138 .147 .169 .206
24 .111 .133 .141 .163 .192
25 .107 .128 .136 .156 .189

26 .103 .123 .131 .148 .182
27 .100 .119 .126 .144 .173
28 .097 .114 .121 .138 .166
29 .094 .111 .117 .134 .158
30 .091 .107 .114 .130 .155

(continued)
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TABLE 8.4 (continued)

n

Significance level a.

.50 .10 .05 .01 .001

31 .088 .104 .110 .125 .148
32 .086 .101 .106 .120 .142
33 .083 .097 .103 .116 .135
34 .081 .095 .100 .112 .131
35 .079 .092 .097 .110 .128

36 .077 .090 .095 .107 .124
37 .075 .087 .092 .103 .122
38 .073 .085 .089 .100 .118
39 .071 .083 .087 .097 .114
40 .070 .081 .085 .095 .112

41 .068 .079 .083 .092 .110
42 .067 .077 .081 .090 .107
43 .065 .075 .079 .088 .103
44 .064 .073 .077 .086 .101
45 .062 .072 .075 .084 .098

46 .061 .070 .074 .082 .094
47 .060 .069 .072 .080 .092
48 .059 .067 .070 .078 .091
49 .058 .066 .069 .077 .090
50 .057 .065 .068 .075 .086

55 .052 .059 .061 .068 .078
60 .048 .054 .056 .062 .070
65 .044 .050 .052 .057 .064
70 .041 .046 .048 .052 .059
75 .038 .043 .045 .048 .054

80 .036 .040 .042 .045 .051
85 .034 .038 .039 .042 .047
90 .032 .036 .037 .040 .044
95 .031 .034 .035 .038 .041

100 .029 .032 .033 .036 .040

Taken from Quesenberry and M iller (1977), 
with permission of the authors and publishers. 
Copyright © Gordon and Breach Science Pub
lishers, Inc.
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8.9.2 Statistics Related to Greenwood^s Statistic

An adaptation of G(n) has been proposed by Quesenberry and M iller (1977). 
This is the statistic

n+1

Q = Z Dj
i= l

n

i= i  ̂ ^
i+l

and Ho is rejected if Q is too large. Tables of percentage points for Q are 
given in Table 8.4, taken from Quesenberry and M iller and based on Monte 
Carlo studies. Q is designed to take into account the pattern of the spacings 
(specifically, the autocorrelation) as well as their sizes, and could be a 
useful statistic in analyzing series of events, where autocorrelation some
times plays a part (see Section 10.6.2).

E 8.9.2 Example

The values of the spacings , for the data set U  in Table 8 .1 are also given 
in the table. From these are calculated Greenwood’s statistic G(IO) = 0.214, 
and Q = 0.361. Reference to Table 8.3 shows G(IO) to be significant at about 
the upper 10% level, and reference to Table 8.4 shows Q to be significant at 
about the upper 6% level.

8.9.3 Other Statistics Calculated from Spacings

Other statistics based on spacings are Moran’s M and the Kendall-Sherman 
statistic K (Sections 10.9.3.4 and 10.9.3.5); EDF statistics (Section 
10.9.3.6) and 1ц(р) (Section 10.9.3.7); and statistics given in Section 
10.11.4. Note that these are all defined for n spacings, not n + 1  spacings, 
and the formulas must be adapted accordingly.

E 8.9.3 Example

For the U set in Table 8.1, Moran’s statistic is 14.81 (Section 10.9.3.4 
with n = 11); C = 1.18, so M(IO)Zc = 12.57. This is significant at the 25% 
level when compared with Xio •

8.9.4 Higher Order Spacings and Gaps

There has recently been Interest in k-spacings, defined by Dki = U(^i) -U (k i-k )» 
these are the spacings between the observations, taken к at a time. This use 
of spacings suppresses some of the Information in the sample, but Hartley 
and Pfaffenberger (1972) suggested that k-spacings might be useful in tests 
for large samples. Del Pino (1979) discussed statistics of the form  
W  = Zih(nDki) where h (-) is an appropriate function, summed over the range 
of i for fixed к (for simplicity, suppose к divides into n + 1  and let
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i  = (n + I )/к; then the range of i is I  < i < f ) .  Del Pino showed that, by the 
criteria of asymptotic relative efficiency, h(x) = gives an optimum sta
tistic W ; let this be W j . Del Pino also argued for the utility of such statistics 
for large samples; see also Darling (1963) and Weiss (1957a, 1957b) for more 
general considerations involving spacings.

Cressie (1976, 1977a, 1978, 1979) and Deken (1980) have considered
test statistics which are functions of m-th order gaps = U „ . , ,

------------------- I (i+m) (I)
for m a fixed integer, and 0 < l < n + l - m ; a s  before, U(0) = 0 and

.(m)U. . _  = I- For m = I , = D., : for higher m, the G ' 
(n+1) 1 1 + 1  ® i contain over- 

з(Р+1)lapping sets of Dj, in contrast with k-spaclngs above. Deken defined G^ 
as a p-stretch, and gave distribution theory for the maximum p-stretch. 
Solomon and Stephens (1981) gave percentage points for n = 5 and 10 and 
made a comparison with an approximation given by Deken. Cressie (1977a, 
1978) has also studied the minimum p-stretch and the minimum one 
might suppose the minimum p-stretch to be useful in detecting a ”bump” 
in an otherwise uniform density, and this would be valuable in studying the 
times of a series of events (see Chapter 10); however, Cressie (1978) found 
the minimum gap of either type to be less powerful against a specific bump

alternative than = log g |”^\ r  = n + I  -  m, or its parallel

= Z j log D^J (r  = [(n + l)/m ] -  I ).  Cressie (1978) discussed

showing asymptotic normality and giving some Monte Carlo power results.

For m = I, is essentially Moran*s statistic M (Section (10.9.3.4); for

m > I, may be useful in overcoming the difficulties of M with very

small values (Section 10.10). Tables of the null distributions of and 
are given by McLaren and Stephens (1985).

An Interesting justification for using high-order spacings comes from  
considerations of entropy, which, under certain conditions, characterizes 
a distribution. Vasicek (1976) introduced an estimate of entropy and used 
it to produce a consistent test for normality; the estimate, adapted for the 
uniform distribution, is

jj.

where now = ^ if r  < I  and U, = U, , 
Д т )

if r  > n. There are clearly

close connections between 1¾ and H(m ,n). Dudewicz and van der Meulen
(1981) have proposed H(m,n) as a test statistic for uniformity, and have 
given tables of percentage points, derived from Monte Carlo methods, for 
n = 10, 20, 30, 40, 50, 100 and for various values of m from m = I  to 
m = M, with M becoming larger with n. They also show asymptotic normality
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for H(m,n), established by the relationship with , but both these statis
tics attain the asymptotic normality only very slowly; this appears to be a 
feature of spacings statistics. Dudewicz and van der Meulen also give power 
results; H(m,n) appears to be particularly good against alternatives 
with a high density near 0.5 and for m »  0.4n. The m to give best power 
varies with the alternative.

Cressie (1979) discussed statistics of the form H = Z)ih(nGj ) ,  and

found that, with h(x) = the resulting statistic =  has
higher asymptotic relative efficiency than del Pino^s . Note that both 
these statistics can be regarded as extensions of Greenwood^s statistics to

(2)
higher-order spacings and gaps. ' is closely related, and asymptotically 
equivalent, to the Quesenberry-M iller statistic Q above. McLaren and

Stephens (1985) have given percentage points for and Del Plno 
(1979) and Cressie (1979) proved as3nnptotic normality for statistics W , H,

and Sn , and Holst (1979) gave the mean and variance of H, but tables for 
finite n are not yet available for these statistics. Greenwood^s statistic 
Itself converges only slowly to its asymptotic distribution, and this may be 
the case also for these related statistics. McLaren and Stephens (1985) have

given power studies for statistics L¿ ' and S^ , for m = I, 2, and 3. These 
included alternatives with spacings derived from Gamma or Weibull variates; 
the L-C lass was better than the S-class, and power decreased with m.

Another statistic to detect bumps is the scan statistic; this is S (L ), the 
maximum number of observations (out of n) falling into a window of length L, 
as the window travels along the Interval (0,1). The statistic has been studied 
by Wallenstein and Naus (1974), who gave the null distribution for finite n, 
and by Cressie (1977b, 1980) who gave asymptotic theory; see these articles 
also for references to earlier work by Naus. Ajne (1968) discussed the scan 
statistic on the circle, with circumference I and L  = 0.5.

Mich Interesting work has been done on the gaps and scan statistics (the 
papers quoted give many earlier references), but more is needed to make 
them of practical use as test statistics and to compare them with other tests 
for uniformity.

8.10 STATISTICS FOR SPECIAL ALTERNATIVES

The statistics so far considered have been based on various methods of 
relating the order statistics or their spacings to the pattern eiqpected of them. 
Many other test statistics for uniformity, usually fairly simple functions of 
the U i, arise when special distributions are regarded as the alternative if Ho 
is not true, and likelihood ratio methods are used to find test statistics. Some 
of these are discussed in this section.
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8.10.1 The Statistic 0

Suppose the alternative distribution to Ho is density

f(u) =
ku

к
e -  I

0 < U < I (8. 8)

This is a truncated eзфonentlal distribution which reduces to the uniform 
density when к = 0. Thus a test for uniformity becomes a test for к = 0, and 
the likelihood ratio method gives the test statistic T = 1¾ Uj , or equivalently 
0 = T/n.

The null distribution of Ú is weU known, although its form is quite com
plicated. Lower tall percentage points are in Table 8.5, adapted from

TABLE 8.5 Lower Tall Percentage Points for U (Section 8.10.1)

Significance level oi

0.25 .15 .10 .05 .025 .01 .005

4 0.399 0.346 0.312 0.262 0.221 0.176 0.148
5 0.410 0.363 0.332 0.287 0.250 0.208 0.181
6 0.419 0.376 0.347 0.306 0,271 0.232 0.207
7 0.425 0.385 0.359 0.320 0.288 0.251 0.227
8 0.430 0.393 0.368 0,332 0.301 0.266 0.244
9 0.434 0.399 0.376 0.341 0.312 0.279 0.257

10 0.438 0.404 0.382 0.350 0.322 0.290 0.269
12 0.443 0.413 0.393 0.363 0.337 0.308 0.289
14 0.447 0.419 0.401 0.373 0.349 0.322 0.304
16 0.451 0.425 0.407 0.381 0.359 0.333 0.316
18 0.454 0.429 0.412 0.388 0.367 0.343 0.327
20 0.456 0.433 0.417 0,394 0.374 0.351 0.335
25 0.461 0.440 0.426 0.405 0.387 0.366 0.352
30 0.464 0.445 0.432 0.413 0.397 0.378 0.365
35 0.467 0.449 0.437 0.420 0.404 0.387 0.375
40 0.469 0.453 0.441 0.425 0.411 0.394 0.383
45 0.471 0.455 0.445 0.429 0.416 0.400 0.390
50 0,472 0.458 0.448 0.433 0.420 0.405 0.395
60 0.475 0.461 0.452 0.439 0.427 0.414 0.404
70 0.477 0.464 0.456 0.443 0.432 0.420 0.411
80 0.478 0.467 0.459 0.447 0.437 0.425 0.417
90 0.479 0.468 0.461 0.450 0.440 0.429 0.422

100 0.481 0.470 0.463 0.453 0.443 0.433 0.426

Adapted from Stephens (1966), with permission of the Biometrika Trustees.
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Stephens (1966); if Z q, is the given point for level ce, the corresponding upper 
tail point, that is, for level 1-ce, is I - Z q,. For large n (n > 20) the dis
tribution of Ú is well-approximated by the normal distribution with mean 0.5 
and variance l/ {l2 n }o  The distribution (8.8) occurs in connection with 
points U obtained from a renewal process with a trend (see Section 10.9.1).

E 8.10.1 Example

The mean of the U -set in Table 8 .1 is 0.686, so I - U =  .314. Reference to 
Table 8.5 gives a p-level equal to 0.02 (one-tail) or 0.04 (two-tail).

8.10.2 TheStatlstlcP

Suppose the alternative distribution to Hq is the density 

f(u) = (k + l)u^, к > - I ,  0 < U < I ,

which reduces to the uniform density when к = 0. This family of densities is 
sometimes referred to as the Lehmann family. The likelihood ratio test 
statistic for a test for к = 0 against к ^ 0 is P/2 where

P  = -2Z^ log Uj

On Ho, P  has the distribution with 2n degrees of freedom. The test of Hq 
is the test that к = 0 ; against the alternative к > 0, low values of P  w ill be 
regarded as significant, and Hq w ill be rejected if P  is less than the appro
priate percentage point in the lower tail of x^n* against
the alternative - I  < к < 0, high values of P  w ill be significant, and Hq w ill 
be rejected if P  exceeds the upper tail percentage point of xin* most
general test of Hq , that к = 0 against the alternative к 0, a two-tail test 
will be used. P  has often been used to combine several tests of significance 
by Flsher^s method (see Section 8.15 below).

8.10.3 Statistics for the Circle or the Sphere

Suppose points P j, i =  I ,  • • . ,  n are marked on the circumference of a circle 
of radius I , and it is desired to test the null hypothesis Hq that the points P j 
are uniformly distributed around the circle. Let O be the center of the circle  
and let N  be the north pole; let в be the angle between ON and OP, where P  
is a typical point on the circle. A common distribution used for describing 
a unimodal population around the circle is the von Mises distribution (Sec
tion 4 . 15) for which the density is

f(e ) =
2irIo(/c)

exp { k cos(0  -  0o)}, 0 < 0 < 2ir, k > 0
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This density is S3mimetric, with a mode along the line OA with coordinate » 
and is increasingly clustered around OA as к  becomes larger; when K =  O the 
distribution is uniform around the circle. I q {к) refers to the Bessel function 
with imaginary argument, of order zero. For a von Mises alternative, the 
null hypothesis Hq is equivalent to

K = O, against the alternative Hj : к > 0

When the modal vector OA is not known, the likelihood ratio procedure gives 
a test statistic which is the length R of the resultant, or vector sum, g , of 
the vectors OP¿, i = I, . . . ,  n. In the more unlikely event that, on the alter
native, the modal vector OA is known, the component of g  along OA, called X, 
is the test statistic.

The distributions of R and X are very complicated for points on a circle; 
they have been studied by Greenwood and Durand (1955) and Durand and 
Greenwood (1957), who have given some percentage points. Stephens (1969a) 
has given a table of upper tail percentage points for testing Hq , for both R 
and X. For large samples, 2R^/n has the x| distribution and X has the nor
mal distribution with mean O and variance n/2. These statistics arise also 
in a totally different context, when EDF statistics and are partitioned 
into components (Section 8.12).

Further applications of the uniform distribution arise in studying random
ness of directions on a sphere, against various alternatives. Suppose the 
sphere has center 0, and radius I, and let a typical point P  on the sphere be 
located by spherical polar coordinates ( в , ¢ ). If P  is uniformly distributed 
on the surface of the sphere, cos в is uniformly distributed between - I  and I. 
Again, the von Mises distribution, with density per unit area proportional to 
exp (k cos y ) , is the most important for unimodal data; here y  i s  the angle 
between OP and the modal vector PA . Likelihood ratio tests for uniformity 
(k = 0) against a von Mises distribution (к > 0) (also called the Fisher distri
bution on the sphere), lead again to the length R of the resultant R of a sample 
of n vectors, as test statistic; when the modal vector of the alternative is 
known, the test statistic is the component X of R on this vector, as for the 
circle. Stephens (1964) has given tables of percentage points for R and for X. 
For large n, 3R^/n is approximately Хз distributed, and X is normal, with 
mean 0 and variance n/3.

Other alternatives to randomness have been proposed to describe natural 
data, among them, densities for which the probability per unit area is pro
portional to

fj(y ) = e -«lcosy|

or

.  ,  . K Siny

- . . K C O S ^ yfa(y) = e

0 < у < 7Г
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For fj (y) and Í 2 Í y ) f  к > 0 ; for fsiy), к is any constant. The densities are 
all S5nnmetric about the axis O A , are either bimodal or equatorial, and 
all reduce to the uniform density when /c = 0. In a test for uniformity of 
directions against the alternatives given above, when OA is a known axis, 
the null hypothesis is Hq : /c = 0, against the alternative к Ф 0 .  Likelihood 
ratio test statistics are, respectively,

L i = Sil V i l/n; L j = S i (I  -  V f)^/n ; L j = S iV j/n

where = cos y j has, on the uniform distribution between - I  and I .
L i has the same distribution as Û, considered in Section 8 . 1 0 .1  above, and 
I j 2 and L 3 have the same distributions as

Q = S j (I  -  U*)^/n

and

T = Z ^ u V n

where U^ are U (0,1). Further, the statistic 

S2 = (U. -  0 .5 )V n

which is a measure of the dispersion of the U^, has the same distribution as 
T/4. Significance points for Ü are in Table 8.5; points for Q and T have been 
given by Stephens (1966), and the applications to tests for directions are dis
cussed further in that reference. When OA is not known for the distributions 
above, the tests for uniformity become more complicated. The statistics Ü, 
S  ̂i and T will appear again in the next section in connection with Neyman- 
Barton tests, and with partitioning the Anderson-Darling statistic into 
components.

8 . 10. 3. 1 Ajne^s Statistic

Ajne (1968) suggested a test statistic for uniformity on the circumference (of 
length I) of a circle, which has optimum properties against the alternative 
density fi(x) = r  (0 < X < 1/2), fi(x) = s (1/2 < x < I ) , where r  and s are con
stants . The test statistic is

A = - Z j
“ 0 (

N(X) -  |n f dx

where N(x) is the number of observations falling in the semicircle (x, x + l/ 2). 
Computing formulas have been given by Watson (1967) and by Stephens (1969c).
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Suppose the observations are < U^2) < * * ' < ^(n)» measured around the 
circumference. Then

Another formula is

A = J - - Z  4 n

where

n j-1

Z = Z  Z  “ ij
j=2 i=l

with

U - U  
( j )  (i)

“ ij =

^ ( j )  "  %  -  2

Watson (1967) gave the asymptotic null distribution of A.
Stephens (1969c) has given the moments, some exact distribution theory 

and percentage points for A; also given are some power studies which com
pare A with and V and which suggest that, in practice, the gain in using 
A when it is optimal is small compared with the loss when it is not.

8.10.3.2 Omnibus Tests

Omnibus tests are not designed for specific alternatives, but it is convenient 
to mention several of these, especially for the circle, before leaving this 
section. EDF statistics and V  (Chapter 4; here replaces Z(i) in Equa
tions (4.2)) were designed for the circle because they do not depend on the 
origin of U; Watson (1976) gave another statistic derived from the EDF and 
Darling (1982, 1983) has recently given the asymptotic points. Ajne (1968) 
also gave another statistic for the circle. A review of tests for uniformity on 
the hypersphere is given by Prentice (1978); see also Beran (1968) and Gine
(1975). Such tests are sometimes derived in very general terms, and often 
give the test statistics in this section when particular cases are taken.
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8.11 THE NEYM AN-BARTON SMOOTH TESTS

Another application of likelihood ratio methods yields the Neyman-Barton 
tests. Neyman (1937) considered the problem of testing for uniformity U(0,1), 
against an alternative density of the form

K
f(u) = C(^) езф 11 + 2] 0. [ .

j= l  ̂ ^
O <  U < I , к = I, 2, (8.9)

where 7Tj(u) are the Legendre polynomials, ¿ is a vector of parameters with 
components . . . ,  and c (^ ) is the normalizing constant. The Legendre 
pol30iomlals are orthonormal on the Interval (0,1). By varying k, the density 
may be made to approximate a given density, and it also varies smoothly 
from the uniform distribution as the take increasingly large values. The 
test for uniformity of U then reduces to testing the null hypothesis

$ , =  0 
J

for all j

Ho may be put in the form Neyman found an appropriate

statistic, based on likelihood ratio methods, for testing this null hypothesis. 
For given k, the test statistic is calculated as follows.

(a) Let

n

^  = T  E3 Vn J I
(8.10).

In these calculations, TTj(U) is best expressed in terms of у = U -  0.5. 
For the first four polynomials,

TTj (U) = 2 ̂ /Зy ; ^  (U) = N/5(6y  ̂ -  0. 5) ;

Wj (U) = Ф г ( 2 0 у ^  -  3y) ; W^(U) = 3(70y* -  ISy^ + 0.375)

(b) The Ne3Tman statistic of order к is

\  = E  V?
j= i ^

(8. 11)

The null hypK)thesis of uniformity will be rejected for large values of Nj ;̂ for 
large n, on Ho, %  is asjmaptotically distributed as The tests based on 
Nk are consistent and asymptotically unbiased. Незппап showed that, asymp-
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totically, the vj are independent N(0,1) variables on Hq . David (1939) further 
showed that the as3nnptotic distributions were very good approximations 
to the finite-n distributions for n > 20. Note that Vi and are respectively

equivalent to the sample mean Ü and sample variance (U^ -0 .5 )Vn = S^;

thus the statistic N3 is a combination of these two basic statistics, and as 
such has an intuitive appeal for testing uniformity. Furthermore, Locke and 
Spurrier (1978) and M iller and Quesenberry (1979) have recently shown N 3 
to be an effective statistic against a wide range of alternatives. In Table 8.6 
upper tall percentage points for N 3 are given; these were obtained by fitting 
Pearson curves to the moments, and are taken from Solomon and Stephens 
(1983). M iller and Quesenberry also recommend N4 against some alterna
tives; they give tables of N^, N 3 , N3 , and N4 based on Monte Carlo studies. 
Their tables for N3 and N4 are also given in Table 8. 6 . The quantities vj 
arise again in the next section, in connection with decomposing the EDF 
statistic into components. Further discussion of the Neyman tests is in 
Pearson (1938) and David (1939).

Barton (1953) considered a slightly different class of alternatives given 
by

f(u) = I  + 2  0.7T.(u) , 0 - ^ u < l ,  k = l ,  2,
J=I

A restriction must now be placed on the Ö1 to ensure that the density is 
always positive. The same statistic as above, Nj^, may again be used to test 
for uniformity against this family of alternatives. Some asymptotic power 
calculations can also be made. Barton (1955, 1956) has investigated the 
application of these statistics when the data have been grouped o r are discrete, 
and also the situation when the Щ  are not uniform, but have been obtained by 
the Probability Integral Transformation applied to a distribution with esti
mated parameters. This situation has also been examined by Thomas and 
Pierce (1979) and by Bargall and Thomas (1983). For these problems there 
are some interesting connections with the Pearson test.

E 8 .11  Example

For the data in Table 8. 1, Neyman’s statistic N 3 = 6.437 and is significant 
at about the 4% level. The individual components vf and v| (equivalent to Ü  
and S^) have significance levels p = 0.04 and p = 0.12, respectively.
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TABLE 806 Upper Tail Percentage Points for N 2 , N 3 , and N4 (Section8 .11)

n

Significance level a

0 .5 0.25 0.1 0.05 0.025 0.01 0.005

Statistic N 2

2 1.587 2.244 4.023 5.903 7.771 10.012 11.530
3 1.589 2.565 4.013 5.682 7.372 9.717 11.526
4 1.530 2.712 4.116 5.566 7.287 9.643 11.472
5 1.491 2.763 4.227 5.573 7.226 9.517 11.340
6 1.464 2.776 4.316 5.618 7.148 9.384 11.214
7 1.445 2.774 4.382 5.640 7.096 9.326 11.100
8 1.438 2.777 4.421 5.683 7.110 9.276 11.030
9 1.434 2.777 4.453 5.735 7.142 9.208 10.940

10 1.432 2.772 4.476 5.774 7.167 9.265 10.870
11 1.429 2.779 4.489 5.790 7.174 9.173 10.820
12 1.420 2.766 4.486 5.822 7.198 9.170 10.770
14 1.406 2.736 4.517 5.897 7.311 9.235 10.735
16 1.403 2.740 4.527 5.908 7.319 9.233 10.720
18 1.402 2.744 4.536 5.918 7.327 9.235 10.716
20 1.400 2.746 4.542 5.925 7.332 9.234 10.706
25 1.398 2.751 4.554 5.937 7.341 9.230 10.684
30 1.396 2.755 4.562 5.947 7.348 9.230 10.677
35 1.395 2.757 4.568 5.962 7.352 9.226 10.662
40 1.394 2.759 4.573 5.958 7.357 9.230 10.666
45 1.393 2.760 4.576 5.961 7.357 9.221 10.645
50 1.392 2.762 4.579 5.964 7.360 9.223 10.646
60 1.391 2.763 4.584 5.969 7.364 9.224 10.644
80 1.390 2.766 4.589 5.974 7.367 9.218 10.627

100 1.390 2.768 4.592 5.979 7.370 9.220 10.626
OO 1.386 2.773 4.605 5.991 7.378 9.210 10.597

Statistic N3

2 5.59 7.40 13.50
3 5.75 7.48 12.87
4 5.91 7.53 12.45
5 5.99 7.57 12.15
6 6.04 7.60 11.95
7 6.07 7.63 11.81
8 6.10 7.65 11.71
9 6.11 7.67 11.65

10 6.12 7.68 11.60

(continued)



354 STEPHENS

TABLE 8.6  (continued)

Significance level a

0.1 0.05 0.01

11 6.13 7.69 11.57
12 6.13 7.70 11.55
14 6.14 7.72 11.52
16 6.14 7.73 11.51
18 6.14 7.73 11.50
20 6.15 7.74 11.50
30 6.16 7.75 11.49
40 6.17 7.76 11.49
50 6.18 7.76 11.48
OO 6.25 7.81 11.35

Statistic N4

2 7.19 9.52 16.14
3 7.34 9.51 15.80
4 7.46 9.50 15.43
5 7.53 9.4ii 15.12
6 7.57 9.48 14.86
7 7.60 9.47 14.65
8 7.62 9.47 14.47
9 7.63 9.46 14.32

10
11 7.65 9.45 14.09
12 7.65 9.45 14.00
14 7.66 9.44 13.87
16 7.66 9.43 13.78
18 7.67 9.42 13.71
20 7.67 9.42 13.67
30 7.68 9.40 13.58
40 7.68 9.40 13.52
50 7.69 9.40 13.48
OO 7.78 9.49 13.28

Adapted from M iller and Quesenberry (1979) and from Solomon and Stephens 
(1983), by courtesy of the authors and of Marcel Dekker, Inc.
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8.12 COMPONENTS OF TEST STATISTICS

In the expression (8.11) for N^, the individual term Vj may be regarded as 
a component of the entire statistic N^ • As3rmptotically these components are 
independently normally distributed with mean 0 and variance I . For finite n, 
their distributions could, in principle, be examined, from the formulas 
for Vj, or from approximations using the moments (see, for example, David, 
1939) although for finite n the vj are not Independent. As David (1939) sug
gests , against certain alternatives, use of one of the individual components 
will prove more powerful than use of the entire statistic N^ • In recent years 
EDF statistics have also been partitioned into components along sim ilar 
lines. For example, the EDF statistic can be written

W* = 2  ^
j= 0 ^

where==4 = (f) Z COS )
J i= l

( 8 . 12)

and where Xj are weights (Durbin and Knott, 1972; see also Schoenfeld, 1977). 
Suppose Vi = TIjUi. i = I* 2, . . . ,  n. Starting at the point (1,0) in the usual 
rectangular coordinates, Vi can be recorded on the circumference of the 
unit circle, centered at the origin O, and with radius I . Let point be the 
point on the circle corresponding to V i, and let Rj be the resultant (vector 
sum) of the vectors O P i, i = I, . . . ,  n. Component Zj is proportional to X j, 
the length of the projection of Rj on the X -axis. When the Uj are U (0 ,1), the 
Vi w ill be uniform on (0, Jtt) and the distributions of Xj are tiie same as those 
discussed in connection with directions in Section 8.10.3. Stephens (1974a) 
has shown that the components of U^ are proportional to R j, the length of g j , 
also discussed in Section 8.10.3. For A^, the components are proportional 
to the Vj in the Ne3onan-Barton test statistics; thus the sum of the first к 
components of A^ is related to Neyman*s N^ in that they use the same com
ponents Vj, j = I , . . . »  k, defined in equation (8.10), but with different 
weights. Against some alternatives one or two components of, say, or A^ 
may be more powerful, as a test statistic for uniformity of U i, than the 
entire statistic or A ^ . Durbin and ICnott (1972) have demonstrated this 
for a test of normality N (0 ,1), in which the Ui are obtained by the Probability 
Integral Transformation, against alternatives involving either a shift in mean 
or a shift in variance. The first component alone, for example, is better 
than in detecting the shift in mean. However, Stephens (1974a) has shown 
that the first component is insensitive to an alternative where both mean and
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variance have been changed; for such an alternative, at least the first two 
components would be needed—this is roughly the same as using the first 
component of U^. By expanding an alternative density into a series, using 
appropriate orthogonal functions, it should be possible to suggest which 
departures are detected by which components, and then perhaps decide how 
many to use to get best power, but this will be difficult in the usual situation 
where the alternative distribution to the null is not clearly known. Similar 
remarks apply to the other statistics partitioned into components.

Durbin, Knott, and Taylor (1975), Stephens (1976), and Schoenfeld (1980) 
have discussed partitioning of EDF statistics into components for the case 
where the tested distribution contains unknown parameters; here the distri
bution theory of components is very complicated, and only as5nnptotic results 
are known. Components can be useful in the theoretical examination of test 
statistics, especially in calculating asymptotic power properties.

8.13 THE EFFECT ON TEST STATISTICS OF 
CERTAIN PATTERNS OF U-VALUES

In the next section we discuss the power of the various test statistics in this 
chapter. However, before this, some general observations can be made on 
the appearance of the U -set and its effect on different test statistics. If the 
U-set is truly uniform, it should be scattered more or less evenly along the 
interval (0,1). If the alternative to uniformity makes the values tend toward 0, 
there will be a high value for D"**; if they tend toward I , there will be a high 
value for D “ . In either case D will be large and perhaps significant. The 
statistics and A^ will also detect a shift of values toward 0 or I . If the 
U set has been obtained from the Probability Integral Transformation (Chap
ter 4), from a Case 0 test that are from a completely specified F (x ), a 
set of U-values tending toward 0 or toward I will suggest that the hypothesized 
F(x) has an incorrect mean (it may of course also have other incorrect param
eters or be of incorrect shape). If the U -set tends to cluster at some point 
in the interval, or to divide into two groups toward 0 and I, the statistics V  
and U^ w ill be large and will tend to show significance. This indicates that 
the variance of the h5TX)thesized F(x) is too large or too small. The statistic 
P = -2 log U¿, like D"̂  and D“ , also indicates which way the points have 
moved; it they have moved closer to 0, P  will be large, and if closer to I,
P will be small. The value of P is very much more dependent on low values 
of Ui than on high values, because log u, when u is nearly I, is nearly 0, 
while as u approaches 0, log u becomes very large and negative. We shall 
see later that this has some importance in methods of combining tests for 
several samples. Among the other statistics, clearly Ù or U(n/2) might have 
some power against an error in mean, but not against an error in variance of 
the tested distribution. The same applies to the first component v  ̂or ẑ  in the 
decomposition of both the Ne3rman tests and or A^, and in turn in 
equation (8.12) will not be sensitive to an error in mean (Durbin and Knott,
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1972; Stephens, 1974a). Greenwood’s statistic G(n) = takes its small
est value l/(n + I) when all spacings are equal, that is, when values Ui are 
superuniform; large values of G(n) will occur with widely varying patterns 
of U-values.

8.14 POWER OF TEST STATISTICS

A number of studies have been made on tests for uniformity, including those 
by Stephens (1974b), Quesenberry and M iller (1977), Locke and Spurrier
(1978), and M iller and Quesenberry (1979).

In general it can be said that, among the EDF statistics, the quadratic 
statistics appear to be more powerful than the supremum class; when the 
discrepancy between the EDF F^(U) and the theoretical distribution F(u) = u 
is used all along the interval 0 < u < I it appears that better use is made of 
the Information in the sample than by using only the maximum discrepancy. 
When the basic problem is to test an X-set for a distribution F (x ), so that 
the observations U^ have been obtained by the Probability Integral Transfor
mation, W^ and A^ (especially A^) w ill detect shifts in the mean of the 
hypothesized distribution from the true mean, and U^ is effective at detecting 
shifts in variance. A^ is also especially good at detecting irregularity in the 
tails of the distribution. Among other tests for uniformity, statistics ob
tained by the likelihood-ratio method are most powerful against their respec
tive families of alternatives, as would be expected. Against a decreasing or 
increasing density, Ù alone is very efficient, and against distributional alter
natives in which the mean is near the uniform mean of 0.5, but the variance 
is changed either because the distribution is unimodal and S3ntnmetric, or 
U-shaped and symmetric, the quantity above is a powerful statistic. For 
unimodal nonsymmetric distributions, these statistics lose some of their 
efficiency. The effect of the good performance of these relatively simple 
statistics means that the Незппап statistic N2 in Section 8.11, which com
bines them both, is effective for a wide range of alternatives to uniformity 
(Locke and Spurrier, 1978; M iller and Quesenberry, 1979). Although the two 
components in N 3 occur again in A ^ , the presence of further components, 
and the different weightings, sometimes make A^ less effective than N 3 ; in 
a sim ilar way, N4 can be less effective than N 3 , whenever adding further 
components "dilutes" the power of the first two (Quesenberry and M iller, 
1979). This is sim ilar to the situation for EDF statistics (Section 8.12).

8.15 STATISTICS FOR COMBINING INDEPENDENT  
TESTS FOR SEVERAL SAMPLES

The uniform distribution has traditionally played an important role In com
bining test statistics for several samples. This is probably because of the
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general use of Fisher's method, which is based on the p-levels of the com
ponent tests.

To fix ideas, suppose к tests are to be made of null hypotheses H q i ,
Ho2> • • • » Hok* ^  composite hypothesis that all Hok are true; if
any one is not true, Hq should be rejected. Let T^ be the test statistic used 
for HqJ, and suppose the test is an upper tail test. When the test is made, 
let T i take the value T j , and suppose Pi is the significance level (often called 
the p-level) of this value, that is, when Hqí Is true, P r (T^ > Т|) = pi. When 
Hqí is true, Pi is U (0 ,1), and when к independent tests are made of the к 
null hypotheses above, we should obtain a random sample of к values of Pi 
from U (0 ,1). Thus all к null hypotheses are tested simultaneously by testing 
if the Pi appear to be such a uniform sample. This of course can be done by 
any of the methods described in this chapter. Fisher (1967) suggested the 
statistic P  = -2 Z i log Pi, already discussed in Section 8.10.2. Effectively 
the same idea had been put forward before by Karl Pearson, who suggested 
using the product of the Pi- For a summary of early work on some of the 
problems discussed in this section see Pearson (1938). Note that if Qi = l -P i *  
Qi could replace Pi in P, since clearly Qi is also U (0 ,1). Finally, let r i be 
the minimum of Pi and qi, formally written r i = min (Pi,qi); it is easily proved 
that, when pi is U (0 ,1), r i has the uniform distribution with limits 0 and 0.5, 
so that P could be calculated using 2ri, or I -  2ri = I qi -  Pil instead of Pi. 
Thus we have possible statistics

1*1 = -2 2. log p. ; Pg = -2 Г. log

Pg = -2 log 2rj ; P^ = -2 Z. log (I -  2r.)

On Hq , each of these statistics has the X2k distribution. An important ques
tion in making the overall test is which of these statistics to use. Fisher 
advocated P ^ , with significance for large values, and this suggestion appears 
to have been generally accepted, although Pearson (1938) raised the possi
bility of using Рз. Littell and Folks (1971, 1973) have shown that P^ has 
desirable properties from the point of view of Bahadur efficiency.

It has already bèen shown that P^ is the likelihood ratio statistic, for a 
test of к = 0 against the alternative density f̂  (u) = (k + l)u^, 0 < u < I , 
к > - I ;  for к > 0, P i  w ill be declared significant for small values and for 
- I  < к < 0, P j w ill be significant for large values. Similarly, P ^  is the like
lihood ratio statistic for the alternative density f2(u) = (k + 1)(1 -  u)̂ ,̂
0 < u <  I, k >  - I ,  with Рз significant for large values when к > 0 and for 
small values when - I  < к < 0. Thus Fisher's use of P j , with significance 
for large values, would imply that the alternative distribution for the p¿ 
values will give small values of p¿ large probability, but w ill allow some 
values to be close to one (the density f̂  (u), with - I  < к < 0, gives non-zero 
density at u = I ).
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Thus Pi can be expected to be powerful if some of the component hypoth
eses Hqj, i = I , . . . ,  k, were true (giving possibly a high p-value) and some 
were not true. Another possibility is that, when Hq is rejected, all Hq i are 
false together so that small p-values are likely in every test (for example, 
the tests might all be tests of normality, and it is felt that all the samples 
are likely to be non-normal if any of them are) ; then statistic P 2 , used with 
significance in the lower tail, might be more effective.

E 8 .15.1 Example

Suppose five independent tests, for example, that five small samples are 
each from the normal distribution with mean zero and variance one, give 
p-values . 15, .20, .28, . 16, .25, so that each test is not significant at the 
10% level. Then P^ = -2 2¾ log pj = 15.99; this value is exactly significant 
at the 10% level for xîo • This follows the usual procedure as suggested by 
Fisher. However, if we use the q-values .85, .80, .72, .84, .75 and calcu
late P 2 = -2 Z i log Qi we obtain P 2 = 2.352. This is significant at the 1% 
level in the lower tail of Xio 5 the sample gives greater significance using P 2 
than using P j .

E 8.15.2 Example

For this example we take Fisher’s first illustration of his test (Fisher, 1967). 
In this example three tests of fit yielded p-values of .145, .263, .087, and 
P j is 11.42. In the upper tail of x l  » this is significant at approximately the 
7 . 5% level. The q-values are .855, .737, .913, and P 2 is 1.105. This value 
is significant at the 2.5% level in the lower tail of x l  • Again the value of P 2 
is more significant than the value of Pj in its appropriate tail.

8.15.3 Use of Fisher’s Test with Two-Tail 
Component Tests

If all the component tests in Hq were two-tail tests, either P 3 or P^ above 
should be used as test statistics. For the same reasons that P 2 can be pre
ferred to P i for one-tail tests, P^ might be better than P 3 for two-tail tests. 
When some of the component hypotheses H^j are tested by one-tail tests and 
some by two-tail tests, the formula for P  could be

P 5 = -2 Zi log Ui

with Ui = qi for one-tail tests, and Ui = I  -  2ri for two-tail tests. Alterna
tively P^ = -2 Z i log Ui could be used with Ui = pi for one-tail tests and 
Ui = 2ri for two-tail tests. Pg and P¿ w ill again have the x^y^ distribution 
when all H^i are true.
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E 80I 5 .3  Example

Suppose five independent tests are to be made that five samples from normal 
distributions have means 0 , against the alternative that the means are not 0 . 
Thus five t-tests w ill be used, with significance in either tail for each test. 
Suppose the significance levels measured all from the upper tail (for this we 
use the temporary notation P ^  are p* = .15, .04, .75, .92, .07; thus only 
the second sample would be declared significant using a two-tail 10% level 
fo rt^ . The corresponding values of r j are .15, .04, .25, .08, .07 and these 
give the value for P 3 = 16.44. Using I -  2rj instead of 2ri we have P^ = 2.92. 
P 3 is significant at the 10% level of Xio (upper tail), and P^ at the 2% level 
(lower ta il).

8.15.4 Possible Misuse of Fisher's Test

It is possible to misuse Fisher’s test, in the situation where some of the 
component tests are two-tail tests, by using r^ when 2r j should be used.
This is especially easily done when the results of two-tail tests are some
times reported, using expressions such as ’’the lower tail p-value equals 
0.11,” or ’’the upper tail p-value equals 0 .35.” The statistician might then 
wrongly use log 0.11 and log 0.35 in the calculation of, say, P^ , and obtain 
false levels of significance for the test of the overall hypothesis H^. As an 
example, consider Example E 8.15.3 above in which all tests are two-tail 
tests, and the third and fourth tests, for example, could have been reported 
as significant at the .25 and .08 levels in the lower tail. Then if the values 
of T l instead of 2r j are used in calculating P 3 (which is the same as P^ since 
all tests are two-tall), we have P 3 = 23.37. This is spuriously highly sig
nificant; P 3 is at the 1% level of xîo •

8.16 TESTS FOR A UNIFORM DISTRIBUTION 
WITH UNKNOWN LIMITS

Until now, tests in this chapter have been tests for a U (0 ,1) distribution; 
they can be used easily for a test for U (a ,b ), where a and b are known, by 
making the transformation given In Section 8.2. If the limits of the distri
bution are not known, other procedures are available. Two of these are:

(a) Suppose, given an ordered sample . . . ,  that the range is

“  ■ ° ; . )  -  " i i ) -  ' o )  - °  V d  ■ ” (D>''®-
i = I ,  . . . ,  (n -  2). A test of H¿: the U ’ set is an ordered sample from  
U (a ,b ), becomes a test of Hq  ̂ the U-sample, of size n -  2, is an ordered 
sample from U (0 ,1).

(b) Use of the correlation test of Section 5.5.1.
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8.17 TESTS FOR CENSORED UNIFORM SAMPLES

Tests for censored data are described in several other chapters and examples 
are given in Chapter 11. Tests specifically for censored uniforms are

(a) EDF tests: Sections 4 .7 .3 -4 .7 .6 , and 12.3;
(b) Correlation tests: Sections 5.5, 5.6, and 12.3;
(C ) Spacings tests based on Greenwood^s statistic: Section 8 .9 .1.
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Teste for the Norm al Distribution

Ralph B ,  D^Agostino Boston University, Boston, Massachusetts

9

9.1 INTRODUCTION

The single most used distribution in statistical analysis is the normal 
distribution. Its uses can be classified in two sets. The first relates to the 
class of statistics which are taken to be normally distributed due to the 
applicability of large sample theorems such as the Central Limit Theorem  
(Rao, 1973, Chapter 2), the Delta Theorems (Rao, 1973, Chapter 6), and 
theorems related to the as3onptotic distribution of linear functions of order 
statistics (Chernoff, Gastwirth, and Johns, 1967). The second set relates to 
situations where the normal distribution is assumed to be the appropriate 
mathematical model for the underlying phenomenon under investigation. The 
applied literature is replete with examples of this latter class where, for 
examples, the normal distribution or the related lognormal distribution (i.e .  
logs of data are normally distributed) are used as models for cadmium and 
lead levels in the blood of children (Smith, Temple, and Reading, 1976), the 
distribution of hydrologic runoff (Kottegoda and Yevjevich, 1977), body dis
comfort and transmisslbllily scores (Griffin and Whitham, 1978), weights of 
mammary tumors in rats (Fredholm, Gunnarsson, Jensen, and Muntzing, 
1978), levels of toxic gases to which workers are e?фosed (D ’Agostino and 
Gillespie, 1978; and Smith, Wagner, and Moore, 1978), nuclear cross sec
tions data (Richert, Simbel, and Weidenmuller, 1975), radio scintillation 
data (Rino, Livingston, and Whitney, 1976), earnings and wages (White and 
Olson, 1981), and the distributions of air pollutants (Larson, 1971, and 
Hunt, 1972). The chapter deals with this second class of use and discusses 
goodness-of-fit tests designed to test formally the appropriateness or ade
quacy of the normal distribution as a model for the underlying phenomenon

367
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from which data were generated. These tests complement the informal 
graphical techniques already discussed in Chapter 2 (see Sections 2.4 and 
2.5).

This chapter will focus on tests applicable to complete samples. Tech
niques based on incomplete or censored samples are discussed elsewhere; 
in Chapter 1 1 , Analysis of Data from Censored Samples, and also in Chap
ters 3, 4, and 5. We start by discussing tests that assume a complete random 
sample is available for analysis. These tests occupy the major portion of the 
chapter and are the primary interest of the chapter. Tests applicable on 
residuals and tests for multivariate normality will also be discussed.

9. 2 COMPLETE RANDOM SAMPLES

Until stated otherwise we assume the following. Let X^, X2 , . . . ,  X^ be a 
random sample of size n from a population with probability density function 
(pdf) f(x) and cumulative distribution function (cdf) F (x ). The pdf and cdf of 
the normal distribution are, respectively, ф {х) and Ф(х). Our null hypothesis 
is

Ho: f(x) = ф(х) or F(X) = Ф(х) (9.1)

9.2.1 Null Hypothesis

The pdf of the normal distribution is given by

2̂7Г0-
(9.2)

( -00 < X < во \
-C O  <  ^  <  CO J

a > O /

In testing for departures from the normal distribution the null hypothesis of 
(9.1), Hq , is that the random variable X under consideration is distributed as 
a normal variable, or in other words, X has a probability density function 
given by (9.2). If, further, specific values of both the mean and standard 
deviation, ß  and <7 , of (9.2) are specified by the null hypothesis (e .g . , X  is 
normally distributed with ß  = 500 and or = 100), then the null hypothesis is a 
simple hypothesis. This means the null hypothesis concerns itself with only 
one particular distribution. If either ß  or er are not specified completely, then 
the null hypothesis under consideration is a composite hypothesis. This 
chapter deals mainly with the composite null hypothesis with both ß  and cr 

unknown. In most applications prior knowledge o f  ß  o r  cr is not available. If. 
it is available, it usually is of no help, from a power point of view, in judging 
goodness-of-fit (see, for example, Chapter 4 on EDF tests).
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9.2.2 Alternative Hypothesis

The alternative hypothesis, H^, usually employed in these testing situations 
is the composite hypothesis that X  is not normally distributed. Directions of 
nonnormality or alternative distributions are only rarely  considered (e .g . , 
by Uthoff, 1970, 1973). In this chapter alternatives to normality are limited 
to the following: (I) X is nonnormal and no prior information is available 
concerning alternative distributions, or (2) X is nonnormal and informa
tion is available concerning the deviations from normality in terms of 
skewness and/or tail thickness or peakedness as measured, for ex
ample, by the kurtosis coefficient /Зз* For a random variable X the skewness 
and kurtosis coefficients are, respectively.

(9.3)

and

(a)

(b)

FIGURE 9 .1 Illustration of distributions with Ф 0 and /З2 ^ 3. (a) D istri
bution differing in skewness: A. > 0, B. ^ fß i = 0, C. /̂̂ J < 0. (b) D istri
bution differing in kurtosis: A. /З2 = 3, B. ßz ^
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ßz
E(X - (9.4)

where E represents the expected value operator. For the normal distribution 
\ l ß i  = 0 and 02 = 3. In the following w ill often be used to re fe r to ’’tall 
thickness” of an alternative distribution with ß ^ >  Z Indicating a thick tailed 
distribution and ß^ <  3 Indicating a thin tailed distribution. The reader Is re 
ferred to Chapter 2 on graphical analysis and Chapter 7 on moment techniques 
for further details of these coefficients. Figure 9. 1 contains illustrations of 
distributions with Ф 0 and ß ^ ^ Z *

The next two sections consist of classifying and Investigating the relative 
merits of the tests. The reader who is interested in our final recommenda
tions may want to go directly to Section 9.5 and then read sections 9.3 and
9.4 selectively.

The objective of the next three sections is to classify and review a selec
tive number of the various available tests (some of which have already been 
presented In the above chapters), discuss their relative m erits, and then 
make recommendations concerning which should be used in practice. We 
have attempted to select, in an objective manner, tests which are serious 
contenders for use or else have a long historical usage behind them. How
ever, such a selection involves personal judgments and Is not entirely objec
tive. There are no definitive answers as to which tests are best, and the 
tests we have selected are sure to have excluded from them the favorite tests 
of some researchers. We have attempted to select and recommend tests that 
are as good as o r better than other existing tests. There may exist other 
tests not recommended which are also good. In anticipation of this omission 
let us give our apologies here.

9.3 CLASSIFICATION OF EXISTING TESTS

For the purposes of this chapter tests for normality can be grouped into five 
categories, chi-square test, empirical distribution function tests, moment 
tests, regression tests, and miscellaneous tests. We now discuss these 
groups.

9.3.1 Chi-Square Type Tests

These well-known tests, first developed by Karl Pearson, are suitable for 
simple or composite null hypotheses and are discussed exhaustively in Chap
ter 3. For the normal distribution the mechanics of these consist of d is
cretizing the hypothesized distribution (with known or estimated parameters)

I into a multinormal distribution of к cells, counting the observed number of 
observations in each cell and contrasting these, via a chi-square statistic o r  
a likelihood ratio statistic, with the ejqjected number of observations for each
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cell. The latter expected values are computed assuming the data did arise  
from a normal distribution. Of particular interest to testing for normality 
are the articles of Chernoff and Lehmann (1954) and Watson (1957). In the 
former article it is shown that the use of the sample mean and standard devi
ation based on ungrouped data to obtain the expected values results in the 
observed chi-square statistic as being as3onptotically distributed as

X 2 (k -3 )  + CH^Xl(I)+ C^aXi(I) (9.5)

In (9O 5) x|(i^) represents a chi square variable with v  degree of freedom, all 
these chi square variables are independent and O < ofj < I . The often quoted 
к -  3 degrees of freedom is incorrect. The Watson (1957) article describes 
how switching appropriately to fixed cell probabilities can result in obtaining 
explicit formulas for the a  ̂ and a  ̂ of (9 .5). While the chi square tests are 
of historical Interest and are continuously being modified, we agree with 
Professor D. S. Moore, the author of Chapter 3, that they should not be 
recommended for use in testing for departures from normality when the full 
ungrouped sample of data is available. Other procedures to be discussed 
below are more powerful. In the cases where the fuU sample is not available 
( i . e . , data are censored or truncated) or where the data are grouped into 
classes (see Section 3.2 .7 , Example 2) these procedures are of use. We 
refer the reader to Chapter 3 for further details. The remainder of this 
chapter will not contain any further discussion of these tests.

9.3.2 Tests Based on the Empirical Distribution 
Function (EDF)

Chapter 4 above discussed in detail the concept and applications of the tests 
based on the empirical distribution function (E D F ). Basically for the normal 
distribution these tests involve measuring the discrepancy between the cumu
lative distribution function

Ф(х) = /  — -é((t-íí)/o)^dt
(9.6)

of the normal distribution and the empirical distribution function

# (X <  X)
F (X) = — r — - n n (9.7)

of the sample. The д and a  of (9.6) often are not specified and are replaced 
by the sample mean X and standard deviation S, where

V  X X
X = -----  and S

n
^ /z ( X -5

N n -  I
x i ! (9.8)
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9 > 3. 2. 1 Simple Null Hypothesis

Many tests have been developed for this situation. Some prominent ones are 
the Kolmogorov (1933)-Smirnov (1939) test, the Kuiper V  test (1960), Pyke’s 
C test (1959), Brunk’s B test (1962), Durbin’s D test (1961), the Cram er- 
von Mises test (1928), Durbin’s M test (1973), Watson’s test (1961), 
the Anderson-Darling A^ test (1954), Fisher’s Trand тг’ tests (1928), and the 
Hartley-Pfaffenberger test (1972). See Chapter 4 for details on some of 
these.

9.3.2.2 Anderson-Darling Test for the Composite Hypothesis

Some of the above tests have been modified to apply to the composite null 
hypothesis of normality with ц  and a  unknown (Stephens, 1974, and Green 
and Hegazy, 1976). In Chapter 4, Section 4.2, formulas are given for the 
Kolmogorov-Smirnov D test, the Kuiper V  test, the Cramer-von Mises 
test, the Watson test, and the Anderson-Darling A^ test, and in Section
4.8 the application of these to the normal distribution is described in detail. 
For the purposes of this chapter we now present in the notation of this chap
ter the procedure for performing the Anderson-Darling A^ test, which is the 
EDF test we recommend for us.

(1) Arrange the sample in ascending order,

(2) Calculate standardized values, Y (i), where

= for 1 = 1 , . . . ,  n
(I) S

(3) Calculate P j for 1 = 1, . . . ,  n where

(9.9>

(9.10)

Ф(у) in (9.10) represents the cdf of the standard normal distribution and Pj 
is the cumulative probability corresponding to the standard score Y^jj of 
(9.9). Pj[ can be found from standard normal tables as given in the Appendix 
or by use of the following approximation due to Hastings (1955). For Y(i) 
such that O < Y(i) < OO define у = Y^y and compute

Qj = I -  -(1  + Ciy + C^yZ + Сзу* + C^y^)- 

where

(9.11)
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Cl = 0.196854, C3 = 0.000344

C2 = 0.115194, C4 = 0.019527

Here Pi of (9.10) is equal to Qi of (9.11). For such that < Y î  ̂ < 0 
define у = -Y(i) and compute Qi of (9.11). Here Pi of (9.10) is equal to 
I - Qi of (9.11).

(4) Compute the Anderson-Darling statistic

2 ^
A = [ ( 2i -  I) {lo g  P. + log (I  -  }/n ]

i= l
(9.12)

where log is log base e .
(5) Compute the modified statistic

A * = A2(1.0 + 0.75/n+2.25/n^) (9.13)

(6) Reject the null hypothesis of normality if A * exceeds 0.631, 0.752, 
0.873, 1.035, and 1.159 at levels of significance 0.10, 0.05, 0.025, 0.01, 
and 0 .005, respectively.

The above procedure is valid for samples of size n > 8 .

E 9. 3. 2 . 2 . 1 Numerical example of Anderson-Darling test Table 9.1 con
tains numerical examples employing the first ten observations of the NOR 
and EXP data sets (of the Appendix). As is to be expected the Anderson- 
Darling test accepts the hypothesis of normality for the NOR data and rejects 
it for the EXP data at level of significance 0.05.

The P-level or descriptive level of significance for the Anderson-Darling 
test can be obtained by use of Table 4.8. The reader is referred to Chapter 4, 
Section 4.8.2 for details.

9 .3 .2 .3  Transformation Methods for the Composite Hypothesis

Csorgo, Seshadri, and Yalovsky (1973) present another approach for applying 
EDF tests to the composite null hypothesis (д and <j unknown). In this approach 
the n (> 4) observations are first transformed into n -  2 independent obser
vations free of unknown parameters. Then EDF tests (e .g . , A^) are applied 
to these. O^Rellly and Quesenberry (1973) and Quesenberry (1975) present a 
general theory for obtaining transformations such that the transformed vari
ables are independent uniform random variables. Chapter 6 o f this book is 
devoted to transformation techniques. With use of these it is now possible to 
apply any EDF test as a test for deviations from normality. However, these 
transformation procedures require randomization of the data. To many users 
this is considered an undesirable feature«
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TABLE 9.1 Numerical Examples of Anderson-Darling A^ Test^’^

^(i) ^(i) (̂1) ■"I-P ,.

NOR data Normal д = 100, о = 10 x = 98.414, s = 8.277

I 84.27 -1.71 .0436 .9564 -3.1327 -0.0446 -6.5685
2 90.87 -0.91 .1814 .8186 -1.7071 -0.2002 -10.7358
3 92.55 -0.71 .2389 .7611 -1.4317 -0.2730 -12.3790
4 96.20 -0.27 .3936 .6064 -0.9324 -0.5002 -12.8506
5 98.70 0.03 .5120 .4880 -0.6694 -0.7174 -12.7800
6 98.98 0.07 .5279 .4721 -0.6388 -0.7506 -14.9182
7 100.42 0.24 .5948 .4052 -0.5195 -0.9034 -13.2561
8 101.58 0.38 .6480 .3520 -0.4339 - 1.0441 -10.6035
9 106.82 1.02 .8461 .1539 -0.1671 -1.8715 -6.2441

10 113.75 1.85 .9678 .0322 -0.0327 -3.4358 - 1.4687
-101.8045

EXP data (Exponential д = 5.0) X = 4 .257, S = 5.169

I 0.06 -0.81 .2090 .7910 - 1.5654 -0.2345 -6.3937
2 0.37 -0.75 .2266 .7734 - 1.4846 -0.2570 -8.9076
3 0.44 -0.74 .2296 .7704 -1.4714 -0.2608 -12.8460
4 0.89 -0.65 .2578 .7422 - 1.3556 -0.2981 - 14.8029
5 2. 17 -0.40 .3446 .6554 -1.0654 -0.4225 -13.8663
6 2.63 -0.31 .3783 .6217 -0.9721 -0.4753 -15.3406
7 4.69 0.08 .5319 .4681 -0.6313 -0.7591 -12.0822
8 6.48 0.43 .6664 .3336 -0.4059 -1.0978 -10.0005
9 8. 15 0.75 .7734 .2266 -0.2570 -1.4846 -8.7380

10 16.69 2.41 .9920 .0080 —0.0080 -4.8283 -4.6075
-107.5853

ЗА* _  101. 
“  I

8045
Л “ 10 = .18045

A* = A^(
1 ^ .75 ^ 2.25' 

10 100
-) = . 198044 (Accept Normality for NOR data)

b ^ 2  =  12 Z - g .§ 5 3  _ 3_Q ^   ̂ ,7 5 3 5 3
10

A* = A^( 0 .75  . 2.25^ _  ,832487 (R ejectNorm ality forEX Pdata
at 0.05 level of significance)

I + ■  ̂+
10 100

9.3.2.4 Components of an EDF Statistic

Durbin, Knott, and Taylor (1975) have employed a procedure from which it 
is possible to express the test statistic of an EDF test as a weighted linear 
function of independent chi square variables each with one degree of freedom. 
This permits computation of asymptotic significance points. These are sim
ilar to those obtained by Monte Carlo procedures and presented by Stephens 
in Chapter 4 of the present volume

The reader is referred to Chapter 4 for further discussion of EDF tests.
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9.3.3 Moment Tests and Related Tests

Chapter 7, Section 7.2 discusses moment tests as they apply to the normal 
distribution. The modem theory of tests for normality can be regarded as 
having been Initiated by Karl Pearson (1895), who recognized that deviations 
from normality could be characterized by the standard third and fourth 
moments of a distribution. To be more езфИси, as previously discussed In 
Section 9.2.2, the normal distribution with density given by (9.2) has as its 
standardized third and fourth moments, respectively.

= = о
CT

(9.14)

and

^  E j X  _
Pz -  3

The third standardized moment •\Tßi characterizes the skewness of a 
distribution. If a distribution is S5mimetric about its mean д, as is the nor
mal distribution, ^fßi =  0. Values of Ф 0 indicate skewness and so 
nonnormality. The fourth standardized moments characterize the kurtosis 
or peakedness of a distribution. For the normal distribution, = 3. Values 
of /?2 3 indicate nonnormality. /З2 is also useful as an indicator of tall
thickness. For the normal ¢2 = 3. Values of /З2 > 3 indicate distributions 
with "thicker" than normal tails, and values o f  ß 2 <  3 indicate distributions 
with "thinner" than normal tails.

Pearson suggested that in the sample, the standardized third and fourth
moments given by

^^bl = m j/m f (9.16)

and

b2 = т4/т| (9.17)

where

m^ = 2  (X -  ip V n , к > I (9.18)

and

X = ZX/n (9.19)

could be used to judge departures from normality. He found the first approx
imation ( l . e . , to n"^) to the variances and covariances of ^ ÍЬ l and bz for 
samples drawn at random from any population, and assuming that ^ГЬl and b2 
were distributed jointly with bivariate normal probability, constructed equal
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probability ellipses. From these approximate assessments could be made if 
the sample deviated too greatly from normality. For situations where ^ ih i  
and Ьз deviated substantially from expectation under normality, K. Pearson 
developed his elaborate system of Pearson curves. These could be used as 
possible alternative distributions for the populations under investigation. (See 
Elderton and Johnson (1969) for a full discussion of Pearson curves. Chap
ter 7 also makes extensive use of them.)

A number of Investigators have concerned themselves with obtaining 
correct significance points for n/Ъх and Ьг • The reader is referred to Chap
ter 7, Section 7.2 for a brief review of the history. In the following we pre
sent the present state of the field.

9 .3 .3.1 Third Standardized Moment

The n/Ъх test can be applied for all sample sizes n > 5.

9.3.3 Л . I Monte Carlo points for n = 5 to 35

D ’Agostino and Tietjen (1973) presented simulation probability points 
applicable for n = 5 to 35 and valid for two sided tests ( i . e . , Hj : Nonnormal
ity with i 0) for levels of significant o?= 0.002, 0.01, 0.02, 0.05, 0.10, 
and 0.20 and for one sided test ( i . e . , H j > 0 or H iZ \ f ß i  <  0) for levels of

TABLE 9.2 Probability Points of N/bj for n = 5 to 35 (Monte Carlo Points)

0.20
Two-sided significance levels 

0.10 0.05 0.02 0.01 0.002

n 0.10 0.05 0.025 0.01 0.005 0.001

5 0.819 1.058 1.212 1.342 1.396 1.466
6 0.805 1.034 1.238 1.415 1.498 1.642
7 0.787 1.008 1.215 1.432 1.576 1.800
8 0.760 0.991 1.202 1.455 1.601 1.873
9 0.752 0.977 1.189 1.408 1.577 1.866

10 0.722 0.950 1.157 1.397 1.565 1.887
11 0.715 0.929 1.129 1.376 1.540 1.924

13 0.688 0.902 1.099 1.312 1.441 1.783
15 0.648 0.862 1.048 1.275 1.462 1.778
17 0.629 0.820 1.009 1.188 1.358 1.705
20 0.593 0.777 0.951 1.152 1.303 1.614
23 0.562 0.743 0.900 1.119 1.276 1.555
25 0.543 0.714 0.876 1.073 1.218 1.468
30 0.510 0.664 0.804 0.985 1.114 1.410
35 0.474 0.624 0.762 0.932 1.043 1.332

Taken from D ’Agostino and Tletjen (1973) with permission of the Bio-  
metrlka Trustees.
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significant c¿ =  0.001, 0.005, 0.01, 0.025, 0.05, and 0.10. These points are 
given here in Table 9.2. Mulholland (1977) gives good approximations for 
n = 4 to 25.

9 .3 .3 .1 .2  Syy approximation

D^Agostino (1970) further showed that the null distribution of •sihi be 
well approximated by a Johnson Su curve. The approximation is given as 
follows:

(1) Compute \fbi from the sample data.
(2) Compute

Ч  6 (n -2 )  /

ßz =

6(n -  2)

^ 3(n^ + 27n -  70)(n + IHn + 3)
(n -  2)(n + 5)(n + 7)(n + 9)

W 2= - I + {2(/32 - 1 ) } ^

Ô = I/ n/log W

a = {2 / (W^ -  1 )}^

(3) Compute

Z = Ô log[Y/o? + {(Y/ûf)2 + l }2 ]

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

(9.25)

Z of (9.25) is approximately a standard normal variable with mean zero and 
variance unity. Once Z of (9.25) is computed, rejection or acceptance is 
decided by reference to any table of the standard normal distribution (such 
as given in the Appendix). This transformation is applicable for any sample 
size n > 8. Further with it both one-sided and two-sided tests with any desired 
levels of significance can be performed. For example, for a two-sided test 
with a 0.05 level of significance reject if I Z| > 1 .9 6 .

Table 9.3 contains critical values of N/bj computed from this Su approx- 
mation for n > 36.

9 .3 .3 .1 .3  t approximation

D^Agostino and Tietjen (1973) investigated a t approximation to the null 
distribution N/bj. It also requires n > 8 and appears to be as good as the Su 
approximation. It is given as follows:

Compute

T = ( ^ ) / CT(NTbi) (9.26)

where



TABLE 9. 3 Probability Points of ^/bl for n > 36 
(Su Approximation Points)

Two-sided significance levels

36
37
38
39
40

41
42
43
44
45

46
47
48
49
50

51
52
53
54
55

56
57
58
59
60

61
62
63
64
65

66
67
68
69
70

0.20 0.10 0.05 0.02 0.01 

One-sided significance levels

0.10 0.05 0.025 0.01 0.005

0.469 0.614 0.747 0.912 1.032
0.464 0.607 0.738 0.901 1.019
0.459 0.600 0.730 0.891 1.007
0.454 0.594 0.722 0.881 0.996
0.449 0.588 0.714 0.871 0.985

0.445 0.581 0.707 0.861 0.974
0.440 0.576 0.699 0.852 0.963
0,436 0.570 0.692 0.843 0.953
0.432 0.564 0.685 0.835 0.943
0.428 0.559 0.678 0.826 0.934

0.424 0.553 0.672 0.818 0.924
0.420 0.548 0.666 0.810 0.915
0.416 0.543 0.659 0.803 0.906
0.412 0.538 0.653 0.795 0.898
0.409 0.534 0.648 0.788 0.889

0.405 0.529 0.642 0.781 0.881
0.402 0.525 0.636 0.774 0.873
0.399 0.520 0.631 0.767 0.865
0.395 0.516 0.626 0.760 0.858
0.392 0.512 0.620 0.754 0.850

0.389 0.508 0.615 0.748 0.843
0.386 0.504 0.610 0.742 0.836
0.383 0.500 0.606 0.736 0.829
0.380 0.496 0.601 0.730 0.822
0.378 0.492 0.596 0.724 0.816

0.375 0.489 0.592 0.718 0.809
0.372 0.485 0.588 0.713 0.803
0.370 0.482 0.583 0.708 0.797
0.367 0.478 0.579 0.702 0.791
0.365 0.475 0.575 0.697 0.785

0.362 0.472 0.571 0.692 0.779
0.360 0.468 0.567 0.687 0.774
0.357 0.465 0.563 0.683 0.768
0.355 0.462 0.559 0.678 0.763
0.353 0.459 0.556 0.673 0.758

378



TABLE 9.3 (continued)

Two-sided significance levels

0.20 0.10 0.05 0.02 0.01

One-sided significance levels

n 0.10 0.05 0.025 0.01 0.005

71 0.351 0.456 0.552 0.669 0.752
72 0.348 0.453 0.548 0.664 0.747
73 0.346 0.451 0.545 0.660 0.742
74 0.344 0.448 0.541 0.656 0.737
75 0.342 0.445 0.538 0.651 0.733

76 0.340 0.442 0.535 0.647 0.728
77 0.338 0.440 0.532 0.643 0.723
78 0.336 0.437 0.528 0.639 0.719
79 0.334 0.435 0.525 0.635 0.714
80 0.332 0.432 0.522 0.632 0.710

81 0.330 0.430 0.519 0.628 0.706
82 0.329 0.427 0.516 0.624 0.701
83 0.327 0.425 0.513 0.621 0.697
84 0.325 0.422 0.510 0.617 0.693
85 0.323 0.420 0.507 0.613 0.689

86 0.322 0.418 0.505 0.610 0.685
87 0.320 0.416 0.502 0.607 0.681
88 0.318 0.413 0.499 0.603 0.677
89 0.317 0.411 0.497 0.600 0.674
90 0.315 0.409 0.494 0.597 0.670

91 0.313 0.407 0.491 0.594 0.666
92 0.312 0.405 0.489 0.590 0.663
93 0.310 0.403 0.486 0.587 0.659
94 0.309 0.401 0.484 0.584 0.656
95 0.307 0.399 0.481 0.581 0.652

96 0.306 0.397 0.479 0.578 0.649
97 0.304 0.395 0.477 0.575 0.646
98 0.303 0.393 0.474 0.573 0.642
99 0.302 0.391 0.472 0.570 0.639

100 0.300 0.390 0.470 0.567 0.636

102 0.297 0.386 0.465 0.562 0.630
104 0.295 0.383 0.461 0.556 0.624
106 0.292 0.379 0.457 0.551 0.618
108 0.290 0.376 0.453 0.546 0.612
lio 0.287 0.373 0.449 0.541 0.607

(continued)

379



TABLE 9.3 (continued)

Two-sided significance levels

0.20 0.10 0.05 0.02 0.01

One-sided significance levels

n 0.10 0.05 0.025 0.01 0.005

112 0.285 0.369 0.445 0.536 0.601
114 0.283 0.366 0.441 0.532 0.596
116 0.280 0.363 0.438 0.527 0.591
118 0.278 0.360 0.434 0.523 0.586
120 0.276 0.358 0.431 0.519 0.581

122 0.274 0.355 0.427 0.514 0.576
124 0.272 0.352 0.424 0.510 0.571
126 0.270 0.349 0.421 0.506 0.567
128 0.268 0.347 0.417 0.502 0.562
130 0.266 0.344 0.414 0.499 0.558

132 0.264 0.342 0.411 0.495 0.554
134 0.262 0.339 0.408 0.491 0.550
136 0.260 0.337 0.405 0.488 0.546
138 0.258 0.335 0.403 0.484 0.542
140 0.257 0.332 0.400 0.481 0.538

142 0.255 0.330 0.397 0.477 0.534
144 0.253 0.328 0.394 0.474 0.530
146 0.252 0.326 0.392 0.471 0.526
148 0.250 0.324 0.389 0.468 0.523
150 0.249 0.322 0.387 0.465 0.519

155 0.245 0.317 0.381 0.457 0.511
160 0.241 0.312 0.375 0.450 0.503
165 0.238 0.307 0.369 0.443 0.495
170 0.234 0.303 0.364 0.437 0.488
175 0.231 0.299 0.359 0.430 0.481

180 0.228 0.295 0.354 0.425 0.474
185 0.225 0.291 0.349 0.419 0.467
190 0.222 0.287 0.345 0.413 0.461
195 0.219 0.284 0.340 0.408 0.455
200 0.217 0.280 0.336 0.403 0.449

210 0.212 0.274 0.328 0.393 0.439
220 0.207 0.267 0.321 0.384 0.428
230 0.203 0.262 0.314 0.376 0.419
240 0.199 0.256 0.307 0.368 0.410
250

380

0.195 0.251 0.301 0.361 0.402
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Table 9.3 (continued)

Two-sided significance levels

0.20 0.10 0.05 0.02 0.01

One-sided significance levels

n 0.10 0.05 0.025 0.01 0.005

275 0.186 0.240 0.287 0.344 0.383
300 0.178 0.230 0.275 0.329 0.366
325 0.172 0.221 0.265 0.316 0.352
350 0.165 0.213 0.255 0.305 0.339
375 0.160 0.206 0.247 0.294 0.327

400 0.155 0.200 0.239 0.285 0.317
425 0.151 0.194 0.232 0.277 0.307
450 0.146 0.188 0.225 0.269 0.299
475 0.143 0.184 0.219 0.262 0.291
500 0.139 0.179 0.214 0.255 0.283

550 0.133 0.171 0.204 0.243 0.270
600 0.127 0.164 0.195 0.233 0.258
650 0.122 0.157 0.188 0.224 0.248
700 0.118 0.152 0.181 0.216 0.239
750 0.114 0.146 0.175 0.208 0.231

800 0.110 0.142 0.169 0.202 0.224
850 0.107 0.138 0.164 0.196 0.217
900 0.104 0.134 0.160 0.190 0.211
950 0.101 0.130 0.155 0.185 0.205

1000 0.099 0.127 0.152 0.180 0.200

1200 0.090 0.116 0.138 0.165 0.182
1400 0.084 0.107 0.128 0.152 0.169
1600 0.078 0.101 0.120 0.143 0.158
1800 0.074 0.095 0.113 0.134 0.149
2000 0.070 0.090 0.107 0.127 0.141

2500 0.063 0.080 0.096 0.114 0.126
3000 0.057 0.073 0.088 0.104 0.115
3500 0.053 0.068 0.081 0.096 0.107
4000 0.050 0.064 0.076 0.090 0.100
4500 0.047 0.060 0.072 0.085 0.094

5000 0.044 0.057 0.068 0.081 0.089
10000 0.031 0.040 0.048 0.057 0.063
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(9o27)

¢2 is given by (9.21)

and

(9.28)

Under the null hypothesis T of (9.26) is approximately a t variable with и 
given by (9.27) degree of freedom. Interpolation in standard t appears ade
quate for judging significance of test results.

9 . 3 . 3 . 1.4 Normal approximation

The normal approximation given by

. [(n ̂ lMn ̂ 3)1 ̂
6(n-2) J (9.29)

appears to be valid for n > 150.

E 9.3. 3. 1. 5 Numerical examples of test Table 9.4 contains the first 
ten observations from five data sets given in the Appendix. These are the 
uniform (UNI), two Johnson Unbounded distributions ((SU(0,2) and SU(1,2)), 
the negative exponential (E X P ), and the normal (NOR). The population values 
of ^íßl and /?2 are included in the table. The ^ Ib i statistic has been computed 
for all five data sets. Employing a two tailed test the 0.05 critical ^/bl ob
tained from Table 9.2 is 1.157. Rejection of the null h3q>othesis only occurs 
for the negative exponential data set (E X P ).

While we anticipate computation of w ill mainly be done via a com
puter, a computational formula may still be useful. One such formula is

(9.30)

ф у
[Z (X -X )Z j r

nZZXZ - 3nZXZXZ + 2(ZX)Z
“  3

[nZXZ _ (zJQZjr

9 .3 .3 -1 .6  Recommendations for use of ^/b^

The Su approximation given by (9.20) to (9.25) is adequate for n > 8. 
For computerization of ^ ÍЪ l, we recommend its use. For n = 5, 6, and 7, 
Table 9.2 must be used. For table look-ups we recommend Table 9.2 for 
n = 5 to 35 and Table 9.3 for n > 36. Also for n > 150 the simple normal 
approximation of (9.29) can be used.
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TABLE 9.4 Numerical Examples for Moment and Related Tests

Distributionst

Uniform

Johnson
Unbounded

(0 ,2 )

Johnson
Unbounded

(1,2)

Negative 
E^qx>nential, 

Mean 5

Normal: 
M = 100,
O' =  10

UNI SU(0,2) SU(1,2) EXP NOR

8 .1 0 0 .1 0 -0.41 8.15 92.55
2.06 -0.31 -0.91 4.69 96.20
1.60 -0.09 -0.63 2.17 84.27
8.87 -0.58 -1.25 0.37 90.87

Data^ 9.90 1.15 0.50 16.69 101.58
6.58 0.17 -0.34 0.06 106.82
8 .6 8 -1.39 -2.46 6.48 98.70
7.31 -0.14 - 0 . 6 8 2.63 113.75
2.85 -0.31 -0.97 0.44 98.98
6.09 0 .6 8 0.13 0.89 100.42

0 0 -0.87 2 0

ß z 1.80 4.51 5.59 9 3

X 6.204 -0.072 -0.702 4.257 98.414
S 3.009 0 .6 8 8 0.807 5.169 8.277

^^b, -0.49 -0.06 -0.72 1.49^ 0.16
Ьг 1.75 3.11 3.58 4 . 33b 2.76
a 0 .8 6 0.74 0.73 0.77 0.76
U 2.76 3.69 3.67 3.22 3.56

tData sets are first ten observations for UNI, SU(0,2), SU(1,2), EXP  
and NOR data sets of Appendix.

^Note that

” 2

a = Geary^s statistic = Z  I X -  Xl /n

m:

U = David et al. (1954) statistic = (sample range)/s
I I

S = [n/(n -  l ) ]*m f

^^Reject null hypothesis of normality at 0.02 level of significance. 
^Reject null hyi>othesls of normality at 0.10 level of significance.



TABLE 9.5 Probability Points of Ьз for n = 7 to 200

со
OO

Sample size 
n Percentiles

Part I (n = 7 to 20)

I 2 2.5 5 10 20 80 90 95 97.5 98 99

7 1.25 1.30 1.34 1.41 1.53 1.70 2.78 3.20 3.55 3.85 3.93 4.23
8 1.31 1.37 1.40 1.46 1.58 1.75 2.84 3.31 3.70 4.09 4.20 4.53
9 1.35 1.42 1.45 1.53 1.63 1.80 2.98 3.43 3.86 4.28 4.41 4.82

10 1.39 1.45 1.49 1.56 1.68 1.85 3.01 3.53 3.95 4.40 4.55 5.00
12 1.46 1.52 1.56 1.64 1.76 1.93 3.06 3,55 4.05 4.56 4.73 5.20

15 1.55 1.61 1.64 1.72 1.84 2.01 3.13 3.62 4.13 4.66 4.85 5.30
20 1.64 1.71 1.73 1.83 1.95 2.12 3.20 3.68 4.18 4.68 4.87 5.38

Part 2 (n = 20 to 100)

.5 I 2.5 5 10 15 20 80 85 90 95 97.5 99 99.5

20 1.58 1.64 1.73 1.83 1.95 2.04 2.12 3.20 3.40 3.68 4.18 4.68 5.38 5.91
25 1.66 1.72 1.82 1.92 2.03 2.12 2.20 3.24 3.43 3.69 4.15 4.63 5.29 5.81
30 1.73 1.79 1.89 1.98 2.10 2.19 2.26 3.26 3.44 3.69 4.12 4.57 5.20 5,69

35 1.78 1.84 1.94 2.03 2.15 2.24 2.31 3.28 3.45 3.68 4.09 4.51 5.12 5.58

40 1.83 1.89 1.99 2.07 2.19 2.28 2.35 3.29 3.45 3.66 4.06 4.46 5.04 5.48
45 1.87 1.93 2.03 2.11 2.23 2.31 2.38 3.29 3.44 3.65 4.02 4.41 4.96 5.38
50 1.91 1.96 2.06 2.15 2.26 2.34 2.41 3.29 3.44 3.63 4.00 4.36 4.88 5.28

55 1.94 2.00 2.09 2.18 2. 29 2.37 2.44 3.29 3.43 3.62 3.97 4.32 4.81 5.19

O

§
Ï



60 1.97 2.03 2.12 2.21 2.32 2.39 2.46 3.29 3.43 3.60 3.94 4.28 4.75 5.11
65 2.00 2.05 2.15 2.23 2.34 2.41 2.48 3.28 3.42 3.59 3.91 4.24 4.69 5.03
70 2.02 2.07 2.17 2.25 2.36 2.43 2.50 3.28 3.41 3.58 3.89 4.20 4.64 4.97
75 2.05 2.10 2.19 2.27 2.38 2.45 2.51 3.28 3.41 3.57 3.87 4.17 4.59 4.90

80 2.07 2.12 2.21 2.29 2.39 2.46 2.53 3.27 3.40 3.56 3.85 4.14 4.54 4.84
85 2.08 2.14 2.22 2.31 2.41 2.48 2.54 3.27 3.39 3.55 3.83 4.11 4.50 4.79
90 2.10 2.16 2.24 2.32 2.43 2.49 2.55 3.27 3.39 3.54 3.81 4.08 4.46 4.74
95 2.11 2.17 2.26 2.34 2.44 2.50 2.56 3.27 3.38 3.53 3.80 4.05 4.43 4.70

100 2.13 2.19 2.27 2.35 2.45 2.52 2.57 3.26 3.37 3.52 3.78 4.03 4.39 4.66

Part 3 (n = 100 to 200)

100 2.13 2.19 2.27 2.35 2.45 2.52 2.57 3.26 3.37 3.52 3.78 4.03 4.39 4.66
HO 2.15 2.22 2.30 2.37 2.47 2.53 2.59 3.26 3.37 3.51 3.75 3.99 4.32 4.58
120 2.18 2.24 2.32 2.39 2.49 2.55 2.61 3.25 3.35 3.49 3.72 3.95 4.26 4.52

130 2.20 2.26 2.34 2.41 2.51 2.57 2.63 3.25 3.34 3.47 3.70 3.92 4.21 4.46
140 2.22 2.28 2.36 2.43 2.52 2.58 2.64 3.25 3.33 3.46 3.67 3.89 4.17 4.41
150 2.24 2.30 2.37 2.45 2.54 2.60 2.65 3.24 3.33 3.45 3.65 3.86 4.13 4.36

160 2.26 2.32 2.39 2.46 2.55 2.61 2.66 3.24 3.32 3.44 3.63 3.83 4.09 4.31
170 2.28 2.33 2.40 2.48 2.56 2.62 2.67 3.23 3.32 3.43 3.62 3.81 4.06 4.27
180 2.29 2.35 2.41 2.49 2.57 2.63 2.68 3.23 3.31 3.42 3.60 3.79 4.03 4.23

190 2.31 2.36 2.43 2.50 2.58 2.64 2.69 3.22 3.30 3.41 3.58 3.77 4.00 4.19
200 2.32 2.37 2.44 2.51 2.59 2.65 2.70 3.22 3.30 3.40 3.57 3.75 3.98 4.16

Adapted from D’Agostino and Tietjen (1971) and D'Agostino and Pearson (1973), with permission of the 
Biometrika Trustees.

COOOСЛ



386 D’AGOSTINO

FIGURE 9. 2a Empirical cumulative distribution Ьз (P  < 0. 55).

FIGURE 9 .2b Empirical cumulative distribution of Ьз (0.55 < P < 0.95).
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FIGURE 9.2c Empirical cumulative distribution of Ьз (P  > 0. 975).
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Finally, both a one sided or two sided test can be used. If the direction 
of the skewness is anticipated ( i . e . , ^Ißi > 0 or ^Ißi < 0) a one sided test 
should be used.

9.3 .3 .2  Fourth Standardized Moment b^

9 .3 .3 .2 .1  Monte Carlo points for n = 7 to 200

D'Agostino and Tietjen (1971) presented simulation probability points 
applicable for n = 7 to 50. Later D'Agostino and Pearson (1973) extended 
these results to n = 200. Table 9.5 and Figure 9.2 contain probability points 
valid for n = 7 to 200 and curves of the probability distributions (empirical 
probability integral) for n = 20 to 200, respectively.

9 .3 .3 .2 .2  Anscombe and Glynn approximation

Anscombe and Gl3nm (1983) showed that the results of Table 9.5 and 
Figure 9.2 for n > 20 can be adequately approximated, when the first three 
moments of the distribution of Ьз have been determined, by fitting a linear 
function of the reciprocal of a variable and then using the Wilson-Hilferty 
transformation. Their approximation is computed as follows:

(1) Compute Ьз from the sample data.
(2) Compute the mean and variance of Ьз

and

E(b ) = m j ú i  
n + I

= 2 4 п (п -2 )(п -3 )
^  ^ /„ +  1ч2/„ +  Qwj, +  C(n +  l)2 (n +  3 )(n+ 5)

(3) Compute the standardized value of b2

^  E(bz)
N/var (Ьг)

(4) Compute the third standardized moment of Ьз

^  6(n^ - 5 n + 2 j
HiV z; (n + + 9) V n(n -  2)(n -  3)

(5) Compute

(9.31)

(9.32)

(9.33)

A = 6 +
8 2

N/^l(bz) ФхОЬг) J  ^1(Ьг) }

(9.34)

(9.35)
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(6) Compute

•((‘ -¿ » -[ ttS S s í ]* )/ « " « (9.36)

Z of (9.36) is approximately a standard normal variable with mean zero 
and variance unity.

The approximation given by (9.31) to (9.36) can be used to test directly 
null hypotheses concerning Ьз for two sided or one sided alternatives. For 
example, for testing at level of significance 0.05

Ho : Normality

versus the one sided composite alternative 

Hi : Nonnormality with ß 2 > ^  
one would reject Hq if Z of (9.36) exceeded 1.645. For 

Hi : Nonnormality with ¢2 < 3

one would reject Hq if Z of (9.36) was smaller than -1.645.

9 .3 .3 .2 .3  Normal approximation

The normal approximation given by

Ьг -  E (b ,) 

(b2)
(9.37)

is valid only for extremely large n values ( i . e . , well over 1000). It should 
not be used.

9 . 3 . 3 . 2.4 Bowman and Shenton*s Sn approximation

Appendix 2 of Chapter 7 gives details of a computer program for finding 
an Su approximation to b 2 • This can be used to yield tests for n > 40.

E 9. 3.3. 2. 5 Numerical examples of b  ̂ test Table 9.4 contains numerical 
examples for the five data sets already used for N/bj. As before only the EXP  
data lead to rejection of a two tailed test. Here the level of significance 
is 0.10.
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9 « 3. 3. 2. 6 Recommendation for use of

Table 9.5 or Figure 9.2 can be used for 7 < n < 200. The Anscombe and 
Glynn or Bowman and Shenton approximations can be used for n > 20. Both 
require computations. The former requires less computations giving an ex
plicit solution.

Again, as with N/bj, when knowledge is available concerning the alter
native ( i . e . , /?2 > 3 or < 3) a one sided test should be used.

9 .3 .3.3 Omnibus Tests Based on Moments

The ^[Ъl test is excellent for detecting nonnormality due to skewness Ф 0). 
The b2 test is primarily directed to detecting nonnormality due to nonnormal 
kurtosis or nonnormal tail thickness (¢2 ^ 3 ). A number of investigators have 
worked on combining these tests to produce an omnibus test of normality.

9 .3 .3 .3 .1  The R-test

The simplest omnibus test consists of performing the N/bj test at level 
and the b 2 test at level 0̂ 2 and reject normality if either test leads to rejec
tion. The overall level of significance a  for these two tests combined would 
then be, by Bonferroni^s inequality,

a < O'! + 0̂ 2 (9.38)

Pearson, D^Agostino, and Bowman (1977) showed that if ai = аг = 2a* a 
good approximation to the overall level of significance is

a  = Ц а *  -  (0^+)2) (9.39)

(9.39) would hold exactly if Nibj and were independent. They are uncorre
lated but not independent and use of (9.39) to determine the overall level of 
significance produces a conservative test. Tables of corrected values are  
given in Pearson et al. (1966) for n = 20, 50, and O' = 0.05 and 0.10.

In order to use this test one can determine a *  as

2a* = (I -  (I  -  a)^) (9.40)

where a is  the desired overall level. Note 2a* is the level of the individual 
tests.

The term R test was given to the above omnibus procedure because it 
can be viewed as employing rectangular coordinates for rejection of normality.

9 . 3 . 3 . 3 .2  D^Agostino-Pearson chi square test

D^Agostino and Pearson (1973) suggested the statistic

= x^(\/bi) + (b j) (9.41)
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as an omnibus test where X(NZbj) and X(b2) are standardized normal equiv
alent deviates and can be viewed as a chi square variable with two degrees 
of freedom. This test was developed assuming and Ьз were independent. 
They are not. However, as Bowman and Shenton point out in Chapter 7, they 
are uncorrelated and nearly independent. So is approximately a chi square 
variable with two degrees of freedom. For n > 100 the chi square distribution 
approximation presents no problem.

The test statistic of (9.41) is trivial to employ given the above material. 
X(NZbj), the normal deviate for NZbj, can be found using the Su approximation 
of (9.20) to (9.25) and X(b2), the normal deviate for b2 , can be found using 
the Anscombe and Glynn approximations of (9.31) to (9.36).

9 .3 .3 .3 .3  Bowman-Shenton chi square test

In Chapter 7 Bowman and Shenton review their k | test which has the 
same format as (9.41) except their approximation to X(b2) involved use of 
Johnson Su curves (see also Bowman and Shenton (1975)). They also present 
in Figure 7 .1 contours which allow for exact level of significance tests of 
a  = 0.05 and 0.10 for the K| test. These contours are for n = 25 to 1000.

9 .3 .3 .3 .4  Other omnibus tests

Bowman and Shenton (1975) also suggested 

(NZbi)Vfff + (bj -  3)V<^ (9.42)

where fff = 6/n and o-f = 24/n. Asymptotically (9.42) would be distributed 
as a chi square variable with two degrees of freedom if the null hзфothesis 
of normality was true. Due to the slow convergence of b2 to normality this 
test is not useful.

Cox and Hinkley (1974) suggested

max (iN/bil/ffi, I b z -S I/ f fz ) (9.43)

Another possibility is

-  log P  (NTbj ) -  log P  (b j) (9.44)

where P(\Zbi) and P (b j) are the probability Integral transformation of ^ Ib i  
and b 2- This statistic would be approximately a four degree chi square 
variable.

9 . 3 . 3 . 3 .5  Recommendations for use of omnibus test

Figure 7 . 1 gives the omnibus test, K|, for n = 25 to 1000 and a  = 0.05 
and 0.10. It is preferred to other approximations. For other situations there 
is little to choose between of (9.41) and K| of Chapter 7. (The reader is 
referred to Chapter 7 for numerical examples. ) Both the and K| tests can 
be programmed easily. See Section 9 .3 .3 .3 .2  for .
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The R test is not as powerful as or K| but requires in many cases 
only trivial interpolations in Tables 9.2, 9.3, and 9.5. As a quick test it 
has much to recommend it.

9.3.3.4 Related Tests

9 .3 .3 .4 .1  Geary’s tests

A number of tests are related to moment tests and are of historical 
Interest. Most noticeable are Geary’s test involving the ratio of the mean 
deviation to the standard deviation

W = f  ^
'jn  (Z X * )*

(9.45)

and

a = Z  I X  -  X l /n (9.46)

(see Geary (1935)). Tables of a are published in Pearson and Hartley (1972). 
D^Agostino (1970) showed that

\Гп(а -  .7979)
.2123

(9.47)

can be considered as a standard normal variable with mean zero and variance 
unity for n > 41. Recently Gastwirth and Owen (1977) discussed optimal fea
tures of a.

Geary (194 7) in one of the most distinguished papers on tests of normality 
considered tests of the form

a(c) =
c/2 

nm^
Z  I X  -  X l for C > I (9.48)

Note a (l) = a of (9.46), and a(4) = Ьз» Geary discussed optimal properties 
of Ьз in this framework. Table 9.4 contains numerical examples of Geary’s 
a test.

9 .3 .3 .4 .2  Sample range test

David, Hartley, and Pearson (1954) presented a test defined as

_ ^(n) “ ^(1) (9.49)
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that is, the ratio of the sample range to the sample standard deviation. 
Probability points of u are given in Pearson and Hartley (1972). Table 9.4 
contains numerical examples of this u test.

9.3.4 Regression Tests

Clearly, the recent interest in tests of normality is due mainly to the exciting 
work of S. S. Shapiro and M. B. Wilk (1965). Their test for normality and 
the tests that have resulted as modifications and extensions of their test are 
called regression and correlation tests (see Chapter 5). These terms are used 
in that these tests can be viewed as originally arising from considering a 
linear model

X = Д + O’ EZ  
(i) ^ (i)

+ €. (9.50)

and estimating, in particular, the parameter o- by a regression technique.
In (9.50) X(i) is the ith order statistic from the observed sample of size n, 
EZ(I) is the expected value of the ith order statistic from a sample of size n 
drawn from the standard normal distribution (mean zero and variance unity), 
SL^d €i is a random erro r term. Sections 5.7, 5.9, and 5.10 contain a dis
cussion of these tests. It is suggested that the reader read these sections in 
addition to the following.

9.3.4 .1  Shapiro -W ilk T e st-A n  Omnibus Test

In (9.50) the best linear unbiased estimate of <x from the Gauss Mirkov the
orem is

52 = c*V“^X/c*V“b (9.51)

where c is the vector of ejq)ected values of the n order statistics from the 
standard normal distribution and V  is the covariance matrix of €  ̂ in (9.50). 
(Note is a regression estimate.) The Shapiro-Wilk W  statistic is basically 
the ratio of to S^, the sample variance. In particular.

W  =
(a ^ 2

(n -1)8=' 2 (X -3 Q ^
(9.52)

where

c * V (9.53)
(c»V"2ç)-

The SLi optimal weights for the weighted least squares esti-



TABLE 9.6 Numerical Examples for Shapiro-Wilk W  Test 
and D ’Agostino D Testt

a.
I

NOR Data EXP Data

Shapiro-Wilk

-0.5739 84.27 -48.363 0.06 -0.034
-0.3291 90.87 -29.905 0.37 -0.122
-0.2141 92.55 -19.815 0.44 -0.094
-0.1224 96.20 -11.775 0.89 -0.109
-0.0399 98.70 -3.938 2.17 -0.087
0.0399 98.98 3.949 2.63 0.105
0.1224 100.42 12.291 4.69 0.574
0.2141 101.58 21.748 6.48 1.387
0.3291 106.82 35.154 8.15 2.682
0.5739 113.75 65.281 16.69 9.578

24.627 13.880

Z  (X - 616.554 240.498

W = - g ^ - 0,984 0.801^
S (X -X )^

D ’Agostino

-4 .5 84.27 -379.215 0.06 -0.270
-3 .5 90.87 -318.045 0.37 -1.295
-2 .5 92.55 -231.375 0.44 -1.100
-1 .5 96.20 -144.300 0.89 -1.335
-0 .5 98.70 -49,350 2.17 -1.085
0.5 98.98 49.490 2.63 1.315
1.5 100.42 150.630 4.69 7.035
2.5 101.58 253,950 6.48 16.200
3.5 106.82 373.870 8.15 28.525
4.5 113.75 511,875 16.69 75.105

217.53 123.095

z ( x  - 616.554 240.498

D =

Sc X 
I (I)

nN /nZ (X -X )2 0,27703 0,25101

ÎData sets are first ten observations for NOR and EXP data sets of 
Appendix,

^For the Shapiro-Wilk W  test reject the null hypothesis at 0,02 level of 
significance if W  < 0.806. So reject for negative exponential at 0.02 level, 

R e je c t  the null hyxюthesls at 0.05 level of significance if observed 
D < 0.2513, the lower tall critical value of D (see text). So reject at 0.05 
level.
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mator of (j given that the population is normally distributed. W  can also be 
viewed as the R^ (square of the correlation coefficient) obtained from a nor
mal probability plot (see Section 2.4) and thus the notion of a correlation 
test.

The ai values for n = 3 to 50 were given by Shapiro and Wilk (1965) 
and are presented in this book in Table 5.4. Because W  is sim ilar to an R^ 
value, large values ( i . e . , values close to one) indicate normality and values 
smaller than unity indicate nonnormality. Thus values in the lower tail of 
the null distribution of W  are used for rejection. Table 5.5 gives the critical 
values of W  for n = 3 to 50.

E 9.3.4 . 1. 1 Numerical example of W  test Table 9.6 contains two numerical 
examples of the Shapiro-Wilk test. The first ten observations of the NOR 
data and the EXP data are used. The EXP leads to rejection at the 0.02 level 
of significance. The weights a¿ come from Table 5.4. Chapter 5 contains 
other numerical examples.

9 .3.4.2 D^Agostino^s D Test

The W  test requires a different set of a weights for each sample size n. A  
modification was presented by D^Agostino (1971) which does not require any 
tables of weights. It is given as follows:

D =
n '̂v/m”.

n ^ {Z (X  -  X)2}5
(9.54)

where

T =  I  ( i - | ( n + l ) ) x
i= l (i)

(9.55)

The statistic D is equal, up to a constant, to the ratio of Downton^s (1966) 
linear estimator of the standard deviation to the sample standard deviation.

The expected value of D is approximately 1/(2nÍ7t) = 0.28209479 and the 
standard deviation is asymptoticallyL 24тт J 02998598

n/п
(9.56)

An approximate standardized variable is thus

Y  =
^ n/Ïi (D -  0.28209479)

0.02998598
(9.57)



TABLE 9.7 Probability Points of D’Agostino’s D Test for n = 10 to 2000 (Y statistic of (9.57))

Percentiles

COCD

0.5 1.0 2.5 10 90 95 97.5 99 99.510
12
14
16
18
20

22
24
26
28
30

32
34
36
38
40

42
44
46
48
50

-4.66
-4.63
-4.57
-4.52
-4.47
-4.41

-4.36
-4.32
-4.27
-4,23
-4.19

-4.16
-4.12
-4.09
-4,06
-4.03

-4,00
-3.98
-3.95
-3.93
-3.91

-4.06
-4.02
-3.97
-3.92
-3.87
-3.83

-3.78
-3.75
-3.71
-3,68
-3.64

-3.61
-3.59
-3.56
-3.54
-3.51

-3.49
-3.47
-3.45
-3.43
-3.41

-3.25
-3,20
-3.16
-3.12
-3.08
-3,04

-3.01
-2.98
-2.96
-2,93
-2.91

- 2,88- 2,86
-2,85
-2.83
-2.81

-2.80
-2,78
-2.77
-2.75
-2.74

-2.62
-2.58
-2.53
-2.50
-2.47
-2.44

-2,41
-2.39
-2.37
-2.35
-2.33

-2.32
-2.30
-2.29
-2.28
-2.26

-2,25
-2.24
-2.23
- 2.22- 2.2 1

-1.99
-1.94
-1.90
-1.87
-1.85
-1.82

-1.81
-1.79
-1.77
-1.76
-1.75

-1.73
-1,72
-1.71
-1.70
-1.70

-1.69
- 1.68
-1.67
-1.67
- 1.66

0.149
0.237
0.308
0,367
0.417
0.460

0.497
0.530
0.559
0.586
0.610

0.631
0.651
0.669
0.686
0.702

0.716
0.730
0.742
0.754
0.765

0.235
0,329
0.399
0.459
0.515
0.565

0.609
0.648
0.682
0.714
0.743

0.770
0.794
0.816
0.837
0.857

0.875
0.892
0.908
0.923
0.937

0.299
0.381
0.460
0.526
0.574
0.628

0.677
0.720
0.760
0.797
0.830

0.862
0.891
0.917
0.941
0.964

0.9861.01
1.02
1.04
1.06

0.356
0.440
0.515
0.587
0.636
0.690

0.744
0.783
0.8270.868
0.906

0.942
0.975
1.00
1.03
1.06

1.09
1.11
1.13
1.15
1.18

0.385
0.479
0.555
0.613
0.667
0.720

0.775
0.822
0.867
0.910
0.941

0.9831.02
1.05
1.08
1.11

1.14
1.17
1,19
1.2 2
1.24 §



60
70
80
90

100

150
200
250
300
350

400
450
500
550
600

650
700
750
800
850

900
950

1000
15002000

-3.81
-3.73
-3.67
-3.61
-3.57

-3.409
-3.302
-3.227
-3.172
-3.129

-3.094
-3.064
-3.040
-3.019
-3.000

-2.984
-2.969
-2.956
-2.944
-2.933

-2.923
-2.914
-2.906
-2.845
-2.807

-3.34
-3.27
-3.22
-3.17
-3.14

-3.009
-2.922
-2.861
-2.816
-2.781

-2.753
-2.729
-2.709
-2.691
-2.676

-2.663
-2.651
-2.640
-2.630
-2.621

-2.613
-2.605
-2.599
-2.549
-2.515

- 2.68
-2.64
-2.60
-2.57
-2.54

-2.452
-2.391
-2.348
-2.316
-2.291

-2.270
-2.253
-2.239
-2.226
-2.215

-2.206
-2.197
-2.189
-2.182
-2.176

-2.170
-2.164
-2.159
-2.123
- 2 .101

-2.17
-2.14
- 2.11
-2.09
-2.07

-2.004
-1.960
-1.926
-1.906- 1.888
-1.873
-1.861
-1.850
-1.841
-1.833

-1.826
-1.820
-1.814
-1.809
-1.804

-1.800
-1.796
-1.792
-1.765
-1.750

-1.64
-1.61
-1.59
-1.58
-1.57

-1.520
-1.491
-1.471
-1.456
-1.444

-1.434
-1.426
-1.419
-1.413
-1.408

-1.403
-1.399
-1.395
-1.392
-1.389

-1.386
-1.383
-1.381
-1.363
-1.353

0.812
0.849
0.878
0.902
0.923

0.990
1.032
1.060
1.080
1.096

1.108
1.119
1.127
1.135
1.141

1.147
1.152
1.157
1.161
1.165

1.168
1.171
1.174
1.194
1.207

0.997
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1.14
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1.290
1.328
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1.379

1.396
1.411
1.423
1.434
1.443

1.451
1.458
1.465
1.471
1.476

1.481
1.485
1.489
1.519
1.536

1.13
1.19
1.24
1.28
1.31

1.423
1.496
1.545
1.528
1.610

1.633
1.652
1.668
1.682
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1.704
1.714
1.722
1.730
1.737

1.743
1.749
1.754
1.793
1.815

1.26
1.33
1.39
1.44 
1.48
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1.715
1.779
1.826
1.863

1.893
1.918
1.938
1.957
1.972

1.986
1.9992.0102.020
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2.037
2.045
2.052 
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2.132

1.34
1.42
1.48
1.54
1.59

1.746
1.853
1.927
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2.026
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2.114
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2.231
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Adapted from D’Agostino (1971) and (1972) with permission of the Biometrika Trustees. CO
(£>-Cl
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If the null hypothesis of normality is false Y  w ill tend to differ from  
zero. Simulation studies by D ’Agostino (1971) indicated that for alternative 
distributions with kurtosis less than the normal (¢3 < 3 ), Y  tends to be 
greater than zero. For alternative distributions with /З2 > 3, Y  tends to be 
less than zero. So in order to guard against all possibilities a two sided test 
needs to be employed. This procedure produces an omnibus test. The statis
tic can also be used for a one sided test for directional alternatives ( i . e . , 
either ¢3 < 3 or > 3).

D ’Agostino (1971) gave a table of percentile points for Y  based on 
Cornlsh-Flsher e:q>ansions for n = 50 to 1000. D ’Agostino (1972) later gave 
improved points for n = 50 to 100 based on Pearson curves and extensive 
simulations. Table 9.7 contains probability points for n = 10 to 2000 based 
on these and other work.

For n > 1000 a Com ish-Fisher езфапе!оп should be adequate to obtain 
critical values of D. The expansion using the first four cumulants is as 
follows. If Dp and Zp are the IOOP percentile points (0 < P  < I) of D and 
the standard normal distribution, respectively, then the Com ish-Fisher 
e3q>ansion for Dp in terms of Zp is

D = E(D) + V  
P P

(9.58)

where

Vp = Zp +
yi(Z^  -  I) 3Zp)

24

yf(2Z3 -  5Zp) 

36 (9.59)

Here

E P )  = ( 1  + — ------  +
aJV /̂ n V 4(n -  I)

V P z W  =

V i =

and

2 Ф 1:

0.02998598 

\/n

-8.5836542

4(n -  I) 32(n -  1)2 "  I28(n -  1)^

n/п

Yz =114.732 
n

(9.60)

(9.61)

(9.62)

(9.63)

Note with the Com ish-Fisher expansion of (9.58) to (9.63) there is no need 
to transform to Y  of (9.57).

Finally because the range of D is small, it should be calculated to five 
decimal places.
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E 9.3.4 » 2. 1 Numerical examples of Agostino^s test Table 9.6 contains 
two numerical examples of the D^Agostino D test. As with the Shapiro-Wilk 
test the first ten observations of the NOR and EXP data sets are used. With 
n = 10 and a level of significance of 0.05 one rejects normality if Y  < -3.25 
or Y  >0.299. Using

D = 0.28209479 + 0.02998598

\/n

one rejects if D < 0.2513 or D > 0.2849. The NOR data set does not lead to 
rejection at the 0.05 level. EXP does.

9 .3.4.3 Shapiro-Francia*s W^ Test

Shapiro and Francia (1972) addressed the problem of the a weights of the 
Shapiro-Wilk test by noting that for large samples the ordered observations 
may be treated as if they were independent. With this, the a weights of 
(9 . 53) can be replaced by

b̂  =

and the W  statistic of (9.53) can be replaced by

(9.64)

. _e$L . EîiïffliL (9.65)

Recall from Section 9 .3.4.1 c is the vector of the expécted values of the n 
order statistics from the standard normal distribution. Values of c are 
readily available (Harter, 1961) for n up to 400.

Shapiro and Francia (1972) supplied the weights bf for W ’ and critical 
values for n = 35, 50, 51 (2)99. Pearson, D ’Agostino, and Bowman (1977) 
noted that these critical values were calculated via simulations from only 
1000 samples. They reevaluated percentage points for n = 99, 100, and 125 
based on 50,000 simulations. A comparison indicated that the Shapiro- 
Francia values in the lower tall were higher than what they should be. This 
would result in producing actual levels of significance larger than indicated 
by the Shapiro-Francia tables. Further it would indicate in power studies 
that the test was more powerful than it actually is.

9.3.4.4 Weisberg-Bingham’s Test 
and Asymptotic Extensions

Weisberg and Bingham (1975) suggested replacing the b of (9.64) with
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d =

where the elements of the vector c are

(9.66)

5 = ф -.Г ^ - з / б ]  i Ln+ 1/4 J for i = I , . . . »  n (9.67)

and Ф”^(р) is the inverse of the standard normal cumulative distribution func
tion. The resulting statistic is denoted by W ’ and is given as

W ’ =
(c 'X )V (c '5 ) _  (Zd jX (I))" 

Z ( X - X ) "  ” Г  (X - X ) "
(9.68)

The approximations ĉ  to Ĉ  was suggested by Blom (1958) and its use in 
(9.68) results in the null distribution of W ’ being very close to W ’ , at least 
for n = 5, 20, 35 where the authors made a comparison. They suggested 
using 'W' in place of W '. This removes the need to have tables of weights for 
computations of the test statistic. With use of W ’ they suggested use of the 
critical values of W ’ .

Stephens in Chapter 5 of this book discusses use of

Z (X ,c ) = n (l -W ') (9.69)

and supplies a table of critical values for n < 1000 (see Section 5.7.3 and 
Table 5.2 where the statistic (9.69) is written as Z (X ,m )). Royston (1982) 
gave an extension of the Shapiro-Wilk test sim ilar to (9.69) for n < 2000. 
He presented a statistic for the form

( I - W ) (9.70)

\ is a function of sample size.

9 .3 .4.5 Other Extensions/Modifications of the 
Shapiro-Wilk Test

A number of other Investigators have considered extending and modifying the 
Shapiro-Wilk test. Most noticeable are the works of Filliben (1975) and 
La Brecque (1977). Filliben's test is exactly the correlation coefficient be
tween the ordered observations X(i) and the order statistic medians Mi from  
the standard normal distribution. It can be viewed in the context of the last 
section (9 .3.4.4 ) where the weights a of the W  statistic are replaced with 
functions of medians of the order statistics. Filliben gives weights and sig
nificance levels for n < 100.
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La Brecque (1977) extended the W  test by augmenting (9.50) to detect 
nonlinearity in normal probability plots. The reader is referred to Section
5 . 10.1 for a further comment on this text.

Also of interest here is the work of Puri and Rao (1976). They wrote 
the expected value of the ith order statistic as

E (X _J  = у  ̂  + y « (c .
 ̂ (i)' ^l i ^ )+V 4 (C j MĈ ) + (9.71)

where \  and д were selected so as to provide orthogonal polynomials. When 
the underlying distribution is normal y^ = Уг = o-» Уз = У4 = • ’ • = 0. The 
Shapiro-Wilk test is basically the test у 2 = o". Purl and Rao investigated if 
a better test can be developed by Incorporating у 3 and у 4 into the test. They 
ultimately concluded tests using jointly W  and a skewness test would be more 
efficient for testing normality versus skewed distributions ( i . e . , Ф 0) 
and a test using jointly W  and a kurtosis type test would be more efficient for 
testing normality versus distributions with nonnormal kurtosis ( i . e . , /З2 ^  3 ) .  

More on other extensions of the W  test are given in Chapter 5.

9.3.5 Miscellaneous Tests

There is a plethora of other tests of normality too numerous to mention in 
detail. Some selected ones we now discuss briefly.

9 . 3 . 5 .1  Locke and Spurrier^s U Statistic Test

Locke and Spurrier (1976, 1977) used the theory of U-statistics to develop 
tests of normality. They showed that both the ^/bl test and D^Agostino^s D 
test can be generated from this theory. They also developed other new tests.

9.3.5.2 The Gap Test

Andrews, Gnanadesikan, and Warner (1971, 1972) developed gap test for 
normality. Gaps gi are defined as

_ ^(1+1) '  ^ (i)
° i  C - C

(i+1) (I)
(9.72)

where c(j) are the expected values of the ith order statistics from the standard 
normal distribution. If the null hypothesis of normality is true, the g  ̂of 
(9.72) are independent exponential variables. Specific types of deviations 
from normality reflect themselves in deviations from exponentiality of the gj. 
Andrews et al. gave an omnibus test for normality that is distributed under 
the null hypothesis approximately as a chi square variable with two degrees 
of freedom.



402 D^AGOSTINO

9.3.5.3 Likelihood Ratio Tests/Specific Alternatives

Dumonceaux, Antle, and Haas (1973) looked at the theory of likelihood ratio 
tests to develop tests of normality versus some specific alternative distri
butions (Cauchy, Exponential, and Double Exponential). Crlticalvalues of 
the tests are given. For the double exponential the likelihood ratio test is 
sim ilar to Geary's a of Section 9 .3 .3 .4 .1 . Hogg (1972) presented the family 
of distributions of the form

- Ix I
в

f(x; 0 ) =
2Г ( - 1)

(9.73)

For 0 = 2 , X is normal, for 0 = 1 , x is double exponential and as 0 — » ,
X  tends to the uniform distribution. For testing 0 = 0̂  versus 0 = 02,
Geary's a test is shown to have optimal properties for 0i = I versus 02 = 2 
and for testing 0̂  = 2 versus 02 = 4, the b2 test has optimal properties.

9 .3.5.4 Tiku's Tests

Tiku (1974) presented tests of normality based on the ratio of estimates of cr 
from trimmed samples to the sample standard deviation. These tests are 
suitable for specific alternative hypotheses in terms of skewness of the alter
native. Percentage points are given.

9 .3 .5 .5  Spiegelhalter' S Combination of Test Statistics

Spiegelhalter (1977) used the theory of most powerful location and scale 
Invariant tests to develop tests of normality against the uniform and the 
double exponential distributions. He then suggested the sum of these two as 
a combined test statistic. A Bayesian argument was presented to justify the 
combination. As3ntnptotically the two components are equal to Geary's a test 
of (9.46) and the David, Hartley, and Pearson u test of (9.49). Critical 
points were given in the article for n < 100 for level of significance 0.05 
and 0 . 10 .

9 .3 .5 .6  Other Tests

Other tests of interest are the tests based on the Independence of the sample 
mean and standard deviation (Line and Mudholkar, 1980), the test based on 
the empirical characteristic function (Hall and Welsh, 1983) and the squeeze 
test (Burch and Parsons, 1976). The term squeeze was derived from the 
method used to perform the test, whereby data points plotted on the appro
priate probability paper are squeezed between parallel ru les.
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9.4 COMPARISONS OF TESTS

9.4.1 Power Studies

There are a large number of tests for judging normality or departures from  
normality. There is no one test that is optimal for all possible deviations 
from normality. The procedure usually adopted to investigate the sensitivity 
of these tests is to perform power studies where the tests are applied to a 
wide range of nonnormal populations for a variety of sample sizes. A number 
of such studies haye been undertaken. The major ones, in order of complete
ness and importance, are Pearson, D*Agostino, and Bowman (1977), Shapiro, 
Wilk, and Chen (1968), Saniga and Miles (1979), Stephens (1974), D*Agostino
(1971), Filliben (1975), and D*Agostino and Rosman (1974). Other useful, 
but less major, studies are Dyer (1974), Prescott (1976), Prescott (1978), 
Tiku (1974), and Locke and Spurrier (1976).

Presentation of the results of the above power studies produces a number 
of difficulties. In order to be most informative we will first present results 
Indexed by skewness { • ^ i )  and kurtosis {ß 2 ) and then indexed by specific 
tests. The form er comparisons are mainly from Pearson et al. (1977). The 
latter are summarized from all of the above articles.

9.4.1.1 Power Results for Skewed Alternatives (n/̂ , Ф 0)

The Shapiro-Wilk test (Section 9.3 .4 .1 ) and the Shapiro-Francia extensions 
(Sections 9 .3 .4.3 and 9.3.4.4 ) are very sensitive omnibus tests against 
skewed alternatives (H^ : Nonnormality with Ф 0 ). For many skewed alter
natives they are clearly the most powerful. When we have prior grounds for 
believing that, if the population is not normal, it w ill be positively skewed 
{sjß^ > 0), directional tests are very powerful. Directional tests refer here 
to the \ibi test (Section 9.3.3.1 ) based on the upper tail of its distribution 
and the R test (Section 9 .3 .3 .3 .1 ), employing a one-sided test and a 
two-sided Ьз test. For negatively skewed alternatives {^íßl < 0) the lower tail 
of N/bj should be employed.

9.4.1.2 Power Results for Symmetric Distributions 
with Nonnormal Kurtosis {ß y Ф 3)

9 .4 .1 .2 .1  Platykurtic alternatives (g, < 3)

When the omnibus tests are applied without directional knowledge of the 
alternative distribution, there is very little to choose between the powers 
of (Section 9 .3 .3 .3 .2 ) and the R test (Section 9 .3 .3 .3 .1 ) when applied to 
platykurtic populations. The Shapiro-Wilk W  test is on the whole more power
ful than these. The D ’Agostino D test (Section 9.3.4.2 ) does not fit consist
ently in the comparison. In general tnere is usually some other test more 
powerful than it.

When knowledge of the direction of ß 2 is known {ß2 <  3 ), the lower tail Ьз 
is more powerful than the , R, W , and D tests.



404 D’AGOSTINO

9. 4. 1 ■ 2 > 2 Leptokurtic alternatives (/3» > 3)

The powers of the omnibus tests are broadly in the following order of 
descending power: K^, R, D, and W . For very long tailed populations (e .g . ,

> 36), D ’Agostino’s D test is best.
When = 0 and ^2 > 3 is the known direction of the alternative, there 

is no clear preponderance of the upper tail b 2 over the lower tail D ’Agostino’s 
D test. However, these tests are more powerful than the omnibus test K^, R , 
D, and W .

9 .4 .1.3 Power Results for Specific Tests

1. The Shapiro-Wilk W  test and the Shapiro Francia extension are very 
sensitive omnibus tests. For many skewed populations they are clearly the 
most powerful. When = O and /?2 > 3 a number of other tests are more 
powerful.

2. N/bj and b 2 have excellent sensitivity over a wide range of alternative 
distributions which deviate from normality with respect to skewness and 
kurtosis, respectively. As n gets large the N/bj test has no power for symmetric 
alternatives. When directional information is available (e .g . , sjßi > O or
ß 2 <  3) appropriate one sided versions of these tests are very powerful. In 
most cases studied in the literature they are usually most powerful.

3. The D ’Agostino-Pearson of Section 9 .3 .3 .3 .2  or because of its 
equivalency to K^, the Bowman-Shenton Kg of Section 9 .3 .3 .3 .3  are sensi
tive to a wide range of nonnormal populations. They can be considered omni
bus tests. For skewed alternatives the Shaplro-Wilk W  test is usually more 
powerful. Also for symmetric alternatives with ß ^ <  the W  test is often 
more powerful. For symmetric alternatives with ß ^ >  Zy is often most 
powerful.

A . The R test of Section 9 .3 .3 .3 .1  is also an omnibus test. Its power 
usually does not exceed that of .

5. The most powerful EDF test appears to be the Anderson-Darling A^ 
(Section 9 .3 .2 .2 ). It is at times presented as being sim ilar in power to the 
Shapiro-Wilk W  test. However, it has not been studied as extensively as 
either the moments tests or the regression tests. More power studies are 
required to compare it more fully to the W , K^, R, and D ’Agostino’s D tests.

6. While D ’Agostino’s D test is an omnibus test it has best power for 
distributions with /?2 > 3. Other tests are better than it for skewed alter
natives.

7. Geary's a test (Section 9 .3 .3 .4 .1 ) has good power for symmetric 
alternatives with ß^ Z * However, b2 is usually better. For skewed alter
natives W  is generally superior.

8. Kolmogorov-Smirnov test has poor power in comparison to the many 
tests described in detail in this chapter.

9. Chi-Square test is in general not a powerful test of normality.
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9.4*2 Effects of Ties Due to Grouping

Results of power studies are not the only means for judging or comparing 
the normality tests. In practice the data may often involve ties, either be
cause available figures have been rounded for grouping purposes or because 
measurements cannot be carried out beyond a certain degree of accuracy.
It may not be desirable to reject the null hypothesis just because the data 
contain these ties or are grouped. Use of the data as if the underlying popu
lation were normal may not present any problems if the true population is 
approximately normal and the resulting data contain ties. (Research is 
needed on this point.) Pearson et al. (1977) investigated the effect which 
ties and the grouping of data have on four tests or normality, ^ I b i , D, W , 
and W*.

For judging the effect what matters is the ratio, say Í ,  of the standard 
deviation of the distribution to the rounding interval, i . e . , the interval be
tween the nearest possible readings or observations left after rounding. 
Pearson et al. (1977) considered the effect of grouping on ^ I Ь l , and W  for 
i  = 3, 5, and 10 and n = 20 and 50, and for D and W* for f = 3, 5, 8, and 10 
and n = 100. The present author also considered ^/bl for n = 100, D for 
n = 20 and 50, and Ьз for n = 20, 50, and 100.

The effect of grouping on and Ьз was not significant. That is, group
ing did not produce differences between the actual declared or nominal level 
of significance. The effect on D was to make the test slightly conservative. 
That is, the actual level of significance was slightly sm aller than the de
clared or nominal level. For the W  test the effect was significant for f  = 3 
and 5. Here the actual level of significance exceeded significantly the normal 
level. For H = 10, the effect was minimal. The statistic W* was extremely 
unsatisfactory. Usually the actual level of significance exceeded by substan
tial amounts (e .g .,  30%) the nominal level, even for £ = 10.

The above results suggested that or its derivatives as given in Sec
tions 9.3.4.4 and 9 .3 .4 .5  and Chapter 5 must be used with caution if there 
are multiple ties.

Pearson et al. (1977) did not consider the effects of ties on the EDF 
tests. Until the effects are investigated they should be used with caution on 
data containing ties.

9.5 RECOMMENDATIONS

Attempting to make final recommendations is an unwelcome and near impos
sible task involving the Imposition of personal judgments. Still a set of well 
justified recommendations can be made at this time. We make the following.

I .  A detailed graphical analysis involving normal probability plotting 
should always accompany a formal test of normality. Section 2.4 gives the 
necessary steps for this. It is not clear that standard statistical software 
packages give useful probability plots. However, Chapter 2 explains in detail



406 DAGOSTINO

how to employ the computer for a good graphical analysis« A detailed exami
nation of the probability plot should be undertaken.

2. The omnibus tests, the Shapiro-Wilks W  test and its extensions 
(Sections 9 .3 .4 .1 , 9 .3.4 .3 , and 9 .3 .4 .4 ), the D^Agostino-Pearson test 
or the Bowman-Shenton version k | (Sections 9 .3 .3 .3 .2  and 9 .3 .3 .3 .3 ), and 
the Anderson-Darling edf test A^ (Section 9.3.2.2 ) appear to be the best 
omnibus tests available. The Shapiro-Wilk type tests are probably overall 
most powerful. However, due to the problem with ties (Section 9.4.2) and 
the fact that it gives as a by-product no numerical indications of the nonnor- 
malily, the test based jointly on the very Informative NZb̂  and Ьз statistics 
may be preferred by many. The ^ Ib i and Ьз statistics can be very useful for 
indicating the type of nonnormality. Also they can be useful for judging if 
nonnormality will affect any inferences to be made with the data (e .g . , if
a t test is to be applied to the data or a prediction is to be made).

3. The R test (Section 9 .3 .3 .3 .1 ) and D*Agostino^s D test (Section
9.3.4.2) can be used as omnibus test. They are convenient and easy to use. 
The tests of point 2 are probably more powerful.

4. If the direction of the alternative to normality is known (e .g . ,
> O or /5з > 3), then the directional versions of the ^/bl, Ьз, and D^Agos- 

tino D test should be used.
5. For testing for normality, the Kolmogorov-Smimov test is only a 

historical curiosity. It should never be used. It has poor power in comparison 
to the above procedures.

6. For testing for normality, when a complete sample is available the 
chi-square test should not be used. It does not have good power when com
pared to the above tests.

9.6 TESTS OF NORMALITY ON RESIDUALS

Chapters 4 and 5 discussed the application of edf and regression tests on 
residuals. Much of that discussion involved tests of normality. The reader 
is referred to those chapters. Anscombe and Glynn (1983) also discussed the 
application of Ьз on residuals. These attempts only represent the beginnings. 
There is much research that needs to be done.

By residuals we mean the following. A mathematical model of the form

Y = f ( ^ ,X )+ € (9.74)

is under investigation. X represents a vector of variables, ß a vector of 
unknown, to be estimated, coefficients, Y  represents the unknown dependent 
variable, and c represents a random error. Based on a sample size n, the 
ß are estimated by ß and the residual for each observation is defined as

€4 = Y i -  Y,. (9.75)

where
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Y. = H ß ,  X )̂ (9.76)

for i = I , . . . »  n. Intuitively if the sample employed to estimate the ß con
iste of a large number of observations in comparison to the dimension of 
the î^, then the tests of normality given in Section 9.3 above applied directly 
to the residuals of (9.75) should be approximately correct. This being the 
case even if no adjustments are made for the statistical dependencies among 
the residuals and the unequal variances that usually exist with residuals. 
Unfortunately the correct implementation of this intuition needs substantial 
work. We now discuss two attempts at its implementation.

9.6.1 R esidua lsfrom aL inearR egression

White and MacDonald (1980) considered the linear regression model

Y  =  W x + €  (9.77)

and the residuals

€ = Y  - Y  (9.78)

Here n Independent o b se rv io n s  are drawn and the resulting design matrix 
is of full rank. The vector ß is of dimension k.

White and MacDonald showed that under general conditions the N/bj, Ьг, 
D ’Agostino’s D, and Shapiro-Francia W ’ tests computed on the residuals 
^1 » ^2» •••» ^n bave as3nnptotically the same distributions as if computed 
on n independent identically distributed normal errors e in (9.77). Further 
for n = 20, 35, 50, and 100 they performed simulations to judge the effects 
of using the residuals on the null distributions of the test statistics N/bj, Ьз,
D, R, W , and W ’ . They also examined how the statistics behaved for nonnor
mal e r ^ r s  € in model (9.77). For all this simulation the dimension к of the 
vector ^  was 4.

In general they showed that for the cases examined computation of the 
tests on the residuals did not invalidate them. Overall, D ’Agostino’s D test 
produced the best agreement between the test based on the correlated resid
uals of (9.78) and the one on the independent errors of (9.77), ^ÍЪl and Ьз 
exhibited the next best behavior, followed by W ’ and W .

Weisberg (1980) in a comment article to the White and MacDonald (1980) 
article emphasized that their results were limited and that n, the sample size, 
k, the dimension of ß and V, the design matrix, can all influence the validity 
of the tests of normality on residuals from a linear regression analysis. He 
demonstrated this with examples for n = 20 using the W  test. Unfortu
nately n = 20 and the W  test comprised the weakest combination in the White 
and MacDonald work. It would have been better had he examined the R or D 
tests.
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Appropriate practical advice here seems to be that n should be large 
(say n > 50) and к reasonably small (e .g . , 5 or less) before the formal signif
icance levels of the tests on residuals can be taken as appropriate. Further 
work is needed to clarify the real Impact of varying k, n, and the design 
matrix.

In applying the results of White and MacDonald it should be emphasized 
that the computations of the test statistics and the corresponding table look
ups to determine statistical significance are carried out directly on the n 
residuals as if they constituted an independent sample of size n. No adjust
ments are made for k. Also note because the mean of the residuals is zero, 
in ^Tbi and b2 the sample mean need not be езфИсШу computed for them.

9.6.2 Residuals from an Autoregressive Model

Alexa Beiser (1985) in an unpublished work has considered first order auto
regressive models of the form

y  ̂ = m + p (Y^_i - ai) + €^ (9.79)

where are Independent normal variables. She has shown that the N/bj and b2 
computed on the residuals produce valid levels of significance for n > 50 
and P < 0.9. In fact, this procedure appeared to be more appropriate than 
computing N/bi and b 2 on directly Incorporating adjustments for the de
pendencies of the observations.

In her work the p of (9.79) is estimated as

P  =

t  (Y .-Y H Y  -Ÿ )
t=2

where

n

Z
t=l
Z  (Y t - Y )

11

2 " .
= P

The statistics N/bj and b2 are computed on the n -  I  residuals 

^  = (Y , -Y ) -3 (Y ^ _ ^ -Y ) (9.80)

for t = 2, . . . ,  n. Note the tests are employed as if a sample of n -  I is 
available, not n.
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9.7 MULTIVARIATE NORMALITY

An excellent review article exists for tests of multivariate normality 
(Gnanadesikan, 1977). We w ill not attempt to discuss these tests in the detail 
given in that treatment. Rather this section w ill only be a brief overview.

9.7.1 Univariate Tests for Marginal Normality

In practice one rarely performs solely a multivariate analysis. Rather, a 
m^oltivariate analysis is usually one stage in an analysis to be supplemented 
by univariate analyses considering each variable separately. These uni
variate analyses often can detect sufficiently what the multivariate analysis 
contains. At times they are more informative due to their specific attention 
to each variable. In that view, although normality of each marginal variable 
does not imply joint normality, the presence of many types of nonnormality 
is often shown in the marginal distribution. Also if there is multivariate nor
mality then necessarily each marginal distribution will be normal. Detection 
of one marginal that is nonnormal indicates the multivariate distribution is 
nonnormal.

Given the above, it is reasonable to test each marginal distribution using 
the univariate tests discussed in Section 9.3 and recommended in Section9.5. 
In order to guard against an inflation of the Type I e rro r it is probably sen
sible to use Bonferronl^s inequality for determining the overall level of sig
nificance. Thus if we had a p dimensional distribution under consideration, 
each marginal should be tested at the

О'/p

level of significance. Here a. is the desired overall level of significance.
For example, if p = 5 and we desired to have an overall ol = 0.05, then each 
marginal should be tested at the 0.05/5 = 0.01 level of significance.

In these assessments of marginal normality normal probability plotting 
should be employed.

9.7.2 Generalization of Univariate Procedures

9.7 .2 .1  Mardia^ s Tests

Mardia (1970) proposed tests of multivariate normality via multivariate 
measure of skewness and kurtosis. These moments have the maximum effect 
on the distribution of Hotelling^s T^ under nonnormality (Mardia, 1975).

Let X i , . . . ,  Xn be a random sample of vectors of p components from 
a population with mean vector д and covariance matrix Z  . Suppose X and S 
denote the sample mean vector ап-̂  covariance matrix, respectively. Mardia 
based his test on the following measures of multivariate skewness and 
kurtosis.
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b = \  Z Z.rf.
I . P ц2 i J ц

and

к -  i  V  ,.2b_ ” S r . .
2,P n i 11

where

Гц = (Xj -  ÍQ’s ' \ x .  -  X)

(9.81)

(9.82)

(9.83)

Here X is the mean vector and S, the sample covariance matrix. Significant 
points obtained from simulations are given in IVbrdia (1970) and Mardia 
(1975). Mardia and Foster (1983) discussed omnibus multivariate tests based 
on bi^p and b2,p.

9 .7 .2 .2  Malkovich and Afifi^ s Tests

Malkovich and Afifi (1973) proposed multivariate skewness and kurtosis tests 
using Roy’s union-intersection principle. Multivariate skewness was given 
by them as

^ (ELc'.:?L--cV )? )!
(var(c 'X ))’

and multivariate kurtosis by 

(v a r (c ’X))2

(9.84)

(9.85)

for some vector c. Roy’s principle could lead naturally to appropriate rejec
tion rules. These were in the forms reject for skewness if

m ax{/3i(c)} > ki

where kj produced an a  level test and reject for kurtosis if 

max ( /^ 2 (C )) or min (/^2 (0 ) )

(9.86)

(9.87)

fall outside the interval (к2,кз) where these k’s produce an a  level test.
Machado (1983) found the asymptotic distributions of the statistics in 

(9.86) and (9.87) for p = 2, 3, and 4. As with the univariate case, the statis
tics approach their asymptotic behavior very slowly. Machado used the 
D ’Agostino ^ГЬl suggested Johnson Su approximation for (9.86) and the 
Anscombe and Glynn b 2 approximation for (9.87) to obtain null distributions
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valid for n > 25 and p = 2, 3, and 4. However, he mentioned overestimation 
for n < 100 and underestimation for n > 100. He did not give any corrections. 
More details or work are needed here.

Malkovlch and Afifi (1973) also suggested a multivariate generalization 
of the Shapiro-Wilk W  test.

The tests of Malkovich and Afifi appear to require considerable compu
tation.

9.7.3 Solely Multivariate Procedures

9.7 .3 .1  Directional Normality

Andrews, Gnanadesikan, and Warner (1971) defined the scaled residuals as

Z. = S"^(X. -  X )
I ' I ' (9.88)

for i = I, . . . ,  n where S ^ is the symmetric square root of the covariance 
matrix S. They also defined a normalized weighted sum of the

S.w.Z^
X  =  ̂  ̂ ^
a llEjW.Z.II (9.89)

Here d^ is a vector.

Ŵ  = IIZjII (9.90)

IIZI I  denotes the Euclidean norm, or length of the vector X, and a is a con
stant to be chosen.

For^a = -1, d^ is a function only of the orientation of the Zi^s, while for 
a = I, da becomes sensitive to the observations distant from the mean. More 
generally, for a > 0 the vector da will tend to point toward any clustering of 
observations far from the mean, while for a < 0, the vector d^ will point in 
the direction of any abnormal clustering near the center of gravity of the 
data. I

Therefore, d* = d^ for a given value of a, can be regarded as a uni
variate sample. Any univariate test of normality can now be employed. The 
value of a can be selected to be sensitive to certain types of nonnormality. 
Because of the data-dependence of the approach, the procedure can only be 
used as a guide. The formal significance levels do not apply.

9.7.3 .2  Radius and Angles Decompositions 

Consider again the scaled residuals
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Z. = S"^(X. -  X ) 
1 1

(9.91)

D'AGOSTINO

for i = I , . ., n. Under the null hypothesis, the scaled residuals are approx
imately spherically symmetrically distributed. The squared radii, or squared 
lengths of the Z f

r f  =  ZlZ^ = (X. -  x ) 's " \ x ,  -  X )
i

(9.92)

will have approximately a chi-squared distribution with p degrees of freedom. 
Here P is the dimension of Z . For the bivariate case, define % to be the 
angle Zi makes with a prescribed line. The ^  are then approximately uni
formly distributed on (0,2тг) under the null hypothesis and the ri and % are 
approximately independent. For moderate sample sizes the dependence 
should be negligible. Probability plots of the r i and 0i can be used to evaluate 
multivariate normality.

9 .7 .3 .2 .1  Bivariate case

Order the n squared radii r^^  ̂< • • • < r^^  ̂ and plot these against the

corresponding expected values for the cdf from a chi-square distribution 
with two degree of freedom. Similarly for ^/2тг plot the ordered values 
against the expected values of the cdf of a uniform distribution. Both of these 
plots should be linear under the null hypothesis of normality.

9 .7 .3 .2 .2  Higher dimensional data (p > 2)

For higher dimensional data the appropriate chi-square distribution for 
the squared radius plot is the chi-square with p degrees of freedom. For the 
angles there are p -  I plots. See Andrews et al. (1974) for details of these 
plots.

9 .7 .3 .3  Other Procedures

There are still other procedures for testing multivariate normality. Some of 
these are:

1. The nearest distance test of Andrews et al. (1974),
2. The maximum curvature test of Cox and Small (1978), and
3. The Dahiya and Gurland (1973) generalized minimum chi-square tech

nique applicable for bivariate normality.

9.7.4 Power of Multivariate Normality Tests

Very little has been done by way of power studies for multivariate normality 
tests. MaIkovich and Afifi (1973) have undertaken a small study. More is 
needed.
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9.7.5 Recommendations

It is inappropriate at this stage to give detailed recommendations. Much 
more research is needed. A ll the procedures reviewed above have merit. 
Personally we have found the univariate tests for marginal normality (Sec
tion 9.7.1) in conjunction with Mardia^s test (Section 9.7.2.1 ) to be very 
useful. For bivariate normality the radius and angle procedure of Section
9 .7 .3 .2 .1  has good merit.
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Tests for the Exponential Distribution
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10

10.1 INTRODUCTION AND CONTENTS

The е?фопеп11а1 distribution is probably the one most used in statistical work 
after the normal distribution. It has Important connections with life testing, 
reliability theory, and the theory of stochastic processes, and is closely 
related to several other well-known distributions with statistical applications, 
for example, the gamma and the Welbull distributions.

The general form of the exponential distribution is

F(x; 0-,/3) = I -  exp { - (x  -  0-)//3 } , x > a  , (10.1)

where ot and ß  are constants, with ß positive. The notation E ^ (a ,/3 ) w ill be 
used to refer to F(x; a , ß ) ,  or to a sample from it, and o¿ w ill be called the 
origin of the distribution; the mean of Exp (a , ß )  is o¿ +  ß and the variance 
is If a random sample Xx, . , X¿ is Exp(o',/3), the ordered sample
^ ( 1) < ^ (2) < • • * < ^  ^  ^  ordered Е ^ (о :,)3 ). As in other
chapters, the notation U (0 ,1) will refer to a uniform distribution from 0 
to I, and a sample from U (0 ,1) w ill be called a uniform sample or, if placed 
in ascending order, an ordered uniform sample.

In this chapter we discuss tests of the null hypothesis that a random 
sample Xx, • . . ,  Xn is E x p { a , ß ) ^  with possibly c¿, or ß ,  or both, unknown. 
This gives four possible cases:

Case 0: where a  and ß are both known;
Case I: where a  is unknown and ß is known;

421



422 STEPHENS

Case 2 : where a  is known and ß is unknown; 
Case 3: where both a  and ß are unknown.

The null hypotheses corresponding to these four cases w ill be called Hqq ,
Hqi 9 Hq2 9 and Hqj .

Case 0 can be easily handled: the Probability Integral Transform (PIT, 
Section 4.2.3) gives n values Zj = F(Xi; which, on Hqq , are uniform
U (0 , 1) and these can be tested by any of the methods of Section 4.4 or Chap
ter 8 . An example of a Case O test for exponentiality is given in Section 4.9. 
The data are the 15 values of X, given in Table 10.1, and are times to failure 
of airconditioning equipment in aircraft, given by Proschan (1963). We shall 
use these data throughout the chapter to illustrate test procedures.

Mathematical properties of the exponential distribution can be used to 
change Case I to Case 0 , and to change Case 2 and Case 3 to the special test 
of Case 2 with о = 0 . Most of the tests in the literature have been proposed 
for this situation, so we shall reserve the notation Hq for the hypothesis:

Hq : a random sample of size n comes from Exp (0, /3 ), with ß unknown

Tests for this hypothesis are those discussed throughout most of this chapter, 
although we return to Case 3 in Section 10. 14.

A large number of test procedures have been given for Hq . One reason 
for this is that, again because of mathematical properties of the e^x>nential 
distribution, it is possible to transform a sample of n X-values from  
Exp (0,/3) in several useful ways; one transformation (N below) takes the 
sample to a new n-sample X* which is also E x p  (0,/3), and another transfor
mation (J) takes X to a set of n -  I ordered uniforms U . Further, J can be 
applied to the X* set, to give a set of n -  I uniforms U*; we call the conver
sion of X to the K-transformation on X. Thus tests of Hq on X can become 
tests of Hq on X ’ , or tests of uniformity on U or on U*. Furthermore, the 
different transformations have useful interpretations, depending on the orig 
inal motivation for testing the X sample, and on the alternative distributions 
to E x p  (0,/3) that the X might have. Two of the most important applications 
of Exp (0,/3) variables are to modelling time intervals between events, or 
to modelling lifetimes, or times to failure, in survival analysis and reliabil
ity theory. A particular application will tend to lead to a particular group of 
tests. In a general way, the J transformation, and various tests on U, will 
arise naturally in connection with a series of events, and the N and K trans
formations , with tests on X̂  or on U ’ , will arise in tests on lifetimes. This 
is partly because the properties of X̂  and are influenced by whether or 
not the true distribution of X, if not exponential, has a decreasing or increas
ing failure rate.

The overall plan of this chapter is therefore as follows. After a section 
on notation, we show how other cases are reduced to Case 0 or to a test of 
Hq . The applications of the exponential distribution are discussed, and fo l-
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TABLE 10.1 Set of Observations X  and Derived Values

423

T U® d " X-®

74 74 .041 .041 180 .099
57 131 .072 .031 126 .17
48 179 .098 .026 65 .20
29 208 .114 .016 12 .21

502 710 .390 .276 22 .22
12 722 .397 .007 0 .22
70 792 .435 .038 171 .32
21 813 .447 .012 72 .36
29 842 .463 .016 14 .36

386 1228 .675 .212 66 .40
59 1287 .708 .033 20 .41
27 1314 .722 .014 316 .58

153 1467 .806 .084 519 .87
26 1493 .821 .015 120 .94

326 1819 1.000 .179 116 1.00
1819 1819

^Times to failure of air conditioning equipment for an aircraft.
^Partial sums of X¿ (Section 10.4).
^Values of T divided by the largest value (1819), i . e . , values U derived
from X by  the J-transformation (Section 10.5).
^Spacings between the U-values.
^Normalized spacings given by the N transformation (Section 10.5). 
^Values U* obtained from X*, by the J transformation, or from X by the K 
transformation (Section 10.5).
Data taken from Proschan (1963), by permission of the author and of the 
American Statistical Association.

lowed by the details of the N, J, and K transformations, and some of their 
properties. Then we turn to tests of Hq • With the potential applications in 
mind, these are roughly grouped into three groups, as follows: Group I, 
those applied to X; Group 2 , those applied to U; Group 3, those applied to 
X  ̂or to U4 The tests for the three groups occupy Sections 10.7 to 10. 1 1 .
The test statistics discussed are almost always presented in the context in 
which they were first suggested, although, obviously, any test first suggested 
for the X set could equally be applied to set X \  and vice versa. There will 
be some inevitable overlap with other chapters, particularly Chapter 8, con
taining tests for uniformity. A few statistics are repeated in Chapter 8 (they 
differ slightly because in Chapter 8 it is natural to calculate the statistics 
from n uniforms, but in this chapter they are found from m = n - 1 uniforms).
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One group which is treated mainly in this chapter are tests based on spacings 
between uniforms since such spacings are exponentials and these tests have 
arisen mostly in connection with tests of Hq •

If a general random sample is given, with no details as to context, and 
a test of Ho is required, the question of making a transformation or not be
comes one of obtaining the best power for a test procedure against a class 
of alternatives. Some studies on power of tests are reported in Section 10.13, 
for both omnibus tests and one-sided tests. One feature of these studies is 
that they reveal much similarity in power of many of the test procedures, 
when applied to a general random sample. The user will therefore often be 
guided by personal preference.

The value of a test statistic often gives information on the set from which 
it is calculated, and this in turn may sometimes be interpreted in terms of 
the X-sample. Thus, in modern statistics, it is common practice to calculate 
several statistics, and to use them to analyze features of the given data, 
rather than rigorously to apply significance tests. This approach is taken to 
illustrate the tests, applied to the data set in Table 10. 1 , in Section 10. 12.
In Section 10.14 we return to Case 3 tests.

10.2 NOTATION

The notation used in this chapter, apart from that already described, is 
listed in this section.

X: the original data set, X^, X2 , • . . ,  Xn- i is the index of X^. 

n = size of set X; m = n -  I.

DFR, IFR: decreasing failure rate, increasing failure rate (Section 10.4.5).

DFR (IFR) Sample: a random sample from a DFR (IFR) distribution (Sec
tion 10.4.5).

Cy: coefficient of variation (Section 10.4.5)

Transformations J, K, N: See Section 10.5.

X^: a set of size n, derived from X by transformation N.

U: a set of size m, derived from X by transformation J.

U*: a set of size m, derived from X by transformation K.

E: spacings between exponentials X (Section 10.5.2).

D: spacings between set U (Section 10.9.3).

D ’: spacings between set (Section 10.11.4).

Group I: tests using X (Section 10.8).
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Group 2: tests using U (Section 10.9).

Group 3: tests using X ’ or U* (Section 10.11). 

log X  means loge

Significant tail of a test statistics See Section 10.13.1.

10.3 TESTS FOR EXPONENTIALITYs THE FOUR CASES

10.3.1 Four Results

In this section we show how Case I can be reduced to Case 0, and Cases 2 
and 3 to a test of Hq . These employ the following properties of a sample 
from Езф (01,/3 ).

Result I . If Xi, i = I , . . . ,  n, is a random sample from E x p  { a , ß ) ^  the set 
Y i given by Yi = Xi -  O', i = I, . . . ,  n, is a random sample from Exp (0,/3).

Result 2. If Xi, i = I, . . . ,  n, is an ordered sample from Exp (0^,/3), the 
Y-sam ple obtained from Y^i) = X^i+1) -  Х^ц, i = l ,  . . . ,  n - 1 ,  is an ordered 
sample of size n - 1  from Езф (0,/3). This result can be successively applied 
to give

Result 3. If X(i), i = I , . . . ,  n, is an ordered sample from Exp (0 ,̂/3 ), the 
Z -sample obtained from

= X, - X ^ , ,  I = I, n -  r  , (10.2)

where r  is fixed, l < r < n - l ,  is an ordered sample of size n -  r  from  
Exp (0,/3).

Result 4 . I f X i s  Exp (0,/3), Y =  2X//3 has the distribution.

10.3.2 Tests for Cases I , 2 , and 3

10.3.2.1 Tests for. Case I; o? is not known but ß  is known

For this case. Result 2 above can be used to change the original X-sample 
to a Y-sam ple of size n - 1  which, on Hqi , w ill be Exp (0,/3), with /3 known, 
and the test becomes a Case 0 test on the Y  set.

10.3.2.2 Tests for Case 2; a  is known, and /3 is unknown

For this case, when the known value of a  is not zero. Result I can be used 
to produce a Y-sample which, on Hq2 , w ill be Exp (0,/3). Thus the Case 2 
test with a  known is reduced to a test of Hq , applied to the Y -set.
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10.3.2>3 Tests for Case 3: both parameters unknown

This test, of Н03: that a given set X is from Exp ( a , ß )  with both parameters 
unknown, can be transformed by use of Results 2 or 3 above to a test that the 
Y-set or Z -set is Exp (0,/3), that is, a test of Hq applied to set Y  or to set Z. 
Result 2 will be used if a complete X-sample of size n is available; the Y -  
sample is then of size n -  I . Result 3 will be useful if the first r  -  I ordered 
observations of the X-set are not available, or if, for some reason, they are 
suspected to be outliers.

This use of Results 2 and 3 has been a generally accepted way to handle 
tests with unknown a ,  but it may not be the best way, and we return to tests 
of Case 3 in Section 10. 14.

10.4 APPLICATIONS OF THE EXPONENTIAL DISTRIBUTION

10.4.1 The Poisson Process

Suppose a series of events is recorded, starting at time To = 0; the events
occur at times T^, T 2 , • • • , with Tq < T^ < T 2 < 
intervals between events, X^, defined by

< Tq .̂ Consider the

X. Tj —  ̂ . . . , n

If the events at times Tj are from a Poisson process the variables Xj will be 
independently distributed Exp (0,/3), where /3 is a positive constant. A 
test that the process generating the events is Poisson can therefore be 
based on a test that the intervals X¿ are Exp (0,/S). The Poisson process 
is discussed in many textbooks, see, for example, Cox and Lewis (1966, 
Chapter 2) . If the Tj are recorded on a horizontal time axis, the Xi are the 
spacings between the T j .

10.4.2 Models for Time to Failure

The second application of Exp (0,/3) is to model the lifetime, or time to 
failure, of, say, a piece of apparatus, such as the airconditioning equipment 
for which 15 values of X are given in Table 10.1.

Suppose the item is immediately replaced whenever it fails and let Xj 
be the lifetime of successive items. If times T j are calculated, given by

T = X + X^ + 
n I 2

+ X

these times will be the times of failure for the overall equipment (here an 
aircraft).
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By comparison with the preceding paragraph it may be seen that, when
ever the Xi are Exp (0,/3), the times Ti can be regarded as a realization of 
a Poisson process.

E 10 .4 .2 .1 Example

Values T i, derived from the Xi, are shown in Table 10. 1 .

10.4.3 A Lifetesting Experiment

The lifetimes Xi of equipment in the example above were obtained by using 
the units successively in an aircraft as required. If it is desired to test that 
lifetimes are exponential, the test will be accelerated, if the units are avail
able and expendable, by making a laboratory e^erim ent in which they are 
all put into use at the same time Tq = 0, and times to failure are recorded 
either until all units fail, or until a fixed time T f is reached. Suppose the 
units are numbered I  to n, and let Xi be the lifetime of unit number i; notice 
that in general the labelling of the X^ will be quite arbitrary. Times will be 
recorded as failures occur, and these times give the order statistics.
To < X (I) < X (2) < • • • < T f of the X sample. If only r  items fail in time T f, 
only the first r  order statistics of the sample w ill be known. The sample 
is then said to be right-censored (see Section 4 . 7 and Chapter 12).

^ Note that times T * calculated from the order statistics by T * = X ( i ) ,
T 2 = Х (ц  + X (2), e tc ., will not be times in a Poisson process as described 
in Section 10.4.2 above, because the order statistics of an e:qx>nential ran
dom sample are not themselves exponentially distributed. However, trans
formation Nbelow  changes ordered E x p  { 0 , ß )  variables into random E ^  (0,/3) 
variables, and the above construction can then be used to create times in a 
Poisson process.

10.4.4 Alternative Distributions Used 
in Reliability Theory

In order to compare various test procedures, it w ill be useful first to discuss 
distributions alternative to the exponential, which are used in reliability anal
ysis as models for lifetime data. Two of the most important of these are the 
gamma and Weibull distributions. The most general forms of these distribu
tions are given in Sections 4.11 and 4.12. Here we are interested only in the 
distributions with origin zero. The gamma distribution then has density

fçj(x) = X  e X > о , (10.3)

where m and ß  are positive constants. When the constant m = I , the distri
bution reduces to the exponential. The density is infinite at x = 0 when m < I,  
and is zero when m > I .
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The Weibull distribution, with origin zero, has density

f^ (x ) = ( m / ß ) ( x / ß ) ^ ~ ^  exp{-(x//3)“ } ,  x > 0 ,
mi

(10.4)

with m and ß positive constants. For m < I , the density x = 0 is infinite, 
and when m > I it is zero; when m = I, the distribution reduces to the ex
ponential. In shape the gamma and Weibull distributions are somewhat 
sim ilar.

10.4.5 Properties of Distributions: Coefficientof 
Variation, and Failure or Hazard Rate

Two useful parameters in describing distributions are the coefficient of 
variation Cy, and the failure rate. The Cy is defined as а/д, where д and a  ̂
are the mean and variance of the distribution. A small Cy suggests that the 
variable X has fairly constant values, but a large C y  suggests they will be 
widely spread relative to the size of the mean. For the gamma distribution,

Д = m ß  and = m ß ^ ;  thus C y  = m
The failure rate, or hazard rate, of X, is defined as

h(x) = - ¾ -  ' ' I -  F(X)
X > 0 < (10.5)

where f(x) and F(x) are the density and distribution functions of X, assumed 
continuous. If F(X) is a distribution of lifetimes, the quantity h(x) dx may be 
interpreted as the probability of failing in time dx at x, given that failure 
has not occurred up to x. For the exponential distribution Exp (0,/3), h(x) =/3, 
a constant; for the gamma and the Weibull distributions, the failure rate 
increases steadily with x for m > I, and decreases for 0 < m < I; for m = I 
they both reduce to the exponential distribution with constant failure rate. 
Abbreviations IFR and DFR are commonly used for increasing or decreasing 
failure rate. A distribution with IFR (often called an IFR distribution; a 
sample from such a distribution will be called an IFR sample) will have 
C y  < I, and a DFR distribution will have C y  > I. We can summarize results 
for the gamma and Weibull distributions in the following small table.

Parameter value C
V

Failure rate

m < I Cv > I DFR

m = I (Exp (0,/3) Cy = I Constant = ß

m > I Cy < I IFR
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10.5 TRANSFORMATIONS FROM EXPONENTIALS  
TO EXPONENTIALS OR TO UNIFORMS

10.5.1 Introduction

We now describe the three important transformations which are often made 
to the data set X  under test for Exp (0,)3). These are:

1) transformation N, which transforms an ordered exponential sample 
E x p  ( 0 , ß ) ,  of size n, to a random Езф (0,/3) sample of size n;

2) transformation J, which transforms a random Езф { 0 , ß )  sample of 
size n into an ordered uniform U (0 ,1) sample of size m = n -  I;

3) transformation K, which, like J, transforms a random E x p  { 0 ^ß )  sample 
of size n into an ordered uniform U (0 ,1) sample of size m = n -  I .

10.5.2 The N Transformation from Exponentials 
to Exponentials: Normalized fa c in g s

Suppose Х^ц, i = I ,  . . . ,  n, is an ordered sample from E^> (0,/3), and 
define the spaclngs between the e^qponentials by

= ( i - l ) ’
I — I ,  •• • > n

with X(O) = 0 . The new set X|, defined by 

X| = (n +  I - i )E j ,  i =  I , . . . ,  n

w ill be independently and Identically distributed Езф (0,/3). For more precise  
conditions on this result see, for example, Seshadri, Csörgo, and Stephens 
(1969). This transformation will be called transformation N and we write 
X* = NX. The values x| are called the normalized spacings of the original 
set Xi: Ei has expected value /3/(n + I  -  i), so that i i  = Ei/(expectation 
of Ei) ^ ^ / ß l  the i i  are sometimes called leaps. For further discussion of 
normalized spaclngs see Section 4.20.

10.5.3 The ”Total Time on Test” Statistic

Suppose the transformed sample X  ̂is used to construct a Poisson process 
realization as described in Section 10.4.2:

"  ^ i ’  ^ ^ 2 ’ •••’ '^r = 2
i= l

It may easily be shown that T^ is also, in terms of the original X-values,
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T ' = X + X  +
г (I) (2)

(10.6)

In the context of the lifetesting experiment discussed in Section 10.4. 3, the 
first r  terms on the right side of (10.6) are the times for which the first r  
failed items were working successfully and the last term is the time so far 
spent working by those n -  r  items which have not yet failed. Thus is
interpretable as the total time on test till the r-th failure, 
test items have failed, and then

At time X.(n) = aU

n n
= 2  x:  = X  X =  T

n ^  I ^  i n
i= l i= l

(10.7)

10.5.4 The J Transformation from E:qюnentials 
to Uniforms

A result in Section 8.2 states that the n + I spacings between a sample of 
size n from U (0 ,1) are each E^qp(0,/3) with ß = l/(n + I); the spacings are 
not a random sample, but are conditional on their sum being fixed. This 
being so, a sample of ordered uniforms can be produced from an exponential 
sample as follows:

a) Let X i, X2 , . . . ,  be a random sample from E^> (0,/3), and let

Tj = X¿, j = I, • • • , n.

b) Define = Tj/Tj^, j = I , . . . ,  n -  I .

Result I . The U qj are distributed as the order statistics of a random 
sample U, of size n -  I, from U (0,1).

Note that if the definition were extended to j = n, the value of U(n) would 
be identically I. Thus the transformation produces n -  I  ordered unifoi*ms 
from n original observations; a "degree of freedom" has been lost in elimi
nating the unknown parameter ß .  The above transformation from X to U  will 
be called the transformation J, and we write U = JX. If the T j are the times 
in a Poisson process, as described in Section 10.4.2, the U(i) above are the 
values Tj/Tji, i = I , . . . ,  n -  I.

Result I was obtained by dividing the times in a Poisson process by the 
time of the last event observed. If the process is observed to a fixed time, 
we have a second result:

Result 2. If a Poisson process is observed from time zero to a fixed 
time T f, with n events at 0 < T i  < T 2 < • • • < T^ < T f occurring in that time, 
the values = T^/Tf, i = I, . . . ,  n, will give a sample U of n ordered 
uniforms.
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10. 5.5 The K Transformation from Exponentials 
to Uniforms

A sample of X-values, all positive, could first be transformed to a new set 
by transformation N, and then to a set U* by applying transformation J 

to X ’ . On Hq , the set U ’ will be n -  I ordered uniforms. The combination 
of N and J is equivalent to the following transformation, which we call K.

a) Let Х ц ) < X^2) < • * • < be the order statistics of a sample from

Exp (0 ,ß ) and let T^ = X^, as before-

b) Write X(O) = 0 and let E¿ = X(j) -  ^ ( i - 1)» calculate

, nX  ̂ = (n + I -  i )E .,  i = I ,

c) Calculate Tl = X ! , and U * = T \ / T  , j = I ,  J 1=1 I *  (J) J n •
>, n “ I •

Result« The set U* is a sample of n -  I  ordered uniforms from U(0,1). 
Note also that, from (10.7), Following earlier notation we write
U* = KX.

E 10.5.5 Example

In Table 10.1 the values X̂  are given, obtained by application of transforma
tion N to the set X; also given are the values U and U  ̂ obtained from applica
tion of transformations J and K.

10.5.6 The N and K Transformations with Censored Data

The N and K transformations can be used with a censored sample. When only 
the r  smallest values of the original set X  are available, the r  values 
X \ ,  X2 , . , X^ of set X* given by the N transformation can still be obtained;
the J transformation can be applied to these to produce r  -  I  ordered uni
form s. This is equivalent to the following useful result. Suppose we calculate, 
using the notation of Section 10.5 .5 , values

.........

Result. The set U  ̂ is a complete sample of r  -  I ordered uniforms 
from U(0,1).

Also, since the X[ are a random sample from Exp(0,/3), the value of 
Xj)/r = TVr gives an estimate of ß ;  this estimate is often used with

censored data.
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10 о 6 TEST SITUATIONS AND CHOICE OF PROCEDURES

10.6.1 General Comments

The decision whether or not to test Hq directly on the X-set, or to use one 
of the transformations to X ’ or to U or U*, is related to the three test situ
ations: tests on a general random sample, with no particular context given, 
tests on intervals between events (where the indexing of the intervals might 
be important), and tests on lifetimes. We first observe an important differ
ence between transformations J and K: the J transformation preserves the 
original indexing of the X i, while the K transformation does not—that is to 
say, in making transformation K (or N) the Xi are first put in ascending 
order, and the original labelling is irrelevant. Most tests based directly on 
the Xi (Group I below) will also involve putting them in order and losing the 
original indexing.

In tests on a series of events, the original indexing will probably be 
Important—for example, one wants to know if the intervals are getting longer 
or shorter as time passes—and then more Information will be given by using 
J followed by tests on U.

On the other hand, when the labelling of the Xi is not important there 
are some disadvantages to J. Consider, for example, the lifetimes of equip
ment in the laboratory experiment described in Section 10.4 . 3. There is no 
significance (presumably) in the index I attached to lifetime X i, and so 
different statisticians could label the X-set differently; when this is done the 
J transformation will produce different values U, and when tests for uniform
ity are applied to the U-set, different conclusions will be reached.

In contrast, use of the K transformation gives always the same set U\  
and tests based on U' will, for all statisticians, give the same results. The 
same holds true of tests based on the X̂  themselves, and of those tests on 
the X-set, such as EDF or regression tests, where the observations are 
first ordered. This invariance is usually considered a desirable property 
for a test procedure.

Another feature of J is that it can produce superuniform U, that is, a 
set U which is too evenly spaced to be considered uniform (see Sections 8 . 5 
and 4 .5 .1 ). This will occur, sometimes, when the X-set comes from an IFR  
alternative. Many test procedures are not set up to detect superuniforms; for 
example, EDF tests or regression tests using the upper tail (as is customary) 
will not detect them. Several of the test statistics to follow will detect super- 
uniforms, or EDF tests or regression tests may be used with the lower tail, 
but then power is lost when the tests are used with two tails against DFR  
alternatives.

The K transformation produces U ’ values which will never typically be 
superuniform; in fact, they will drift toward 0 for DFR samples and toward I 
for IFR samples, so the pattern of the U ’ set gives information about the 
alternative. Finally, K may be used on a censored sample. For these reasons 
K is recommended rather than J to apply to a general random sample. These
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points were discussed further by Seshadri, Csorgo, and Stephens (1969), 
and we return to them again when we discuss power in Section 10.13.

We now pose two contrasting questions: why transform the data at all 
or, at the other extreme, why not apply several transformations, one after 
the other ?

In considering these questions, when the indexing is not important, the 
tester will be most interested in getting good power for a test procedure, 
with possibly a particular class of alternatives in mind. We shall see in 
Section 10.13 that, in practice, tests on the original set X, and tests on U*, 
often give much the same power; furthermore, some tests on X also give 
Information on the parent population (IFR or D FR ).

On the other hand, if K = JN is a good thing, why not apply, say, N  
several times to X, to get sets X ’ = NX, then X ’ = NX’ = NNX, etc ., and 
test the final set for exponentiality ? Equally, one could apply G and W  
(uniforms-to-uniforms transformations given in Chapter 8) to uniforms U  
or U ’ , to obtain data sets represented symbolically by, for example, = 
GGJX, or U 3 = WGJX, or U4 = GWGJX, all of which, on Hq , should be uni
form and can be tested by the methods of Chapter 8. One good reason for 
not repeating such transformations as G and W  ad absurdum must be that 
they will appear to a practical statistician to be arbitrary and unmotivated, 
and to produce data sets which are far removed from the original X; then 
if Ho is rejected, because, say, the final data set has too many values close 
to zero, it will be difficult or impossible to interpret this phenomenon in 
terms of properties of the original X set. Other practical reasons exist too; 
it is pointed out in Chapter 8 that application of G to a nonuniform set may 
often increase power of a subsequent test for uniformity, but repeated appli
cations may decrease it. No doubt for these reasons tests of Hq in the liter
ature, such as those given below, have been confined, if a transformation of 
this 1зфе is used at all, to one application of N, J, or K. Some tests involving 
the set X ^  = WX, that is, one application of W  to X, have been discussed by 
Wang and Chang (1977). Other aspects of transformations have been discussed 
by O ’Reilly and Stephens (1983); there are interesting connections between 
the CPIT of Chapter 6 and transformations J, K, G, and W^

We now discuss in greater detail tests on events and tests on lifetimes.

10.6.2 T estso n aS e rle so fE ven ts

It has been suggested above that in tests on events, the natural index of X¿ 
will play an important role. Consider tests for thê  Poisson process, against 
the alternative of trend.

In the Poisson process, events occur at a constant rate as time passes; 
this leads to the intervals between events being independent and exponential. 
More precisely, let X(t) dt be the probability of an event occurring in the 
interval dt at time t ; for the Poisson process X(t) is constant. An obvious 
alternative to the Poisson process is the model for which X(t) increases or
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decreases with t, that is, events occur more quickly or more slowly as time 
passes. There is then said to be a trend in the rate of occurrence. A possible 
model for trend considered, for example, by Cox (1955) is to suppose \(t) =
C ê ^̂ ; if к is positive (negative) there is an increasing (decreasing) rate of 
events, and if к = O the rate is constant. Another model for trend is \(t) =

(a > I ); this was considered by Bartholomew (1956) who found a sequen
tial test for randomness against this model for trend.

If events occur more quickly, the Intervals Xj between events will be
come shorter on average; thus the X j, as naturally indexed in time, become 
sm aller. If the J transformation is applied to the Xj as naturally indexed, 
the U(i) values will tend toward I. If events occur more slowly, the tend 
toward zero. Thus trend will be detected by the statistics which detect move
ments of the U-values toward O or I . Another alternative to a constant 
arrival rate for events is the possibility that they occur periodically; then 
the intervals between events are of fairly constant length. The coefficient of 
variation Cy of the Xj will be small, and the U(J) from the J transformation 
will be super uniform. Statistics to detect periodicity of events must be well 
adapted to detect superuniformity of the U (j). In contrast, if there is a wide 
disparity between the Intervals X j, when the longer intervals appear too long 
compared with the shorter intervals, the Cy of the Xj will be large.

It is possible that the Intervals between events, even if exponentially 
distributed, are not independent. Lack of independence is usually difficult to 
detect, and the appropriate test statistic will depend on how the intervals 
are related. Here the indexing of Xj will again be important; as naturally 
indexed in time, the Xj might, for example, be tested for autocorrelation.
An interesting example of events for which the J transform produces super
uniform U(i), probably because of lack of independence, are the events 
recorded by the dates Tj marking the reigns of kings and queens of England 
(see Pearson (1963)). For further remarks on the problems of correlated 
intervals see Lewis (1965).

It might be decided to base a test for uniformity of the Uj on the spacings 
Dj between the U j. The spacing Dj is Xj/T^, so that the remarks above con
cerning the indexing of the Xj will apply also to the spacings D j. The sizes 
of the spacings, as naturally indexed by time, will be Important both in tests 
for trend or for independence, whereas the variance of the spacings will be 
important in measuring periodicity or great disparity between the time 
intervals.

10.6.3 Tests on Lifetime Data

Suppose the original Xj are lifetimes. Application of the N transformation 
will produce a set Xl which will be Exp ( 0 , ß )  if the Xj are Exp (0,j3); how
ever, if the Xj are from an IFR or DFR distribution, the Xj will not be expo
nential, and the indexing of the Xj will become important. Suppose the true 
lifetime distribution of X has an increasing failure rate. Then a random
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sample X, when placed in order, should exhibit smaller spaclngs for large 
values of X than those given by the exponential distribution with the same 
mean lifetime. Since the X  ̂are normalized values of these spacings, that 
is, the spacings multiplied by a factor, the X [  for large i will on the whole 
be smaller than e^)ected. This is formally stated as follows (see, for ex
ample, Barlow, Bartholomew, Brenm er, and Brunk, 1972 (Chapters).

Result. If the lifetime distribution of X is IFR (DFR) the Xj are stochas
tically decreasing (increasing) in i = I ,  . . . ,  n.

From this result have come many ideas for testing that the original 
sample X is Е^ф { 0 , ß ) ,  against IFR or DFR alternatives, using tests based 
on Xi or U i . A general discussion, with examples, is in Epstein (1960a, 
1960b).

Finally, we should note that powerful tests on lifetimes will be powerful 
tests on any general random sample, regardless of its source. In the power 
studies of Section 10.13, it turns out that it is useful to divide alternatives 
into DFR and IFR classes; this division is naturally meaningful in tests on 
lifetimes, but it tends also to classify alternatives by Cy value, and by their 
skewness and kurtosis compared with the e:qx>nential.

10.7 TESTS WITH ORIGIN KNOWN: GROUPS I ,  2, AND 3

After the preceding discussion we classify test procedures for Hq into three 
broad groups:

Group I . Tests for exponentiality using the basic data set X.
Group 2. Tests based on the transformation U = JX, with a subsequent test 

for uniformity of U.
Group 3. Tests based on the transformations X* = NX, or U* = KX, followed 

by a test for exponentiality of the X \  or a test for uniformity of U '.

It is clear from earlier discussion that J w ill often be applied to inter
vals between events, leading to tests of Group 2 , and N and K will be applied 
to lifetime or failure-time data, leading to tests in Group 3. Group 2 tests 
have been called uniform conditional tests by Lewis (1965) and by Cox and 
Lewis (1966).

10.8 GROUP I TESTS

Here the set X will be tested directly for Exp (0,/3), with no transformation 
N, J, or K. Tests available include the Pearson chi-square test and modem  
adaptations, discussed in Chapter 3, EDF tests and regression tests, dis
cussed in Chapters 4 and 5, and tests based on sample moments. No further 
comments will be offered on chi-square tests, but the other tests will be re 
viewed below, in the special context of tests for exponentiality.
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10.8.1 EDFTests

(a) The direct EDF test, In which ß is estimated by X, is described in 
Section 4.9.

(b) A variation of standard EDF procedures has been suggested by Srinivasan 
(1970, 1971) (see Section 4.16.3); for the exponential distribution the 
calculations are easy. The transformation is made to a Z -set by

n-1
i =  I, ., n

where T = Z ? ,  X.. 
n i= l I The Kolmogorov statistic D is then calculated from

the using equations (4.2); large values of D are significant. Schafer, 
Finkelstein, and Collins (1972) have given tables of Monte Carlo signifi
cance points. The transformation to Z used in this test and the trans
formation Z/JJ = I -  exp (-X^jj/ÍQ, used in the direct EDF test, are very 
close, and Moore (1973) showed the two tests to be asymptotically equiv
alent. Power studies show that for small samples they have very similar 
properties also.

(C ) Another test based on the EDF has been proposed by Finkelstein and 
Schafer (1971). The Z(i) are calculated as for the direct EDF test, that 
is, from Z(J) = I -  exp {-X (i)/X } , i = I , . . . ,  n; then ôj is defined as 
max { I Z(i) - ( 1 -  l )/ n l, I Ẑ JJ -  i/nl }  , i = I ,  . . . ,  n, and the test statis

tic is S* = Z?_j  ̂ÔJ. Finkelstein and Schafer have provided tables for S *  
based on Monte Carlo studies.

10.8.2 Regression Tests

Most regression and correlation tests described in Chapter 5 are devised for 
Case 3, where both location and scale parameters are unknown. However, 
two tests are designed specifically for testing Hq . These are

a) Stephens* Wg, described in Section 5.11.5;
b) Jackson*s test, described in Section 5.11.5.

10.8.3 Tests Based on s Sample Moments

Gurland and Dahiya (1970) and Dahlya and Gurland (1972) have discussed a 
general method of deriving a test statistic based on s sample moments. Siç)- 
pose the r-th sample moment is m^ = zj^_^ (X.)^/n; when the Dahiya-Gurland

method is applied to the test for Exp (0,/3) we have (Currie and Stephens,
1984)

Qi = Cl = n (- l  + m2/2ml^)^ = n { - l  + m2/mJ^}^ /4  where m2 = m2-(m i)^
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Qe = Qi ^ 2 , with C2 = n { l  -  + 1113 /(Sm^ml) } ^

Q 3  = Qz C 3 , with C 3 = n { - l  + 3m 2/(2mi^) -  + m4/(4injm^}^

As3onptotically Qt has a Xt distribution on Ho , but the convergence is quite 
slow. Statistic Qi is equivalent to Greenwood^s statistic, discussed in Sec
tion 8.9.1 and in Section 10.9.3 below; percentage points for Q2 and Q3 , for 
finite n, obtained by Monte Garlo sampling, have been given by Currie and 
Stephens (1984). Tests based on Qt are upper-tail tests. Currie and Stephens 
have given power studies for n = 20 , against a wide range of alternatives. 
Dahiya and Gurland (1972) have given power studies, for n = 50 and 100, and 
for gamma and Weibull alternatives.

TABLE 10.2 Tests for the Set X  of Table 10.1

Group I tests

EDF and regression statistics applied directly to the X-values 

X = 121. 3 , S .D .(X ) = 154.3, Coefficient of Variation = 1.272 

Direct EDF test statistics (Section 10.8.1): ß  =  X  =  121.2; n '= 15 

Statistics followed by approximate significance levels p, when p < 0.10: 

0̂  ̂= 0.277, D “ = 0.132, D = 0.277 (p = 0.04), V  = O.409 

W* =0.219 (P = 0.05), U=' =0.170 (P = 0.04), A* = 1 .163 ф = 0.075)

D = 0.292 Ф = 0.04) S* = 1.9970 Ф = 0.045)

Regression statistics and p-values for set X  (Section 10.8.2)

W j, = 0.0384 (p = 0.04,-lower tail, so p = 0.080, 2-tail)

W  = 0.0397 (p = 0.075, lower tail, so p = 0.15, 2-tail)S
J = 2.039

K(X,m ) = .958, Z = 1 5 {l  -  R * (X ,m )} = 1.24 ф  = .2 5 )
R(X ,H ) = .950, Z = 1 5 {l  -  R ^ (X ,H )} = 1.47 ф = . 15)

Values of Dahiya-Gurland statistics (Section 10.8.3)

Q j =0.977 ф = 0.32) 
Qj =3.384 ф = 0.18) 
Qj = 5.081 ф = 0.16)
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E 10.8.3 Example

Values of EDF statistics for the X-data of Table 1 0 .1 are given in Table 10.2, 
Part I . For these d a t a = 121. 2 ; thus, following Section 4.9, we calculate

(I)
= I = I  -  exp (-12/121.2) = 0.094,

and so on. The values of Z are given in Table 4.13, column 3. Then equa
tions (4 . 2) give = 0.277 and the other values given in Table 10.2. Some 
P-levels of the statistics (used with upper tail only) are recorded. Several 
are significant at the 5% level, suggesting rejection of Hq . D and S* (Sec
tion 10 . 8. 1) are also given.

Values of regression statistics are given in Part 2 of Table 10.2. The 
values of R(X,m ) and R(X, H) (Section 5.11) are, respectively, 0.958 and 
0.950; then Z (X ,m ) in Section 5.11.2 is 15(1 -  0.958)^) = 1.24 and Z(X ,H ) 
is 1 5 {l  -  (0.950)2} = 1.47. These are, respectively, significant at p = 0.25 
and P = 0.15 when referred to Tables 5.6 and 5.7. The value of the Shapiro- 
Wilk statistic W g , which is designed for use when a  is not known, is included 
for comparison. In Part 3 of Table 10.2 are given the values of the Dahiya 
and Gurland statistics Q i , Q2 , and Q3 . The p-values have been found from  
the Currie-Stephens tables.

10.9 GROUP 2 TESTS, APPLIED  TO U = JX

10.9.1 Tests Based Directly on the U-Values

As was stated before, a number of tests for a series of events are based on 
making transformation J and then testing that the n -  I  values U are U (0 ,1). 
Because these tests have been suggested in this connection they are reviewed 
here; there will necessarily be some overlap with Chapter 8.

Important Note: In Chapter 8 it is natural to assume that the U set has 
n values; when tests of Chapter 8 are applied to set U (or to set U* after the 
K transformation) the value n must be replaced by m (= n -  I) in the formulas 
for test statistics, and in using the tables.

a) EDF tests. EDF tests (Case 0) can be used on the U -set, as described 
in Chapter 8. Statistics D and D " are well adapted to detect a shift of U  
toward 0 or I , that is*, to detect trend in events (Section 10.6.2). W^ and A^ 
can also be expected to be effective for these alternatives. Notice, however, 
that as customarily used (employing only the upper tall of test statistics for 
significance) EDF statistics will not detect superuniform U; thus they will 
not detect periodicity in events (Section 10.6.2), or the occasions when the 
J transform can produce superuniformity (Section 10.6.2), unless test statis
tics are referred to the lower tail of the relevant null distribution.



TESTS FOR THE EXPONENTIAL DISTRIBUTION 439

b) The statistic U « A  simple statistic for testing uniformity is the mean

Û = Ui/(n -  I ) . Percentage points for Û  are given in Table 8.5; the 
table must be entered at same size m = n -  I .  For m > 15, the quantity

_ I
P = (IÎ -  0 .5 )(12m)^ will have approximately the standard normal distribution.

c) Statistics based on • The order statistic U (r) has a beta distri
bution (Section 8.8), and the function of U (r) given by = (n -  r )U (r)/
{ r ( l  -  U (r ) ) }  has an Fp^q distributlon^with p = 2r and q = 2(n -  r) degrees 
of freedom. In particular the median U, where r  is n/2 or (n +  1)/2, has 
been proposed as a test statistic for uniformity.

10.9.2 Application to Tests for Trend

When the model for trend in a series of events is A.(t) = ce^^ ,̂ as discussed 
in Section 10.6.2, the values U (i), i = l ,  •••,  n - 1 ,  instead of being ordered 
uniforms, w ill be an ordered sample from density

TABLE 10.3 Tests for the Set X of Table 10.1

Group 2 tests

J transformation followed by tests for uniformity on 14 values of U

Values of Test Statistics

0̂^̂  = 0.180, D“ = 0.105, D = 0.180, V  = 0.285

=0.106, = 0.059, A^ = 0.729, FS* = 1.466

None of the above is significant at the 20% level upper tail, o r the 15% level 
lower tail.

Statistics Ü = 0.442, U ,„  = 0.447, U,.. = 0.463, Neyman N| = 0.722
(7) (o)

None of the above is significant at the 20% level (I  tail), or the 40% level 
(2 ta ils ).

R (U ,m ) =0.978; Z = 1 4 {l  -  R 2 (U ,m )} = 0.61 (p >0 .5 0 )

Statistics based on the 15 spacings Dj 

Moran M = 19.232, М/с = 16.329 (p = 0.30 in the upper tail of Xu) 

Greenwood G(14) =0.167, 14G(14) = 2.338 (p = 0.075, upper tall) 

Kendall-Sherman K = 0.4 70

Quesenberry-M iller Q = 0.193 (p = 0.35, upper tail)

Lorenz L j4 (. 5) = 0.106 (p = 0 .1, lower tall)
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f(u) =
к . e -  I

ku ,
e , 0 < U < 1

Cox (1955) suggested that the test for к = 0 (Poisson process) against к O 
should be based on Ù, which is the likelihood ratio statistic. Large values 
of Ü will Indicate к > 0, that is , events are occurring more rapidly with 
Increasing time and the U(J) are tending to drift toward I sim ilarly, low Ù 
indicates that events are happening less often, and the U(i) are moving toward 
zero. Thus a one-tail test is used if the direction of trend is known, but in 
general a two-tall test is required. The median U w ill also detect movements 
of the U-values toward 0 or I. Note that neither the mean Ú nor the median Ú  
will detect superuniform observations, nor, in general, the case where there 
is excessive variation among the inteiwals between events.

E 10.9.2 Example

Table 10.3, Part I , shows the values of EDF statistics calculated, following 
Section 4.4, from the 14 values in the U -set. Also shown are the values of 
U(T ), U(8), and Ü. On Hq , U(T) has the beta (x; 7,8) distribution (Sections.8), 
and U(8) has the beta (x; 8,7) distribution. Tables of this distribution, and 
Table 8.5 for Û, give the approximate p-levels shown. The correlation 
R(U,m ) (Section 5.6) is 0.978, with a p-value greater than 0.5 (Table 5.2); 
note that R (U,m ) has weaknesses as a test statistic (Section 5.6).

10.9.3 Statistics Based on the Spaclngs Between the Uj 

The spacings between the U-set are defined by

D = U  - U  , 1  = 1. I (i) (i -1 )’
., n, where U, s  o, and U, = I  

(O) ’ (n)

thus n -  I  uniforms give n spacings. The spacings are connected with the 
original observations Xj by = Xj/Tn, i = I, . , n, where Тд = Xj.
Basic articles for work on spacings are by Pyke (1965, 1972). Many test 
statistics for exponentiality have been based on the values X j, divided by 
to eliminate the scale parameter /5. These statistics are therefore calculated, 
in effect, from the values D^, and the associated tests can be regarded as 
tests for uniformity of the set U, based on the spacings. Test statistics of 
this type are discussed both in this chapter and also in Chapter 8.

10.9.3.1 Greenwood^ s Statistic

The first spacings statistic which we discuss was introduced by Greenwood 
(1946) in connection with tests on a series of events; specifically, on the 
incidence of a contagious disease. The statistic here is G(n -  I) = D^,

the argument n -  I referring to the fact that G(n -  I) is calculated from
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n -  I  uniforms, giving n spacings. For use in the present application we 
have

n
G(n -  I) = E  D j

i = l

n

to make a test, (n -  l)G (n  -  I) is referred to Table 8.3 using the percentage 
points for sample size m = n -  I .  Small values of G(n -  I) will detect super- 
üniform values Ui, or excessively regular spacings between events, such as 
would occur if they were periodic. Large values of G(n -  I) w ill detect if 
the intervals are too disperse, for example, if the long intervals are too 
long compared with the short intervals.

E 10.9.3. 1 Example

From the D of Table 10.1, G(14) = (.041)^ + (.031)^ + . . .  + (.179)2 = .167. 
Thus 14G(14) = 2.34, and reference to Table 8.3 shows this to be significant 
at P = 0.075, upper tail.

E 10.9.3.2 Equivalence of Greenwood^s Statistic 
and Other Statistics

Greenwood’s statistic w ill detect unusual dispersion of the spacings. The 
mean value of each spacing is l/n, so the dispersion could be measured by

11
V  = ^  (D. -  l/n)2

i = l

a statistic studied by Kimball (1947). It is easily shown that V  = G(n - 1) -  l/n. 
Also, in terms of the original X j, V  can be written

V  = 2] (Xj -  x ) V t ^
i = l

= S2/(n5i)2

where S  ̂ = 2?  ̂ (X. -  . Moments of the X  set are ml = X and m, = S^/n,

and the sample coefficient of variation C y  is (NZm^)ZmJ ; thus V  is 
m,/(nml2) = Cy/n. Note also that Qi of Section 10.8.3 is calculated from  

. To summarize, the following relations hold:
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G(n -  I) = V +  1/n = C V n  + 1/n

and

Qi = n {nG (n  -  1) - 2 } V 4

Thus V, Cyf and Qj are all equivalent to G(n -  1) as test statistics. Use of 
the upper tail of Qi is equivalent to a two-tall test based on G (n -  I ); the 
two tails contain unequal probabilities for finite n, converging slowly to 
equal probabilities as n increases.

Furthermore, V  is the same as the regression statistic W Eq (Section 
5.11.5; Stephens’ Wg (Section 5.11.5) is also related to G(n -  I) by

(Wg)-> = n (n+ l ) {G (n  -  1 )} - n

Tests using the upper tail of G(n -  I) or of WEq are equivalent to tests using 
the lower tail of W g , and vice versa.

Thus, several statistics which have been derived from very different 
approaches all turn out to be equivalent to Greenwood’s G(n -  I ).

10.9.3.3 Other Spacings Statistics

A number of statistics have been devised which are directly related to Green
wood’s statistic; most of these have been discussed in connection with testing 
for uniformity and are included in Chapter 8. The Quesenberry-M iller statis
tic Q (Section 8.9.2) might be useful in detecting autocorrelation in a series 
of events; so, also, might statistics based on high-order gaps (Section 8.9.4). 
We now continue with four tests based on spacings which have been developed 
specifically in connection with tests for exponentiallty on X or X ’ . They are 
defined in terms of both Dj and the original X¿.

10.9.3.4 Statistic M (Moran, 1951)

This statistic is

Xl

M(n -  I) = -2 2] log (nD ) 
i= l

n
=  - 2  Y j log(X ./X )

i= l

n
= -2 1 £  log X. I + 2n log X  

4=1

When X is Exp (0, /3 ), the distribution of 2X/ß is xl (Result 4 of Section
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1Ö.3.1); thus the Xi can be regarded as sample variances from normal 
samples with true variance /3, based on two degrees of freedom. M(n -  I) is 
then equivalent to Bartlett^s (1934) statistic to test that such samples come 
from populations with the same variance; on Ho, the distribution of M (n -  l)/c, 
where c = I + (n + l)/(6n), is approximately with n -  I degrees of free
dom. As a general test for e^x>nentlality, M(n -  I) is two-tailed.

Moran (1951) showed that M(n -  I) is the as5rmptotically most powerful 
test against gamma alternatives (see also Shorack 1972), and Bartholomew 
(1957) showed it to be a strong test against the Weibull alternative. Cox and 
Lewis (1966, Chapter 6), Bartholomew (1957), and Jackson (1967), among 
other authors, have referred to the effect on M(n -  I) of inaccurate measure
ment of the values X i, particularly for small values; a small inaccuracy in 
Xj produces a big e rro r in log X j. Difficulties due to small o r zero values 
are discussed in Section 10.10. Bartholomew (1956) has based a sequential 
test for e^qx)nentiality on M(n -  I ) .

10.9.3.5 The Kendall-Sherman Statistic

Kendall (1946) suggested a statistic for testing the randomness of events in 
time. This is

SO that K(n -  I) is based on a comparison of a ll the Di with the common 
expected value l/n. Another form of K is

K(n -  I) =

XX

E  I X ,  - X l
i= l

2nX

This statistic, introduced at about the same time as Greenwood*s G(n -  I ),  
has many sim ilar properties. It measures the dispersion of the D i, and small 
values w ill detect si^eruniform U i, or periodicity in events. The statistic 
K(n), that is, derived from n uniforms, and n + I spacings, was discussed 
by Sherman (1950, 1957) who gave its null distribution, moments, and u p p e r  
tail percentage points for n < 20. Bartholomew (1954) fitted an F -approxi
mation to the null distribution of a function of K(n).

10.9.3.6 EDF Tests for Spacings

When there are n -  I  values Ui, giving rise to n spacings D j, the marginal 
distribution of any one spacing is
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F^(x ;n ) = P (D j< x )  = 1 -  (1 •X)
n-1

O < X < 1

This iS  a fuliy specified distribution, and it might be thought that EDF tests, 
Case 0 (Section 4.4) could be made. The Probability Integral Transformation 
would be Z (i) = I -  (I  -  where the D(i) are the ordered spacings,
and EDF statistics could be calculated from the Z (i). In particular, suppose 
Ъ  is the Kolmogorov statistic. Because the spacings are not independent 
(their sum is I ),  the Z(ij are not ordered uniforms, so Case 0 tables cannot 
be used. However, fortuitously, the Z^y are exactly those which arise in 
Srlnivasan’s test (Section 10.8.1), and Ь  will be the same as D of that 
section, and will be referred to the tables referenced there.

10.9.3.7 Test Based on the Lorenz Curve

Let P be a value between 0 and I , and let r  = [np], that is , the greatest inte
ger less than or equal to np. The Lorenz curve statistic, derived from the n 
ordered spacings D^^ ,̂ is

i.„(P) -  E  %

Gail and Gastwirth (1978) proposed Lj^(0.5) as a test statistic for Hq , and 
they gave tables for a two-tall test, for values 2 < n < 40, and a normal ap
proximation for larger values of n. They also gave values of the as5nnptotic 
relative efficiency (ARE) of this test, compared with that based on using the 
maximum likelihood estimate of the shape parameter a , for both gamma 
and Weibull alternatives, and some power studies.

E 10.9.3.7 Example

Part 2 of Table 10. 3 shows the values of some of the above statistics, based 
on the 15 spacings D^ given in Table 10.1. For example, Moran's statistic 
is M(14) = -2 [lo g (15 X .041) + lo g (15 X .031) + ••• + log(15 X .179)] = 19.232; 
C is then I + 16/90 = 1.178, so М/с = 16.329. This must be compared to Xu, 
to give a p-level = 0.30, approximately.

10.10 THE EFFECT OF ZERO VALUES, AND OF TIES

It may be that a value of X is recorded as zero; if this is so, the value of A^ 
in the Group I EDF tests, and the value of Moran’s statistic M(n -  I) in the
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previous section, w ill become Infinite and Hq w ill automatically be rejected. 
Clearly, if a set X  to be tested to be Exp (0 ,ß ) contains one or more values 
which are recorded as zero, the reason is that a true small value has been 
rounded to zero, and a correction can be applied. Suppose the rounding inter
val is d; for the Moran statistic, Gail and W are (1978) have shown that an 
adequate correction is to replace the zero by d/4, for d up to 0.2 times the 
mean of the e^qxDnential distribution. Thus for a mean life of 5 (say hours), 
the values should be recorded to at least the nearest hour and then a zero 
would be replaced by 0.25. In many practical situations, measurements will 
be measured to at least this level of accuracy, and then no correction will 
be needed.

The problem arises again if there are ties in the X -set (as there are in 
Table 10.1), and if tests are to be applied to the transformed values X ’ or U*. 
This is because two equal values in the X -set gives a zero in the X* set.
Pyke (1965) has given a correction to separate two X-values recorded as 
equal. Nevertheless, even if corrections are used for zero values of X  or X*, 
significant values of or M(n -  I) should be examined carefully to see if 
they are due only to one or two excessively small values in the X  or X* set, 
and, if so, why these are so small.

10.11 GROUP 3 TESTS APPLIED  TO X* = NX,
OR TO U  ̂ = KX

10.11.1 Introduction

Clearly, after transformations N or K, tests of Hq for X, such as those 
given above, may equally be applied to X \ and tests for uniformity for U  can 
be applied to U*. Good reasons exist for making these transformations, par
ticularly when the original X are lifetimes. These come from the results in 
Section 10.6.3, namely, that if the distribution of X  is not exponential but 
is IFR , the X| are stochastically decreasing with i, while if X is DFR the x j  
are stochastically increasing with i. These properties have led to further 
tests being proposed in connection with lifetime data X. The new tests are 
functions of X j/T¿ , that is, of the spacings d J between the U* set, defined 
as were the Di from Ui in Section 10.9.3. Tests on U ’ are discussed In the 
next section, followed by the new group of tests based on D\

10.11.2 Direct Tests for Exponentiality 
on the Transformed X ’

EDF and regression tests, applied directly to set X* have not been much 
emphasized, perhaps because the X* would first be ordered, and the informa
tion given by the indexing of the X* is then lost. Other tests on the X* them
selves have been proposed by Epstein (1960a, 1960b). These make use of 
Result 4 of Section 10.3.1 but now applied to X*; on Hq , yi = 2X¡/fi has the
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X z  distribution, and the yj are independent. Therefore ratios of independent 
sums of yj, times a constant, have the F distribution. Epstein has suggested 
tests based on such partial sums, to test if the value of ß has changed, or to 
test if the time to the first failure is significantly longer or smaller than ex
pected if all failure times come from the same е^юпепйа! distribution. The 
times У 1 can also be divided into groups, and the several groups tested to see 
if they have a common ß ; for example, Bartlett^s test that several normal 
samples have the same population variance, or other well-known tests of 
this hypothesis, can be adapted to make a test for common /3. When the yj
values are divided into only two groups, Y  = Z f  , y, and = - У . it

I 1=1 i 2 i=r*-l I
is easily seen that tests based on the ratio Y j/Y2 are equivalent to tests 
based on U (r)» to be discussed below. As can be seen, much of the emphasis 
in Epstein (1960a, 1960b) is on tests for ß ; however, there is a fine line be
tween such tests for a parameter and tests of fit, and several of Epstein^s 
illustrations may be viewed as tests of fit.

E 10. 11.2  Example

Values of EDF statistics and regression statistics, calculated from the 
given in Table 10. 1 , are given in Table 10.4.

TABLE 10.4 Tests for the Set X of Table 10.1

Group 3 tests

Statistics calculated from set X*

Mean = 121.3, S.D . = 138.6, coefficient of variation = 1.143 

Direct EDF test-statistics: D"*" = 0.167, D“ = 0.082, D = O. 167,

V  = 0.250, = 0.050, = 0.041, A^ = corrected A^ = 0.462 (see Sec

tion 10.10). S* = 1 .151, 5 = 0.177

None of the above is significant at the 25% level, upper tail; and are 
significant at approximately the 25% level, lower tail.

Regression statistics

W _  = 0.058 (p = 0.20 lower tail). R (Z ,m ) = 0.98, Z = 0.54 (p > 0 .5 0 ).
hi

W  = 0.049 (p = 0.12 lower tail). R (Z ,H )= 0 .9 7 , 2 = 0.90 (p = 0.35)S
J = 1.957

Greenwood G(14) = .148; 14G(14) = 2.071 (p > 0.10  upper tall) 

Dahiya-Gurland Q2 = 0.569 (p = 0.48); Q3 = 0.680 (p >0 .5 0 )
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10.11.3 Tests Based on the U* Values

Since on Ho the n -  I  Uj values should be uniform U (0 ,1), tests can be based 
on testing this hypothesis concerning U*. For IFR  alternatives, the Uj move 
toward I , and for DFR alternatives, they move toward zero. EDF statistics 
(Case 0) or the statistics Ü* or for some r ,  might be expected to be 
useful in detecting such alternatives. Of the EDF statistics, D"̂  w ill be sig
nificant when the u| move near zero, and D " when they move near I . Statis
tics and , and to a lesser extent D, w ill detect either of these alter
natives.

E 10. 11. 3 Example

Values of EDF statistics based on the U* derived from the data set X in 
Table 10.1, are given in Table 10.5. The statistics are found by using u Jq 
in equations (4. 2), and p-values are found from Tables 4 .2 .1  and 4 .2. 2.

10.11.3 Л  Tests Based on Ü ’ or U(r)
The simplest test for the uniformity of the U* -set is based on , the mean 
of the n -  I values, or equivalently, on their sum S = (n -  1)Ü*; this statistic 
was suggested by Lewis (1965). Some algebra w ill show that, in terms of 
the original X-values, 

n
S = 2n -  2

n

Ù ’ will tend to be large for an original IFR sample, and to be small for a 
DFR sample. Thus Û* or S can be used as a one-tail test to guard against 
alternatives with IFR or DFR, but as a statistic against unknown or general 
alternatives it will be two-tailed. Percentage points for Ù ’ = S/(n -  I) are 
given in Table 8.5; the table must be entered for sample size m = n -  I.

For m > 15, (Ü* -  0.5)(12m)^ w ill have approximately the standard normal 
distribution.

Lewis (1965) also suggested the statistic as test statistic, with r  
a suitable Integer. The statistic given by Z¿ = (n -  r )U ji.)/ {i ’(i  -  U (r ) ) }  
has, on Ц ), the Fp^q distribution with p = 2r and q = 2(n -  r) degrees of 
freedom. A commonly suggested statistic is the median U^^), with r = (n + 1)/2 
or n/2. For IFR alternatives, U (r) can be expected to be large, so that Zp 
is significant in the upper tail of Fp^ q; for DFR alternatives Zp w ill be sig
nificant in the lower tail. This statistic was again examined by Gnedenko, 
Belyayev, and Solovyev (1969), by Fercho and Ringer (1972), and Tiku, Rai, 
and Mead (1974); the statistic у of Tiku, Rai, and Mead (1974, Section 4) 
designed for testing Hq , is equivalent to .

In Table 10.5 are given values of Ü ’ and U(Y) and U (3) for the U ’ set 
derived from U of Table 10.1; p-values are found from Table 8.5 and the 
beta (x ;7 ,8 ) and beta (x;8,7) distributions (Sections 8.8.2 and 8.10.1).
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TAPTi^ 10.5 Tests for the Set X of Table 10.1

Group 3 tests

Statistics for uniformity calculated from the 14 values of 

Statistics followed by approximate significance levels p In parentheses: 

----------- D "  = 0.099 (p>  0.25)D =0.374 (P = 0.015) 

D = 0.374 (p = 0.03) 

W* = 0.417 (p = 0.07) 

A }  = 1.894 (p = 0.10)

V  =0.473 (P = 0.025) 

= 0.227 (p = 0.02) 

S* = 2.433 (p = 0.09)

Statistics U* = 0.383 (p = 0.07 lower tall, p = 0.14 2-tall)

^(7) ~ (p = 0.12 lower tall)

U* . = 0.356 (p = 0.09 lower tall)
(Ö)

Кезгтап N2 = 2.558 (p = 0.30)

R (U ,m )= 0 .9 0 , Z = 2.62 (p <0 .0 1 )

Statistics based on the 15 spacings

Moran M = 25.579, М/С = 21.714 (p = 0.09 upper tail)
(a zero spacing corrected, see Section 10.10)

Greenwood G(14) =0.148, 14G(14) = 2.072 (p > 0 .1 0  upper tail)

Quesenberry-Miller Q = 0.237 (p = 0.05 upper tail)

S* = -0.60; S* = 1.20; S* = 0.24 (Section 10.11.4).

10.11.4 Tests Based on the Spacings Between the U* Set

A ll the tests in Section 10.9.3 for uniformity of U, based on the spacings D,
can of course be applied to the new spacings D* calculated from the U ’:
D! = U *. -  U*. , . ,  I = I , . . . ,  n, with Û . . = 0 and U* = I. Some new sta- 

1 (I ) (1-1) (O) (n)
tlstlcs have also been proposed for the set X \  based essentially on the D j.

10.11.4.1 The’*Cumulative Total Time on Test" Statistic

The total time on test statistic was defined in Section 10.5.3 as т !, = е У  ̂X|. ----------------------------  r  1=1 I

Suppose, for given k, we define



k-1
E T'
=1 ^

\  = T ^ ’ “n

is called the k-th cumulative total time on test statistic. When к = n,

V = 2^”  ̂U* ., since Ü* . = T*/T*. Thus V = (n -  1)0*. Another formula n r=l (r) (r) r n n ' '
for Vn is
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Ii UE (n -  i )x ;  E iX*

V  = 
n

i= l
T’

n
= n -  •i= l

In terms of the spacings , this is 

n n
V  = E  (n - i )D i  = n -  E  i d ;

i= l i= l

Another group of tests, proposed for the set X* by Bickel and Doksum (1969) 
includes

S* = E l - ix ;/ {(n +  l)T ^ }] = j - E^ ID j j^  (n+ I) 

n n
S* = ^  x ;H j/T^ = E d ;H j , where = -log (I  -  i/(n + 1))

i= l

n
i= l

= E x ; (-log  H )/T  = -  E D 'aog  H )
1=1 1=1

Recall, in these formulas, that Tj^ = (Equation 10.7). Statistics and S j 
have a resemblance to the regression statistics of Chapter 5, but there is 
an important difference; the set x [  are not ordered in the above formulas, 
and they would be for regression statistics.

Statistic Sf is as3rmptotically most powerful against Weibull alternatives 
for X, and statistics s f  and Sf against two other alternatives (the Makeham 
and linear failure rate alternatives) discussed by Bickel and Doksum. Other 
statistics may be derived using the properties of X j. For example, on aver
age, X* < Xl for i > 3 if the distribution is IFR and a test could be based on
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the number of reversals, that Is , the number of occasions when this inequal
ity is realized, for all pairwise comparisons. Alternatively, values X| could 
be plotted against i, or against n -  i + I; the slope of the regression line 
would, if the original X w ere  Exp(0,/J), be zero, but if the X w ere  from an 
IFR  distribution, it would be negative for the first plot and positive for the 
second. (The slope has the same sign as Z j í d [ -  n/2.) Proschan and Pyke 
(1967) and Bickel and Doksum (1969) have also investigated tests based on 
the ranks of the X j.

E 10. 11.4 Example

Values of the Greenwood G(14), Moran M, and Quesenberry-Miller Q, calcu
lated from the D j , are given in Table 10. 5. These tend to have lower p-levels 
than the corresponding statistics based on the D i, in Table 10.3. The X ’ set, 
and hence the D ’ set, contains a zero, and the Moran statistic (also the 
Anderson-Darling A^) has been calculated using the correction suggested in 
Section 10.10; X^^j has been given value 0.25, since the rounding interval 
is I.

10.11.5 The Equivalence of and Other Test Statistics

Several of the statistics given in Section 10.11.4 are equivalent to the statis
tic Ü* discussed in Section 10.11.3. Since Vn = (n -  1)Ü\ Vn is the same 
as S of Section 10.11.3. Also Vn and S* are related by Vn = n + (n + l )S j.  
Thus, Vn, S, and S* are all equivalent to as test statistics.

Another statistic equivalent to Ù* is the Ginl statistic Gn, discussed by 
Gall and Gastwirth (1975). Gn is related to the Lorenz curve discussed in 
Section 10.9.3.8 above, and, like the Lorenz curve, derives from concepts 
used in economics. The Gini index for a distribution is twice the area be
tween the population Lorenz curve у = I^ (p ) and the line у = p. The Gini 
statistic Gn derived from this index can be calculated in two ways. In terms 
of the original X j, Gn is

n-1

E
G

i X i - x . i

2(n -  1)T

this may be shown to be the same as

G =

n-1 n-1

T j ^^1+1 T  ^^i+1
i= l 1=1

n (n -  1)T* n - 1
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Slngpurwalla has shown (see Gail and Gastwirth, 1975) that = I  -  so 
that Gĵ  too is equivalent to as a test statistic.

10.12 DISCUSSION OF THE DATA SET

The values of all the various statistics can now be used to give an overall 
assessment of the X-set in Table 10.1.

a) The direct tests on X in Group I (Table 10.2) point towards rejection 
of Hq : that the X are Exp { 0 , ß ) ,  with the large value of D'*' indicating that 
there are too many small values of X compared with large values. This im
plies a DFR population for X (see next section and Table 10.6). However, 
transformation J, from X to U, gives little information, although Green- 
wood*s statistic is quite large (0.167), implying high dispersion among 
X-values.

b) The values X are lifetimes, and the discussion in this chapter sug
gests that tests on X* and on U* will be Informative. The high value of D“̂
for the EDF tests on U* (Table 10.5) means that the U  ̂ set tends toward zero, 
and this is confirmed by the low values of Ü ’ , U (7) and U(8)- These low values 
are because the normalized spacings Xi are, on the whole, increasing with I, 
implying that the original X are from a DFR distribution (Section 10.6.3). 
Thus the Group I tests and the tests on U ’ give supporting conclusions.

c) The indexing of set X ’ is giving information about the parent popula
tion for X. Then Moran’s or Greenwood’s statistics found from the spacings 
D i, which are, in effect, symmetric functions of the X^ (in which the indexing 
is lost), are not significant. Neither are direct EDF tests on X ’ , based on 
first ordering the X ’-set, so that the Indexing is again Iost-

d) The lack of significance of the statistics where indexing is lost in 
set X ’ indicates how the Indexing can be Important. Here, when the X ’ are 
only regarded as a random sample, as in c) above, they are acceptably 
exponential, and one would then accept that the original X -set is exponential; 
however, when the indexing of the X{ gives information, as it does in the 
tests on U ’ , the indications are that the X -set comes from a DFR distribution.

10.13 EVALUATION OF TESTS FOR EXPONENTIALITY

10.13.1 Omnibus Tests

The author (Stephens, 1978, 1986) has conducted a large power study on the 
various test procedures for Hq , using Monte Carlo samples of sizes n = 10 
and n = 20 from a wide range of alternatives. Tables 10.6, 10.7 give a 
selection of these results for n = 20. These permit some comparisons be
tween tests, applied to a general random sample, when the special consid
erations of preserving Indexes, e tc ., are not important.



TABLE 10.6 Power Studies for Tests of Exponentiality, Origin Known (n = 20)

omnibus tests: Power results
Group I sample Group 2

Group I EDF tests on X Group I moments based on U Group 3 EDF tests on U* Group 3 
D+ D " D V D S* J Q l Q2 Q3 M G K L  D+ D - D V A^ (J‘ (n/2)

IFR
Alternatives

I 70 55 51 63 55 62 49 64 56 51 42 35 71 57 57 61 I 67 54 34 57 35 60 61 25

U(0,1) 16 82 69 79 81 75 79 63 83 93 85 69 54 56 87 72 71 0 80 75 50 80 48 89 83 73

Welb ( l . s f I 70 55 51 61 55 59 50 65 64 58 45 34 67 63 62 62 0 71 56 30 61 31 61 64 36

I 43 29 26 33 28 28 23 32 37 29 18 11 27 32 33 29 I 38 28 16 30 17 31 33 27

DFR
Alternatives

XÍ 69 I 57 69 62 51 75 61 62 53 51 67 72 80 47 6 70 64 I 59 40 65 40 75 65 47

Weib (0.8)^ 39 3 21 21 26 22 35 30 27 29 27 36 40 32 25 33 34 42 I 30 19 33 22 34 34 26

Iognor (1)'^ 18 18 21 22 23 35 23 22 24 23 24 24 23 14 25 19 12 33 6 23 30 23 33 22 18 18

¿ Cauchy^ 73 2 66 59 69 61 69 70 75 77 79 79 56 73 72 61 79 I 73 66 74 67 72 72 63

^Weib (m) refers to density (10.4) with ß  -  I .
^lognor (m) refers to density f(x) = const exp {-(log  x)^/(2m^)} , x > 0. 

: X is I Y l , where Y  = N (0 ,1).
^¿Cauchy : X is I Y | , where Y  has the Cauchy distribution, median 0.



TABLE 10.7 Power Studies for Tests of Exponentiality, Origin Known (n = 20)

5% one-sided tests: Power results

Group I EDF tests on X Group I
Group I sample 

moments
Group 2 

based on U Group 3I EDF tests on U* Group 3
D - D V W2 A* D S* J Q l Q2 Q3 M G K L

n
D+ D - D V w * U2 A^ T f ^(n/2)

IFR
Alternatives

Significant tail L L L L U U U

x| 0 53 39 36 47 41 43 32 47 56 24 10 5 71 57 57 61 0 52 37 21 44 20 42 61 25

U(0,1) 2 67 54 66 66 61 64 48 73 93 60 27 12 56 87 72 71 0 75 63 35 68 34 82 83 72

Weib (1.5)^ 0 53 38 33 46 39 42 33 51 64 27 10 5 67 63 62 62 0 52 39 18 44 19 47 64 34

0 31 17 17 23 20 19 14 23 37 10 3 I 27 32 33 29 0 28 18 8 18 8 22 33 27

DFR
Alternatives

Significant tail U U U U L L L

Xi 60 0 45 39 54 44 71 51 52 53 45 56 61 80 47 66 70 62 0 50 31 55 30 69 65 47

Weib (0.8)^ 24 0 16 13 20 15 26 22 21 29 23 30 31 32 25 33 34 30 I 22 14 23 13 27 34 26

lognor (1)^ 11 11 13 15 15 16 14 15 15 23 19 18 18 14 25 19 12 14 9 15 21 14 20 13 18 18

2 Cauchy 65 I 58 52 65 53 62 61 61 75 72 74 75 56 73 72 61 73 I 66 62 70 62 68 7 63

^Weib (m) refers to density (10.4) with /1=1.
^^lognor (m) refers to density f(x) = const exp {-(lo g  x)^/(2m^)} , x > 0. 

: X is I Y l , where Y  = N (0 ,1).
^¿Cauchy : X is I Y| , where Y has the Cauchy distribution, median 0.



454 STEPHENS

Roughly speaking, for a sample as large as n = 20, a statistic falls into 
one or other tail (called the significant tail ) according to whether the parent 
population is IFR or DFR. This is, therefore, a natural way to divide the 
alternatives; it also coincides with Cy < I (IFR) and Cy > I (DFR) for most 
populations •

We first look for good omnibus tests, that is, tests which will declare 
significance for the whole range of (IFR and DFR) alternatives. Statistics to 
be compared are: Group I , using the upper tail for significance for EDF 
and Gurland-Dahiya statistics calculated from the X; Group 2, statistics 
derived from U, using two tails for the statistics Moran M, Greenwood G, 
Kendall-Sherman S, and Lorenz L  because samples from IFR alternatives 
are likely to be significant in one tall (superuniforms U) and those from DFR  
alternatives in the other tail; and Group 3, EDF statistics (upper tail) and 

and U(n/2)> two-tail. The Jackson statistic J in Group I is also two-tail; 
other correlation statistics treated in Chapter 5 cannot rightfully be com
pared because they assume unknown origin, except for W g, which is equiv
alent to Greenwood^s. Recall also that several other statistics are equivalent 
to Greenwood^s (Section 10.9.3), several to Ü ’ (Section 10.11.5), and several 
to U(^/2) (Section 10.11.3).

It is obviously impossible to give best procedures against all alternatives, 
but some salient features emerge from the power results (Stephens, 1978, 
1986).

(a) As omnibus tests against both IFR and DFR alternatives (Table 10.6), 
there is not much to choose between the following sets of statistics:
Group I, or W^ or S* or J; Group 2, Moran M, Kendall-Sherman K, 
and Lorenz L; and Group 3, A^ or W^ or Perhaps the most striking 
feature of the power results is how similar they are for these statistics. 
Any of them, at the preference of the user, should do well to provide 
omnibus tests.

It is noteworthy that statistic has very high power; after trans
formation K, Ù* is , of course, easily calculated and has a null distribu
tion which converges quickly to the normal. Note that statistic U(n/2)» 
by contrast, often gives poor power.

(b) Transformation J gives good results when followed by two-tail statistics 
M, G, K, or L; recall that Ü, U(n/2), and EDF statistics (as usually 
used) cannot detect the possibility of superuniforms.

(c) For gamma and Weibull alternatives, Moran M is very good (often best, 
as ejqjected), but loses power against some other alternatives; recall 
that there can be problems with small values. The Lorenz L  and Kendall- 
Sherman K compare well with M overall. For these reasons M might be 
regarded as a "risky” statistic compared to others in (a) above (see the 
discussion in Section 10.10).
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10.13.2 One-Sided or Directional Tests

Since many statistics have a significant tail for IFR alternatives and the 
opposite tail significant for DFR alternatives, such statistics can be used 
with one tall only if it is desired to guard against only one of these types of 
alternative.The tests must be used with care, since they will be biased 
against the other alternative family. Table 10.7 gives power comparisons 
when some statistics are used with one tail only; the size of the test is 
now 5%. For a fair comparison, statistics always used with one tail only, 
such as EDF or sample moment statistics, should now be compared for test 
size 5%. The significant tail of one-sided statistics is indicated in the table.

When the direction of the alternative is known, the Group 3 statistic Ù* 
is again effective, and now is overall better than in Group 3 or Group I. 
The Greenwood, Sherman, and Lorenz statistics compare with but on 
occasion are less powerful; U(n/2) is poor in terms of power. Moran’s sta
tistic is again best of all against gamma and Weibull alternatives, but drops 
behind Ù ’ for other alternatives. Again, EDF statistics (Group I) and EDF 
statistics (Group 3) show remarkably sim ilar results. The power results 
reported form part of a larger study, and values are available (showing sim 
ilar trends) for n = 10 and n = 50.

10.14 TESTS WITH ORIGIN AND SCALE UNKNOWN

We now return to tests of exponentiality for which both a  and ß  in Exp (a,/3) 
are unknown. There are several ways of dealing with two unknown parameters:

(a) in Section 10.3.2 it was shown how such a test situation could be 
reduced to a test of Hq , by making the transformation to m = n -  I new vari
ables Y(I) = X(i+x) -  X(X), i = I , . . . ,  m; Hq may then be tested on the m 
values in set Y  using any of the methods so far given. Several authors have 
suggested this as a way of dealing with the unknown o¿; for example, L^CP)
of Gail and Gastwirth (1978) is explicitly derived in this way, and statistic у 
of Tiku, Rai, and Mead (1974, Section 2) can be derived by applying the K 
transformation to set Y  to give n -  2 values U ’ , and obtaining у as statistic 
U (n -r - l )»  r  = [n + l]/2.

However, the transformation to Y  may not be the best way to handle 
unknown a .  It may be better, for example, to use any of the following 
methods:

(b) EDF tests on X, with a  and ß both estimated from the data, as 
described in Section 4.9.4.

(c) The Shaplro-Wllk statistic W e  given in Section 5.11.5.
(d) The correlation statistics R^(X, m) or R^(X, H) (Section 5. 11. 2).
Spinelli and Stephens (1987) have compared powers of these several

techniques, using samples of size n = 20 and 10% tests, and have given a 
number of tables. Tiku, Ral, and Mead (1974) have also given power studies 
comparing their statistic with the Shapiro-Wllk W g . Splnelli and Stephens
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used only Group I EDF tests on set Y . 
following points emerge:

From the various comparisons the

( I )

(2)

(3)

(4)

(5)

EDF statistics on set Y are slightly less powerful than direct EDF statis
tics where a  and ß are both estimated, as in (b) above, except possibly 
for alternatives with a very high probability of small values (e .g . , Xi 
or Weibull (0.5)).
The direct EDF statistics and (method (b) above) and the Shapiro- 
Wllk W e  give sim ilar power results, but other correlation statistics 
have lower power.
The results of Tlku, Rai, and Mead suggest that with r  =
[(n + 1)/2] (equivalent to their statistic T e ), has better power than has 
the median U(n/2) ^  tests of Hq when a  was known to be zero, but is 
still not as powerful overall as W^ or in direct EDF tests. These two 
are, therefore, the recommended statistics for omnibus tests, since there 
is a problem of consistency with W e  (see Section 5.12).
The significant tall for W jj or T g  is the same as that for Wg, and oppo
site to that for G. These statistics, and also D^ or D** for direct EDF 
statistics, can be used as one-tail tests on one-sided families of alter
natives (DFR or !FR ), with a consequent increase in power.
Splnelll and Stephens showed that when a. is known, it is best, on the 
whole, to use this fact, and therefore to apply the tests given earlier in 
the chapter. Note that the opposite effect has been observed in connection 
with EDF tests for normality (Section 4'. 16. 2 ).

10.15 SUMMARY

From the plethora of tests and power results which have been given in this 
chapter, it would be useful to extract a simple strategy for the practical 
statistician to follow, but this is not easy. Perhaps we should summarize by 
simply repeating four themes which have surfaced throughout the chapter:

(a) Test statistics should be regarded as giving information about the 
data and their parent population, rather than as tools for formal testing 
procedures.

(b) If the data are intervals between events, and if the times of these 
events are known, the natural questions to ask will be more readily answered 
by converting these times to the U -set via the J-transformation, and looking 
at the configuration of the U.

(C) If the data are lifetimes, one must ask what alternative populations 
are of interest. Information on IFR or DFR parent populations can be deduced 
from the spacings between the X; this leads naturally to the N -transformation 
(which gives the normalized spacings) or the K-transformation, with tests to 
follow on the U ’-set. This approach has been much advanced, especially as 
the T  ̂which lead to the U* have the ’̂total time on test" interpretation: how
ever, very similar information is given by direct EDF tests on the original X,
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or, for the important gamma or Welbull alternatives, and if the measure
ments are non-zero, by Moran’s statistic.

(d) For data from other sources, referred to above as ”a general random 
sam ple," it may still be of interest to classify possible alternative populations 
as IFR or DFR, which is roughly equivalent to shorter-tail or longer-tail, 
or to Iow-Cv or to high-Cy; then comments in (c) will still apply.
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11.1 INTRODUCTION

In this chapter we consider a variety of techniques which are appropriate as 
tests of fit when only a certain portion of the random sample from a continu
ous underlying distribution is available. The censoring or deletion of obser
vations can occur in several ways. The type or manner of censoring deter
mines the appropriate method of analysis.

The most common and simple censoring schemes involve a planned limit 
either to the magnitude of the variables or to the number of order statistics 
which can be observed. These are called singly Type I and Type 2 censored 
data, respectively. The number of small (or large) order statistics which 
will be observed in Type I censoring is a random variable. In life testing 
applications it is quite common for an experiment to produce a Type I right 
censored sample by having n items placed on test and recording the values 
O < Y (I ) < • • • < Y (r) of the failure times which are observed up to a fixed 
test time. (In this chapter observations will be referred to as Y , rather 
than X, since in plotting techniques we shall wish to plot observations on the 
vertical, or y -ax is .) Data arising from such a procedure are occasionally 
also referred to as being truncated. If the life test is planned to continue 
until a fixed number, r , of failures occur, then the resulting failure data are 
Type 2 right censored. As another example, if one records only the 10 la rg 
est independent competitive bids on an oil lease, the observed sample is 
singly Type 2 censored on the left. Types I and 2 censoring are sometimes 
referred to as time censoring and failure censoring, respectively.

In the more complicated situation in which the variables are subject to 
different censoring limits the sample is said to be multiply censored. If the
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differing censoring limits are preplanned, as would result from placing 
items on a life test at different starting times with a single fixed termination 
time for the test, the data are progressively censored (Type I ) . Samples 
which are progressively censored (Type 2) occur less often in practice but 
could result, again in life testing, if the units are put on test at the same 
time and then selected fixed numbers of (randomly chosen) unfailed items 
are removed from test immediately after different preplanned numbers of 
failures have occurred.

The unplanned type of censored data which arises most often in practice 
is randomly time censored or arbitrary right censored data. The larger  
values (again usually in life testing) are not observed due to random censor
ing times which are statistically independent of the variable of interest (usu
ally failure times). If some of the units are accidentally lost, destroyed, or 
removed from the study prior to the measurement of the variable (failure 
time) and if these Independent censoring times are recorded then the data 
can still be analyzed for goodness of fit. In certain situations competing 
modes of failure will produce randomly censored data (see Example 11.2.3.2.) 
Combinations of multiply right and left censored data can also arise in prac
tice (see Section 11.2.4).

The graphical technique of examining probability plots (Chapter 2) adapts 
quite easily to the censored sample situation. Subjective impressions should 
be formed with somewhat more caution than in the complete sample case, 
but the computational aspects are essentially unchanged. Probability plots 
are discussed in Section 11.2.

When the null distribution is completely specified, the probability integral 
transformation (see Section 4.2.3) may be employed to reduce the problem  
to a test for uniformity. Section 11.3 presents a number of examples of 
standard EDF (Chapter 4) goodness-of-fit statistics which have been modified 
in a straightforward fashion to accommodate a censored uniform sample. 
Adaptations for correlation (Chapter 5) and spacings (Chapter 8) statistics 
are also discussed. For Type 2 censored samples a transformation of the 
uniform order statistics is described which makes it possible to analyze the 
data as if it were a complete random sample.

In testing fit, it is a common situation for the null hypothesis to be 
composite; the hypothesized parent population is not completely specified, 
but only the form F(x|6) of the cumulative distribution function (cdf) is given. 
Here Ö is an indexing parameter; it may be a vector of several components, 
some known and some unknown. One very natural approach which has been 
taken in the complete sample case is to replace the unknown components in $ 
b y  efficient estimators (for example, the m .l.e . 9) and then to calculate a 
statistic based on F(x|6) as if it were the completely specified distribution 
function. This has been done, for example, in many of the tests in Chapters 
4 and 5. Censoring presents an extra complication for this approach simply 
because of increased complexity of efficient estimators of $• A variety of 
results for the composite hypothesis problem are examined in the final
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Section 11.4. Adaptations of the chi-square procedure are not covered in 
this chapter. For some discussion on this topic, see Section 3.4.2.

11.2 PROBABILITY PLOTS

Probability plotting has been described in Chapter 2 as a valuable technique 
for assessing goodness of fit with complete samples. This extends naturally 
to incomplete samples for most types of censoring. Even in the case of 
multiple censoring a probability plot can often be constructed quickly using 
only ordinary graph paper and a hand calculator.

In Section 11.2.1, the construction of probability plots for complete 
samples is reviewed. The method is extended to singly-censored samples 
in Section 11.2.2, to multiply right-censored samples in Section 11.2.3, 
and to other types of censoring in Sections 11.2.4-11.2.6. An easy-to-use 
summary of the steps required in constructing a probability plot is given in 
Section 11.2.7.

11.2.1 Complete Samples

Let Y ( I ) , Y (2), • • • . Y(n) be a complete ordered random sample of size n 
and let F(y| д,(7) be the corresponding cdf where /x and cr are unknown location 
and scale parameters, respectively. (Note that ¡jl and a  are not necessarily 
the mean and standard deviation.) When there is no ambiguity F(y| /х,(т) will 
be shortened to F (« ) or F.

Since fJL and a  are location and scale parameters, we can write (as was 
done in Formula (2.9))

F(y|/i,cr) = g ( 2 ^ )  = G(Z)
 ̂ Cr '

(11. 1)

where Z = (Y -  fi)/<j is referred to as the standardized variable and G (z ), 
also referred to as G (-) or G, is the cdf of the standardized random variable. 
Using obvious notation, it follows that, using E for expectation or mean,

where Z(i) is the ith order statistic from the standardized distribution, and 
m| is E {Z (i ) } .  Similarly, for 0 < pj < I,

P^-th quantile of F(y ß ,a )  = M + crfp.-th quantile of G (z )}

= M+(T[G-i(p^)]

where G”  ̂ is the inverse function of G.
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We can regard Y (j) as an estimate of its mean, or of the Pi-th quantile 
of F(y; д ,о), where pi is an appropriate probability. In constructing a proba
bility plot we could plot the Y (i) on the y-axis versus mi on the x-axis. If the 
sample is in fact from Г(у;д,(г) then the points will tend to fall on a straight 
line with intercept ß  and slope a -  We then test our distributional assumption 
by visually judging the degree of linearity of the plotted points. Methods 
based on regression and correlation are discussed in Chapter 5.

It should be noted that if the null hypothesis is simple, that is, the values 
of all distributional parameters are specified beforehand, we can plot the 
Y(I) against their hypothesized means and then judge whether the plotted 
points fall near a straight line with intercept 0 and slope I .

A drawback to using means of order statistics is that they are often 
difficult to compute. Quantiles, on the other hand, are easy to compute as 
long as F is easy to invert. A plot of the sample quantiles Y(i) versus theo
retical quantiles of G is a probability plot as defined in Chapter 2; it is also 
called a quantile -quantile or Q -Q  plot (Wilk and Gnanadesikan, 1968). How
ever, the plots will be different from those in Chapter 2 where the observa
tions were plotted on the horizontal or x-axis; here they are plotted on the 
vertióle or y -axls. Special probability plotting paper is available for many 
families of distributions, but as was stated in Chapter 2 no special graph 
paper is required if F can be inverted in closed form or if standard quantiles 
are available from tables or approximations. Often a scientific calculator 
and ordinary graph paper are all that one needs.

Table 11.1 lists the cd fs  of some common families of distributions 
along with the formulas required to construct probability plots. The reader 
is referred to Chapter 2 for further discussion of these distributions. In 
this context the will be referred to as quantile probabilities.

There is much discussion in the literature over the best choice of quan
tile probabilities for Q-Q plots (see Kimball (1960) and Barnett (1975)). A  
frequently used formula is given by Pi = (I -  c)/(n -  2c + I ), where c is some 
constant satisfying 0 < c < I . The choices c = 0 and c = 0.5 (see Chapter 2) 
are both popular. Here we use c = 0.3175 since the resulting probabilities 
closely approximate medians of uniform (0 ,1) order statistics (Filliben, 
1975). This choice has the attractive invariance property that if pj is the 
median of the ith order statistic from the uniform (0 ,1) distribution, then 
G “^(pj) is the median of Z (i) and F~^(pi) is the median of Y (I ), for any con
tinuous F . Medians may also be preferred as measures of central tendency 
since the distributions of most order statistics are skewed. In the examples 
that follow we will adhere to the convention of choosing c = 0.3175 unless 
stated otherwise. Thus we will plot the points

{G - '(p , ) ,  Y  ) (U.2)

where pi = (I -  0.3175)/(n + 0.365). The particular choice of quantile proba
bilities is not crucial since for any reasonably large sample different choices
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TABLE 11.1 CDFs and Plotting Formulas for Selected Families 
of Distributions

Distribution^ F(y) Abscissa Ordinate

Uniform 

Normal 

Lognormal 

Exponential 

Extreme-value

Weibull

Laplace

Logistic 

Cauchy

JLzJi
a

Ф 
Ф

I  -  exp 

I

pog(y) - mJ

-exp [-exp (2 - ^ ) ]

i.exp(2-^), y < M

l /  [l + e x p ( - 5 ^ ) ]

1 + i  • arctan ~ **)2 X '< a  '

* > , )

* > 1 >

log [1/(1 -  pj)] 

lo g {lo g [l/ (l -P j ) ] }

log {lo g [1/(1 - P j)] }

lo g ( 2 P j) .  P j  < 2

log [1/(2-2pj)], Pj > I

log [pj/(l -  Pj)l

t a n [x - (p j -| ) ]

(I)

(I)

(I)

(I)

log

(i)

(i)

(i)

^ iç )port of each distribution is ( - »  < y < » )  except for the uniform { ß < y  
< Д + a), lognormal (y > 0), е^фопеп^а! (у > д), and Weibull (у > 0).

w ill have little effect on the appearance of the main body of the plot. There 
may be some noticeable differences, however, for extreme order statistics 
from long-tailed distributions. (The reader should note that in Chapter 2 the 
P l of (11.2) was symbolized by Fn(y), the empirical distribution function.)

E 11. 2. 1. 1 Uncensored Normal Example

Data for this example consist of the first 40 values from the NOR data set 
which were simulated from the normal distribution with д = 100 and cr = 10. 
A normal probability plot is shown in Figure 11.1. The normal distribution 
provides a good fit to the data. Note that the intercept and slope of a straight 
line drawn through the points provide estimates of the theoretical mean and 
standard deviation. (The reader should compare Figure 11.1 to Figure 2.15
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FIGURE 11.1 Normal probability plot of the first 40 observations from the 
NOR data set.

where the full NOR data set is plotted with X and Y  axes interchanged from  
Figure 11.1.)

11.2.2 Singly-Censored Samples

The method of the previous section can be applied directly In any situation 
where the data consist of some known subset of order statistics from a ran
dom sample. This is because the available are still sample quantiles 
from the complete sample and appropriate quantiles of G can be calculated 
as before. Although only a portion of the observations from the hypothetical 
complete sample can be plotted, the plotted positions of the uncensored points 
are the same as when the complete sample is available. The only difference
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Is that points corresponding to censored observations do not appear. The 
simple example of this is the case of a singly-censored sample.

E 11 .2 .2 .1 Right-Censored Normal Example

Data for this example consist of the smallest 20 values among the first 40 
values listed in the NOR data set. A normal probability plot is shown in 
Figure 11.2. This plot is merely an enlargement of the lower portion of the 
plot shown in Figure 11.1.

The plotting procedure is the same for Type I as for Type 2 singly- 
censored samples; however, with Type I censoring there is one additional 
piece of information, namely the censoring time, that can be represented 
graphically. Suppose we observe the r  smallest observations from a random

JQO
■o

Theoretical Quantiles

FIGURE 11.2 Normal probability plot of the smallest 20 of the first 40 
values listed in the NOR data set.
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sample of size n. For a location and scale family we plot the points (G“^(p¿), 
Y(i)) for 1 = 1, 2, r . Now suppose that the censoring is Type I and that 
the observations are all those that are less than some predetermined value t; 
thus Y(XH-I) must be greater than t. This additional Information can be given 
by plotting the point {G "^(pj4-]^),t} with a symbol such as an arrow pointing 
up, thus indicating the range of possible values for Y (xh^̂x)* Nelson (1973) 
Illustrates this technique.

11.2.3 Multiply Right-Censored Samples

The method of probability plotting extends easily to multiply right-censored 
samples; however, the computation of quantile probabilities is more compli
cated. For ease of explanation we w ill first consider the special case of 
progressive Type I censoring, but the methodology can be applied to any 
multiply right-censored sample. Suppose we place n units on test, using 
several different starting times, and terminate the experiment at time t.
Now let Y (I ) < Y (2) < • * • < Y(n) denote the ordered lifetimes of the n units, 
some of which are failure times and some of which may be censoring times. 
If we observe r  failures, then (n -  r) units are still operating at time t. In 
this case the observed time to failure Y (i) does not necessarily represent 
the ith largest observation from the hjqpothetical complete sample, and Y (y  
cannot be regarded as a sample quantile from the complete sample (unless 
Y ( I ) » Y (2) , . . . ,  Y(n) are all failure tim es).

We still wish to plot the r  failure times against theoretical quantiles 
from G. The question now becomes, what proportion of the population falls 
below Y (i), or equivalently, what is the value of F (Y (i) I д,(т). Kaplan and 
Meier (1958) discuss the maximum likelihood nonparametric estimator of F 
for the case of a multiply right-censored (Type I) sample. If S is the set of 
subscripts corresponding to those units which fail during the course of the 
exprim ent, then the Kaplan-Meier (K-M ) estimator is given by

■ П
je s

j:Y .<y

±
n -  j + I

(This estimator is undefined for y > Y(n) if Y(u) is not a failure time.) In the 
case of a complete sample the K -M  estimator reduces to the familiar EDF 
Fn(y) = (the number of Y (j )  < y)/n, discussed in Chapter 4. The estimated 
probability at the point Y j provided by the Kaplan-Meier estimator is given 
by

p.(K -M ) = 1 - 1
je s
3<i

n -  j + I (11.3)
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for i £ S. Herd (1960) and Johnson (1964) propose the sim ilar quantile prob
abilities

p.(H-J) = I -  П 

3<i

+ I (11.4)

for i e  S. Implicit In the work of Nelson (1972) are the quantile probabilities

Pj(N) = Ц exp ( -
jeS
i l l

T T - . )
(11.5)

for i £ S. Nelson refers to his method as (cumulative) hazard plotting, but 
it is equivalent to probability plotting with the above special choice of quan
tile probabilities. An algebraic comparison reveals that р^(К-М) > Pi(N) > 
Pi(H-J) for all I £ S. For a discussion of the properties of the Kaplan- 
Meier estimator see Peterson (1977). Results by Breslow and Crowley (1974) 
apply to the Kaplan-Meier estimator and the estimator implicit in the work 
of Nelson. See Gaver and M iller (1983) for a discussion of the jackknife 
technique for approximate confidence intervals in this setting. For a com
plete sample the formulas (11.3), (11.4), and (11.5) for quantile probabilities 
reduce to i/n, i/(n + I ),  and [ I  -  eзф (-Si)], respectively, where sj =

(n -  j + 1)“ .̂ The choice of probabilities given by

' n - 2 c +  I .Ii n -  j -  C + 2

3<i

(11.6)

reduces to (i -  c)/(n -  2c + I) with a complete sample. As a special case, 
Pi(C) = Pi(H-J) when C = O. In the examples that follow we will remain con
sistent with Section 11.2.1 and use (11.6) with c = 0.3175 unless stated 
otherwise. Again for purposes of assessing goodness of fit the particular 
formulation for quantile probabilities is of little consequence.

E 11. 2. 3. 1 Multiply Right-Censored Example

Data for this example consist of the 100 observations from the WE2 data set 
which were simulated from the Weibull distribution with cr = I and m = 2.
The data were censored as follows: observations among the first, second, 
third, and fourth sets of 25 were recorded that were less than I, 0.75, 0.50, 
and 0.25, respectively. This tj^e of progressive Type I censoring could have 
occurred if four sets of 25 devices were placed on test at times 0, 0.25,
0.50, and 0.75 with the experiment terminating at time I. The 100 values
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TABLE 11.2 Progressively Censored Data from the WE2 Data Set

I Failure time K-M

Quantile Probabilities

N H-J C = 0.3175

1
2
3
4
5
6

30
31
32
33
34
35
36
37
38
39
40
41
42
43 
61 
62
63
64
65
66 
67
85
86
87
88
89
90

0.09
0.14
0.16
0.18
0.18
0.20
0.27
0.30
0.32
0.33
0.33
0.34
0.34
0.36
0.38
0.40
0.42
0.43
0.47
0.49
0.51
0.56
0.62
0.65
0.68
0.71
0.74
0.76
0.78
0.92
0.93
0.95
0.97

0.0100.020
0.030
0.040
0.050
0.060
0.073
0.086
0.100
0.113
0.126
0.139
0.153
0.166
0.179
0.192
0.206
0.219
0.232
0.245
0.264
0.283
0.302
0.321
0.340
0.359
0.377
0.416
0.455
0.494
0.533
0.572
0.611

0.010
0.020
0.030
0.040
'0.050
0.060
0.073
0.086
0.099
0.112
0.125
0.139
0.152
0.165
0.178
0.191
0.204
0.218
0.231
0.244
0.262
0.281
0.300
0.318
0.337
0.356
0.375
0.412
0.450
0.488
0.526
0.564
0.602

0.010
0.020
0.030
0.040
0.050
0.059
0.072
0.086
0.099
0.112
0.125
0.138
0.151
0.164
0.177
0.190
0.203
0.216
0.229
0.242
0.261
0.279
0.298
0.316
0.335
0.353
0.372
0.409
0.446
0.483
0.520
0.556
0.593

0 0.007 
0.017 
0.027 
0.037 
0.047 
0.057 
0.070 
0.083 
0.096 
0.109 0.122 
0.136 
0.149 
0.162 
0.175 
0.188 0.201 
0.215 
0.228 
0.241 
0.260 
0.278 
0.297 
0.316 
0.334 
0.353 
0.371 
0.409 
0.447 
0.485 
0.522 
0.560 
0.598
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Theoretical Quantiles

FIGURE 11.3 Welbull probability plot of progressively censored data from  
the WE2 data set.

(censored and failed) were ranked from smallest to largest. The 33 failure 
times are listed in Table 11.2 along with four different choices of quantile 
probabilities. Ofthe 67 censored devices, 23, 17, 17, and 10 devices had 
censoring times of 0.25, 0.50, 0.75, and 1.00, respectively. Onepurpose 
of this example is to show how close the agreement can be for different 
choices of quantile probabilities. Note also the relationship p j(K -M ) > pi(N)
> Pi(H -J). A Weibull probability plot for the data using pi(c) with c = 0.3175 
is shown in Figure 11.3.

The remarks made in Section 11.2.1 and Chapter 2 concerning the inter
pretation of probability plots with complete samples hold also for the case of 
multiple censoring. However, in the case of a multiply right censored 
sample, the effect of censoring is to Increase the variability on the right- 
hand side of the plot.



472 MICHAEL AND SCHUCANY

TABUE 11.3 Life Data for Mechanical Device

Failure Mode Quantile Probabilities

I Time A B Device A B

I 1.151 X 0.017 0.017
2 1.170 X 0.042 0.042
3 1.248 X 0.066 0.066
4 1.331 X 0.091 0.091
5 1.381 X 0.116 0.116
6 1.499 X 0.141 0.020
7 1.508 X 0.166 0.141
8 1.534 X 0.190 0.167
9 1.577 X 0.215 0.192

10 1.584 X 0.240 0.218
11 1.667 X 0.265 0.052
12 1.695 X 0.289 0.084
13 1.710 X 0.314 0.116
14 1.955 X 0.339 0.246
15 1.965 X 0.364 0.149
16 2.013 X 0.389 0.276
17 2.051 X 0.413 0.305
18 2.076 X 0.438 0.334
19 2.109 X 0.463 0.187
20 2.116 X 0.488 0.365
21 2.119 X 0.512 0.396
22 2.135 X 0.537 0.228
23 2.197 X 0.562 0.269
24 2.199 X 0.587 0.430
25 2.227 X 0.611 0.313
26 2.250 X 0.636 0.466
27 2.254 X 0.661 0.360
28 2.261 X 0.686 0.505
29 2.349 X 0.711 0.544
30 2.369 X 0.735 0.415
31 2.547 X 0.760 0.470
32 2.548 X 0.785 0.524
33 2.738 X 0.810 0.597
34 2.794 X 0.834 0.586
35 2.883 (Working)
36 2.883 (Working)
37 2.910 X 0.870 0.675
38 3.015 X 0.905 0.763
39 3.017 X 0.941 0.851
40 3.793 (Working)
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For Type 2 multiple right censoring consider the following simple situ
ation. We place n units on a life test and when the rth unit fails we remove 
all but a fraction ф of the remaining working units. We then observe the 
failure time of those units not removed. In this situation the pi(c) values can 
be obtained from (11.6) where Y (i )  < • • • < Y (r) are the first r  failure times, 
Y (r+ i) = • • • = Y(r+(n-r)(l-<i>)) are the censoring times of the removed items 
and ^ ( г + ( ц - г ) { 1 - ф ) + 1 ) *  • • • » ^(n) ^be failure times of the items that were 
not removed. The set S in formula (11.6) consists of the indices of the first 
r  failure times and the last (n -  г)ф failure times, and a probability plot can 
be drawn as described above. More elaborate Type 2 multiply right-censored 
samples are handled in the obvious manner.

E 11. 2. 3.2 Competing Modes Example

Data for this example consist of the lifetimes, measured in millions of oper
ations, of 40 mechanical devices. The devices were placed on test at differ
ent times, and three were still working at the end of the experiment. The 
data are presented in Table 11.3. Only two modes of failure were observed: 
either comoonent A failed or component B failed. These two components are 
identical in construction, but they are subject to different stresses when the 
device is operated. Thus their life distributions need not be identical. Quan
tile probabilities are given in Table 11.3 for the device as a whole, compo
nent A, and component B under the columns headed “device,” “A ,” and “B ,“ 
respectively. The data for the device are multiply censored since the 35th, 
36th, and 40th ordered lifetimes are incomplete. In addition, observations 
on component A are censored by failures of component B and vice versa.
This is an example of random censoring caused by competing modes of 
failure.

Probability plots for the individual components were constructed using 
several common life distributions. The lognormal distribution seemed to 
offer the best fit. Lognormal probability plots are shown for components A 
and B lnFigure 11.4(A). The intercepts and slopes of the two lines suggested 
by the plots appear to be different. This raises the possibility that, while 
the life distributions of the two components may be of the same family, the 
distribution parameters may be different. A distracting feature is the notice
able gap near the center of the plots. The natural tendency is to expect too 
much orderliness and to declare that something unusual has occurred. But 
such anomalies frequently arise by chance and should not be taken too seri
ously. The reader is referred to Hahn and Shapiro (1967), pages 264-265, 
for an example of a plot in which the same unusual feature has arisen by 
chance.

If the life distributions for components A and B are independent and log
normal, then the life of the device is distributed as the minimum of two log
normal random variables. For illustration we assume the equality of param
eters . The cdf of the device is then given by
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Fíylíí.a-) = I -  <1 _ ф [Ь б (у )

А probability plot for this distribution is constructed by plotting the points

{ф-*(1 log (Y  ) } (11.7)

Such a plot is shown in Figure 11.4(B). If it is desired to fit different sets of 
parameters to the individual components, we can always estimate them using, 
say, the method of maximum likelihood. The estimated cdf of the device, 
however, would then be difficult to invert. One way around this is to estimate 
the probability integral transformation with F ( - 1 Mi, Д2 »^2)
F(yil Ml ,М2 >3-1 ,^ 2) versus the pi* This approach is described more fully in

Theoretical Quantiles

FIGURE 11.4(A) Lognormal probability plots for components A and B.
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FIGURE 11.4(B) Probability plots for the mechanical device where the 
assumed distribution is the minimum of 2 1.1.D . Iognormals.

Section 11.3. Note finally that the derivation of special theoretical quantiles 
given in (H o 7) would not have been necessary if we had modeled the lifetimes 
of the components as exponential, extreme-value, or Weibull random vari
ables . This is because the minimum of any number of independent identically 
distributed random variables from one of these families is also of the same 
family.

Although the development in the last example is somewhat speculative 
in nature, it does serve to illustrate the versatility and usefulness of proba
bility plotting, as well as its subjective and limited ihterpretability.

11.2.4 Other Тзфее of Multiple Censoring

There are other more complicated t5̂ e s  of multiple censoring which can 
arise in practice. A few of these will be discussed below. The thought to
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keep in mind is that a meaningful probability plot can always be constructed 
as long as the parent cdf can be estimated.

Occasionally, data arise which are multiply left-censored. If the obser
vations are all multiplied by - I  then the resulting values can be viewed as 
being multiply right censored. We can now determine quantile probabilities 
using the formulas of Section 11.2.3. In terms of the subscripts of the orig
inal observations, the probabilities р|(с) given by the formula

/ Ч n -  C + Pj(C) = - 2c
L i  П _ i
+ I .“ o 3 -je s  ^

j > i

-  C
C + I (11.8)

reduce to (i -  c)/(n -  2c + I) with complete samples.
A more complicated situation can occur when the data are both multiply 

right- and multiply left-censored. If all of the left-censored observations 
are not less than all of the right-censored observations, then quantile proba
bilities can no longer be calculated using a simple formula. But appropriate 
probabilities can still be determined as long as the cdf can be estimated 
nonparametrically. Turnbull (1976) shows how to calculate the maximum 
likelihood nonparametric estimate of the cdf when the data are arbitrarily  
right and left-censored, grouped and truncated.

Quantal response data occurs when each observation is either right- or 
left-censored. In the following example the sample size is so small that firm  
inferences cannot be drawn; however, the example does show how quantal 
response data can arise, and does serve to illustrate how to construct a 
probability plot with such data.

E 11. 2.4 . 1 Quantal Response Example

It is desired to investigate the nature of the distribution of the shelf life of a 
certain electronic set. A total of 47 sets are Involved in the study. After 
days on the shelf the ith set is tested and is found to be either good or bad. 
The set is never observed again. Thus a good set constitutes a right censored 
observation whereas a bad set constitutes a left censored observation. The 
number of days on the shelf at the times of test are as follows with failures 
indicated by an asterisk: 20, 22, 23, 25, 26, 27, 28, 29*, 30, 31, 37, 37,
37, 41, 42, 43, 62, 69, 69, 78, 92, 92, 93, 114, 117, 124*, 128*, 130, 136, 
151, 211, 226, 231, 242, 244, 244, 244, 244, 245*, 245, 245, 250, 259*,
259, 287, 317, and 340 days. Using the recursive algorithm given by Turnbull 
(1976), the maximum likelihood nonparametric estimate of the cdf is found 
to be
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Fn(y) =

0 -CO < у <

undefined 28 < у <

.056 29 < у <

undefined 117 < у <

.143 124 < у <

undefined 244 < У <

.222 245 < у <

undefined 340 < у <

Four values of у were selected for purposes of probability plotting: 28.5, 
120.5, 244.5, and 340. The first three are the midpoints of the three closed

I Z А

1 Z А

1 Z А

1 Z  А 
¥ Gamma

FIGURE 11.5 Probability plots for the shelf life of electronic sets 
(gamma shape parameter = 1 , 2 ,  and 4; origin for gamma plots is shown 
as V
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Intervals which are assigned probability, and the last is the largest value for 
which Fn(y) is defined. The four probabilities used are 0.028, 0.099, 0.127, 
and 0.222. The first three are the midpoints of the jumps and the fourth is 
equal to Fn(340). Probability plots are shown in Figure 11.5 for four fami
lies commonly used to model lifetimes. The lognormal, gamma (with origin 0 
and shape near I ), and Weibull distributions all appear to fit the data well. 
These results are not inconsistent since the gamma distribution described 
(езфопепйа! distribution with origin zero) is a member of the Welbull family, 
and the lower portions of the Weibull and lognormal cdfs are very sim ilar.

Any conclusions, however, are highly tentative because of the small 
sample size and the severity of the censoring. If we use a jackknife technique 
or the theory of m .l.e . (see Turnbull, 1976) to estimate the variances of 
probabilities assigned to each of the four Intervals, it then appears that none 
of the models considered in Figure 11.5 can be soundly rejected.

Grouping is perhaps the most common form of censoring encountered in 
practice. Each grouped observation is both right- and left-censored. Quantile 
probabilities can be calculated using the formula for a complete sample. One 
approach to constructing a probability plot is to represent each observation 
with the endpoint (or midpoint) of the Interval in which it falls. The resulting 
plot will have a stairstep appearance with the number of steps equal to the 
number of groups. One advantage of this approach is that the sample size is 
evident. A simplification is to plot only one point per group.

11.2.5 ProportionalHazards

A quasl-nonparametric method for analyzing survival data was proposed by 
Cox (1972, 1975). The method is parametric in that it is assumed that the 
hazard functions for the observations are all proportional. But the method is 
nonparametric in that no prior restrictions are placed on the form of the 
hazards (and hence the cdfs). The cdf for a particular observation is esti
mated using all the data. This estimate then provides the appropriate quantile 
probabilities for purposes of probability plotting.

The Weibull (or exponential) family is the only family for which it makes 
sense to construct a probability plot after having assumed the proportional 
hazards model. This is because, for the Weibull family, a multiplicative 
change in the hazard function is equivalent to a change in the scale parameter. 
Thus it does not matter which cdf is estimated since the resulting probability 
plots will differ only in the labeling of their axes, and not in the degree of 
linearity of the plotted points.

11.2.6 Superposition of Renewal Processes

Finally, a very different situation will be described which perhaps stretches 
the definition of the term censoring.*  ̂ Suppose we have n units that all begin
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operation at the same time. If a unit fails, it is instantly replaced with a new 
unit. It is assumed that the lifetimes of the original and replacement units 
are independent and identically distributed with cdf F . The exact times of 
failures are known but not the identities of the failed units. Except for the 
first failure, then, we cannot be sure for the ages of the failed units. We 
thus observe a superposition of renewal processes. The failure times are 
not censored here, but the identities and therefore the ages of the failed units 
are censored in a sense.

Trlndade and Haugh (1979) describe a method for the nonparametric esti
mation of F in the above situation. The renewal function, M, is estimated 
using a straightforward nonparametric method. The parent cdf is then esti
mated by eiqploiting the relationship of F to M through the fundamental re 
newal equation. For any particular set of points in time, the estimate of F 
provides appropriate probabilities for determining corresponding theoretical 
standard quantiles for purposes of probability plotting. Again we will empha
size that a meaningful probability plot can always be constructed as long as 
the parent cdf can be estimated using a nonparametric method.

11.2.7 Summary of Steps in Constructing 
a Probability Plot

Below are given the steps required in constructing a probability plot with 
uncensored, singly-censored, multiply right-censored, and multiply left- 
censored data. The user must provide a value of the constant c with 0< c< I .  
The values c = 0.3175 and c = .5 are popular.

(1) Let Y ( I ) , Y (2)» •••> Y(n) denote n ordered observations, some of 
which may be censored, and let S be the set of subscripts corresponding to 
the observations in the ordered list that are not censored.

(2) Determine quantile probabilities p¿ for each i e  S using one of the 
following formulas:

(i -  c)/(n -  2c + I, for complete or singly-censored samples 

n -  C + I Tl n -  j -  C +  I
n -  2c

Ti 5 — ]y  C +1  ̂ multiply right-censored
“* X . П — I -  C* r ^

jeS samples
j < i (11.9)

n -  C
n -  2c“Г Т  II ■ » for multiply left-censored samples

3es

(3) Enter Table 11.1 and find the line corresponding to the hypothesized 
family of distributions. Plot the entry under ”abscissa" versus the entry 
under ’’ordinate” for each i e  S.
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11.3 TESTING A SIMPLE N U LL  HYPOTHESIS

For this section it is assumed that the hypothesis of interest is Hq : the 
sampled population has the completely specified absolutely continuous cdf 
F(y ). As in other chapters, this situation is called Case 0. For most of the 
discussion the data at hand will consist of a singly right-censored sample 
(Type I or Type 2), that is, the set of r  smallest order statistics Y (i ) ,  . . . ,  
Y (r)* The probability integral transformation U(i) = F (Y (i)), 1 = 1 ,  . . . ,  r , 
can be applied, and an equivalent test of fit is that the < * ”  < U (r) are 
the r  smallest order statistics of a random sample of size n from the uni
form (0 ,1) distribution. If the data are Type I censored at у = y* and if 
t = F (y*), then r  is a random variable giving the number of order statistics 
for the uniform random sample which are less than t ; if the data are Type 2 
censored, then r  is fixed in advance.

Many of the methods which have been discussed in earlier chapters have 
been adapted to accommodate censoring of both tзфes. These include censored 
versions of EDF statistics (Section 4.7), correlation-type tests (Section 5.5) 
and tests based on spacings (Section 8.9). Later we examine procedures in 
which the order statistics U (i), i = I, . . . ,  r , are transformed to new values 
which under Hq are distributed as a complete uniform sample. Then any of 
the many tests for uniformity for a complete sample (Chapter 8) may be ap
plied to the transformed values.

11.3.1 EDFStatistics

In Chapter 4, censored versions of EDF statistics were introduced. We w ill 
now illustrate the use of these statistics by appl3dng them directly to a 
censored sample.

TABLE 11.4 Hypothetical Survival Data 
and Transformed Observations

i
^(1) % ^(1)

I .1 .00995 .03979
2 ,2 .01980 .07918
3 .3 .02955 .11815
4 .4 .03921 .15681
5 o7 .06761 .27038
6 1.0 .09516 .38056
7 1.4 . 13064 .52245
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E 11. 3. 1. 1 Exponential Example

This Is an example is of Type I censoring. Barr and Davidson (1973) give 
the smallest 7 observations in a Type I censored sample of size n = 20. The 
hyp>othesized null distribution is the exponential distribution F(y) = I  -  
езф(-у/Ю ), у > 0, with a censoring value at y* = 2.2. Table 11.4 gives the 
values Y (I ), with the values U(I) given by U(i) = F {Y ( í) } ,  i = I, . . . ,  7. The 
Type I censoring value for u is then t = F(2.2) = 0.1975. The Z (i) values 
shown here are first discussed in Section 11.3.3.3.

In Section 4 .7 .2 , the Kblmogorov-Smirnov statistics iD t,n  and 2^r,n  
for censored data of Types I and 2, respectively, are defined; it is also 
shown how these may be transformed and referred to the as3nnptotic distri
bution tabulated in Table 4.4. Alternatively, the exact tables for finite n, 
given by Barr and Davidson (1973) may be used. Working from the values U(i) 
of Table 11.4, the statistic is found to be 7/20 -  0.131 = 0.219, with
t = 0.1975 and n = 20. Direct interpolation in the tables of B arr and Davidson 
gives the approximate significance level p = 0.11. Alternatively, use of the 
formulas of Dufour and Maag (1978) (Section 4.7) 3delds the modified statistic 
D* = 4.472(0.219) + 0.19/4.472 = 1.022. Reference to the asymptotic points 
in Table 4.4 then gives a p-value of approximately 0.10. If the data had been 
Тзфе 2 censored, the formulas would give a modified statistic D * = 1.033 
with p-value approximately 0.095. Percentage points of the as3nnptotic dis
tribution are derived and tabled for the Kulper statistic, = i D^^q + 
lDt,n* under Type I right censoring by Koziol (1980a).

InSection 4.7.3 two types of Cram^r-von Mises statistics for censored 
data are given. The first type is denoted by x^t»n  right censored data 
of Type I. The second is for Type 2 censoring. Both were derived by Pettitt 
and Stephens (1976a, b) by adapting the complete-sample definitions of these 
statistics. For the U(i) of Table 11.4, we have 2 20 ~

A^ O ОЛ ” 1-214. Referring to Table 4.4 with t = 0.2 gives p-values 0.008

and 0.005, respectively. If the data are treated as Type 2 censored, the test
statistics become = C.057 and A i  = 0.863; referring to Table2 I , Ai) A I , Ai)
4.5 with P = r/n = .35 gives approximate p-values of 0.25 and 0.08.

E 11.3.1 .2 Uniform Example

This is an example of Type 2 censoring. Consider the first n = 25 values 
from the UNI data set, rescaled to the unit interval. Simpóse that the sm all
est r  = 15 values from this set are available and are to be tested for fit as
uniform order statistics. The observed value of ^D = 0.216 and (^/ñ) D

2 r ,n  ' '2  r ,n
= 1.08; then D* (Section 4. 7) is 1.08 + . 24/5 = 1.128 and reference to the 
tabulated asymptotic distribution gives a p-value of 0.1296.

The p-value may also be computed from the formula for the asymptotic 
distribution given by Schey (1977) and quoted in Section 4.7.2.  The value of
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t = 15/25 = 0.60; this gives At = 2.041, Bt = 0.408 in the notation of Section 
4.7.2,  and then Gt(1.128) is 0.9362. The observed significance level for 
the two-sided test is then approximately 2(1 -  0.936) = 0.128.

Comment A . Use of the censoring information

When the observations U(i) are to be tested for uniformity, the value of t, 
or of r  (whichever is given) is important, in addition to the values U (i). Thus, 
for example, in Table 11.4, there are 7 observations out of 20 below 
t = 0.1975, a number larger than expected. If the sample had been Type 2 
censored, we could observe that the largest observation U (7) is 0.131, much 
smaller than the expected value 0. 333, These facts are implicitly used in 
calculating the EDF statistics. Also, the value of U (r)» although not the value 
of t, is used in the censored version of spaclngs statistics (Section 8.9).

Comment B . Random censoring

Extensions of EDF statistics to situations involving randomly censored 
data generally involve a Kaplan-Meier estimator for the true distribution 
function. For versions of the Kolmogorov-Smimov, Kuiper, and Cram ár- 
von Mises see Koziol (1980b), Nair (1981), or Fleming et al. (1980), who 
obtain asymptotic distributions and examine the adequacy of small sample 
approximations.

11.3.2 Correlation Statistics

The statistics in this class, as discussed in Chapter 5, basically focus upon 
the strength of the pattern of linear association which is present in probability 
plots (see Chapter 2 and Section 11-2). Suppose all the observations U(i) are 
known between U(s) and U(r) • These may be plotted against mi = i/(n + I ) , 
i = s, . . . ,  r ,  and the coefficient R (X,m ) may be calculated as described in 
Section 5.1.2. Because is scale-free, the value obtained is the same as 
if the were correlated with i, from I to r  -  s + I . The U(i) are a subset 
of order statistics from (0 ,1) and will themselves be uniform between limits 
which may or may not be known. In either case, the distribution of R^ so 
calculated is the same under Hq , as that of R^ for a full sample of size 
r  -  S + I . Thus Table 5 .1 may be used to make a test. The weakness in this 
test procedure is that it does not make use of any Type I censoring values.
In Chapter 5 it is shown how this may be overcome, by including the censor
ing limits in the observed sample. The value of R^ calculated from these 
values w ill have the same null distribution as R^ calculated from a complete 
uniform sample of size r  -  s + 3, so that again Table 5 .1 can be used.

E 11. 3. 2 ♦ I Exponential Example Revisited

For the r  = 7 values of U(i) in Table 11.4 the correlation coefficient R(X,m ) 
= 0.964, which yields T = r ( l  -  R^(X,m )) = 0.49. Reference to Table 5.1
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shows that this value is not significant even at the 50% level. If the endpoints 
S = O and t = 0.1975 are included, then T = 1.071, which is significant at 
the .20 level approximately.

11.3.3 Transformations to Enable Complete-Sample Tests

11.3.3.1 Conditioning on the Censoring Values

When all the values from U(s) to U (r) (s < r) are available, the test of 
H(,: that these are a subset from an ordered uniform sample, can be changed 
to a test for a complete sample. There are several ways to do this. The 
simplest method is as follows. For Type I censoring siq>pose the lower cen
soring value is A and the upper censoring value is B, and let R = B - A ;  
then under Hq the values V(i) = (U(i) -  A)/R, i = I, . . . ,  r  -  s + I, w ill be a 
complete ordered uniform sample on the unit interval and can be so tested.

For Type 2 censoring, under Hq the values U (s+ l)i • • • , U (r - l )  w ill be 
distributed as a complete ordered sample from the uniform distribution be
tween limits A = U(S) and B = U (r)* The transformation У(ц = (U(s+1) -  
U(s))/R, can be made for i = I , . . . »  n*, where n* = r  -  I -  s and R = B - A ;  
the V (i), i = I, . . . ,  n* can then be tested for uniformity between 0 and I.

E 11. 3. 3. 1 Exponential Example Again

Consider, again, the data of Table 11.4. The upper (Type I) censoring value 
is t = 0.1975; thus we can first transform the V(i) as У(ц = U (i)/0 .1975 and 
then test the У (1) for uniformity between 0 and I . The У(^) are then 0.050, 
0.100, 0.150, 0.199, 0.342, 0.482, and 0.661. The EDF statistics are  
D'  ̂= 0.375, D " = 0.050, D = 0.375, V  = 0.426, W* = 0.413, = 0.085, and
A^ = 2.107. Reference to Case 0 tables (Table 4.2) gives p-vaiues of 0.21 
for D, 0.07 for W^, and 0.08 for A^.

11.3.3.2 Handling Blocks of Missing Observations

Suppose censoring occurs in г  uniform sample other than at the ends; for 
example, U (r) and U (r+q) might be known, but the q -  I observations in be
tween are not known. A spacing U (j^q ) -  U(y) is called a q-spacing. Now 
suppose that S is a q-spacing covering unknown observations, and let its 
length be d. Keeping in mind the exchangeability of uniform spacings (see 
Chapter 8) we exchange S with the set of all spacings to the right of S. Under 
Ho the new sample U (i ),  U (2), ••• ,  U (r ), U fri-i), . . . ,  Uj^n-q+1)» where 
^ f j )  ” j = r + l ,  . . . , n - q + 1 ,  will be distributed as an
ordered uniform sample which is right-censored at Un-q+l* The process 
may be repeated if there is more than one such spacing. The method can be 
used only if it is known how many values are missing in the spacings. Thus 
a uniform (0 ,1) sample with known blocks of missing observations can be 
transformed to behave like a right (or left) censored sample. Techniques 
for this simpler kind of censoring can then be used.
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E 11>3 .3 .2 .1 Example from Chapter 4

In Table 4.13, a set of 15 values for Z is given which are distributed uni
formly on (0 ,1) under the null hyix)thesls that the original set X  (also given 
there) is exponential. Suppose the four values 0.237, 0.252, 0.252, 0.381 
are lost from the set z f . Then 0.434 -  0.229 is a 5-spacing of length 
d = 0.205. We subtract d from áll the values of Z starting with .446 to 
obtain 0.113, 0.189, 0.229, 0.241 (= 0.446 -  d), 0.298, 0.317, 0.578,
0. 757, 0.774, 0.778,(= 0.993 -  d), 0.795 (= 1.0 - d ) .  T h e se llv a lu e s  can 
be analyzed as being right censored (Type 2) at 0.795, and thus can be tested 
by any of the methods of Section 11.3.1. Alternatively, they can be trans
formed to be a complete sample, as in Section 11 .3 .3 .1 above, or by another 
method to be described after the next example.

E 11. 3. 3. 2 . 2 Exponential Example Modified

These various techniques may be combined to handle blocks of missing 
observations within, say, right-censored data. Thus suppose the values in 
the U-set of Table 11.4, which are Type I right censored at t = 0.1975, are.
in fact, the values U  , U U, U, u , that is, values

(1 )’ (2 )’ (3 )' (4)' (8)' " (9 ) '
/̂Г7\ constitute a block of missing observations. F irst the set of (5) (6) (7)

U^s may be transformed to a uniform sample as described in Section 11.3.3. 
above to give a new set V(i) = U (i)/0 .1975. The values are those given in 
Example E 11 .3 .3 .1.1, but they now represent the order statistics with 
indices I, 2, 3, 4, 8, 9, 10. There is thus a 4-spacing of length d = 0.342 -  
0.199 = 0.143 between V (4) and V(8)- Following the steps of this section, 
new values V * are found to be V^5) = V (9) -  0.143 = 0.339, V*6) ” 0.518,

= I -  d = 0.857. These 7 values are to be treated as a right-censored

sample of size 7, now of Type 2, with n = 10 (the 7 given values plus the 3 
missing in the 4-spacing). Since the lower end-point of the distribution is 
known to be zero, the values 0.050, 0.100, 0.150, 0.199, 0.339, 0.518 can 
be divided by 0.857 and then tested for uniformity on the unit interval.

11.3.3.3 More Powerful Transformations

A disadvantage of the above method of transforming to a complete sample 
for Type 2 censoring is that the resulting test examines the values of the U(i) 
relative to U(s) and U(r) but takes no account of whether these values them
selves are too large or too small. (See Comment A in Section 11.3.1.)

Michael and Schucany (1979) propose a modification of the above tech
nique by which a subset of r  uniform U (0 ,1) order statistics can be trans
formed monotonically to behave like a complete U (0 ,1) sample of size r  
from the U (0 ,1) distribution. For definiteness the result is presented here 
in terms of right censorship; however, the technique can be applied to any
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kind of Type 2 censoring. For example, a q-spacing representing a block 
of (q -  I) missing observations in a sample of size n can be shrunk to a 
!-spacing in a "complete” sample of size n -  q + I . The relative spacings 
between consecutive order statistics are not affected by this transformation.

Let U (I ) , U (2), ••• , U (r) be the smallest r  order statistics from a 
random sample of size n from the uniform (0 ,1) distribution, and let B (*) 
denote the cdf of U (r), which is known to have the beta (r, n -  r  + I) distri
bution (see Section 8 .8.2 ). If Z ( I ) , Z (2), Z (r ) are defined by

Z = U  
(i) (I)

h (U, J r,n^ (r ) '
(11. 10)

l/ r
where h^^nW = {B * (x ) }  /x, then the Z (i), i = I , . . . ,  r ,  are distributed
like a complete uniform (0 ,1) sample of size r .  The proof is straightforward 
by change of variable.

The computations for the transformation are easily performed on a 
scientific calculator since the beta cdf can be expressed as the binomial sum

= Z ( i)
l= r

n -i

Any standard goodness-of-fit test for uniformity (Chapter 8) may now be 
applied to the transformed observations. The Anderson-Darling statistic is 
recommended because of its sensitivlly to departures from uniformity in the 
tails of the distribution. The reason why this is important is best presented 
by illustration.

E 11. 3.3. 3 . 1 Artificial Uniform Right-Censored Sample

Three artificial but informative examples of the transformation are shown 
in Figure 11.6 where the smallest five of nine observations are plotted both 
before and after the transformation. In each example the values of the U(i)
were artificially chosen to satisfy U ,.yu ,_ , = i/5 = E (U ,.y u ,_J  U _ J .  The

(I) (5) (I) (5) (5)
values for U (5) were chosen to be .500, .103, and .897 which correspond, 
respectively, to the .500, .001, and .999 quantiles of the beta (5,5) distri
bution, which is the null distribution of U (5) when testing the hyj)othesis of 
uniformity for the U(¿). Note the manner in which small and large values of 
U(5) affect the appearance of the transformed points. Small values of U (5) 
lead to small values of Z (5) which, in turn, w ill inflate most reasonably 
formulated goodness-of-fit statistics. But if Z (5) is large, the departure 
from uniformity may appear less pronounced; however, Z (5) will be very 
close to I and this will inflate a statistic like the Anderson-Darling statistic 
which is sensitive to such an apparent departure from uniformity.
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a. 0 ,3 ^ ,,= .5 0 0

U I---- X---- к---- X-----X------X-

Z  I------------------- V ----------------- W------------------

b. 0 ,5 ^ „  = .103

IXKXXX

c. U ,5 „  = .897

-« H

0 1 
FIGURE 11.6 Examples of the transformation with г = 5, n = 9.

E 11. 3. 3.3 . 2 Exponential Example

Consider again the values U (i), i = I, . . . ,  7 given in Table 11.4. Using the 
transformation above, we first compute the scale factor h = h

1 /7
h = [B * (0 .13064)] /0.13064 = 3.9991

where B * (- ) Isthe beta (7,14) distribution. Thevalues Z(I) = hU(i) are 
given in Table 11.4. The Cram^r-von Mises statistic, W^, calculated from  
the seven values of Z (i) by the full-sample formulas (Equation 4.2) is 0.673, 
and the Anderson-Darling statistic if = 3.404. These have approximate 
p-values of 0.035 and 0.02. The Kolmogorov-Smimov statistic is D = 0.47755 
which has a p -value of approximately 0.056. The p-values using the trans
formed Z -values are lower than those using the statistics directly adapted 
for censoring (see Section 11.3.1).

Comment

This transformation technique for goodness-of-fit analysis of censored 
samples has some advantages over the other procedures which have been 
proposed for this problem. No new or additional tables of critical points are 
required. Any subset of order statistics can be analyzed. The power of the 
Anderson-Darling statistic based on the transformed sample appears to be



ANALYSIS OF DATA FROM CENSORED SAMPLES 487

generally greater than that of existing methods in the presence of left or  
right censorship. A minor disadvantage is the slight increase in computation 
to evaluate the scaling factor, h r,n (U (r))» The technique can be extended to 
all kinds of Type 2 censoring, even progressive censoring. For details and 
asymptotic results see Michael and Schucany (1979).

11.4 TESTING A COMPOSITE HYPOTHESIS

In this section the hypothesis of interest is that the sampled population has 
an absolutely continuous cdf F(y|0), where (9 is a vector of unknown (nuisance) 
parameters. Typically the censored data at hand must be a singly-censored 
sample if published tables of critical points are to be used. For more com
plicated types of censoring, such as multiple right censoring, little work has 
been done. For a particular set of data, it may be possible to modify a 
standard statistic and then estimate certain percentiles, or the observed 
significance level, using simulation techniques. When the censoring is 
Type 2, test statistics can often be constructed which have param eter-free  
null distributions. When the censoring is Type I, statistics with asymptot
ically param eter-free distributions are a possibility.

11.4.1 Omnibus Tests

Turnbull and V^iss (1978) present an omnibus test for a composite null 
hypothesis based on the generalized likelihood ratio statistic. Their proce
dure is appropriate for discrete or grouped data and accommodates multiple 
censoring by employing the Kaplan-Meler estimate to maximize the alter
native likelihood. In less complicated cases of Type I or 2 censoring several 
standard goodness-of-fit statistics have been modified to test a composite 
null hypothesis.

11.4.1.1 EDF Statistics for Censored Data 
with Unknown Parameters

Modifications of EDF statistics which accommodate certain types of censor
ing when the null hypothesis is simple were discussed in Section 11 .3 .1.1. 
Similar modifications for use in testing normality with unknown parameters, 
or exponentiality with unknown scale, are given in Sections 4.8.4 and 4.9. 5.

E 11.4 . 1. 1. 1 Normal example

The data consist of the smallest 20 values among the first 40 values 
listed in the NOR data set. We wish to test that the underlying distribution is 
normal. Gupta’s estimates (Gupta, 1952) here are /i = 98.233 and a  = 9.444. 
Relevant calculations are given in Table 11.5. The value of the Cram ár- 
von Mises statistic is found to be, using Section 4.7.3,

W^
2 20,40

20 40
+ 0.02512 -  —  (0.5 -  0.53741)^ 

12(40)^ 3  ̂ ^
= 0.02686
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TABLE 11.5 Steps in Calculating for the Smallest 20 Order Statistics 
Among the First 40 Observations in the NOR Data Set

I
^(1)

I -  0.5 
40 (̂i) L (i) n J

I 79.43 0.0125 0.02323 0.00012
2 83.53 0.0375 0.05974 0.00049
3 83.67 0.0625 0.06152 0.00000
4 84.27 0.0875 0.06962 0.00032
5 85.29 0.1125 0.08525 0.00074
6 87.83 0.1375 0.13531 0.00000
7 89.00 0.1625 0,16411 0.00000
8 89.90 0.1875 0.18878 0.00000
9 90.03 0.2125 0.19252 0.00040

10 90.87 0.2375 0.21778 0.00039
11 91.46 0.2625 0.23662 0.00067
12 92.02 0.2875 0.25529 0.00104
13 92.45 0.3125 0.27014 0.00179
14 92.55 0.3375 0.27364 0.00408
15 95.45 0.3625 0.38411 0.00047
16 96.13 0.3875 0.41188 0.00059
17 96.20 0.4125 0.41477 0.00001
18 98.70 0.4375 0.51972 0.00676
19 98.98 0.4625 0.53152 0.00476
20 99.12 0.4875 0.53741 0.00249

0.02512

Referring to Table 4.5, we find that the observed value is smaller 
than the .15 point which, by interpolation, is approximately 0.03. The value 
of 2 A 20 40 is 0.233; this is significant at about the .10 level.

EDF tests for exponentiality with an unknown scale parameter are set 
out in Section 4.9. Note that use of the N transformation of Chapter 10 (see 
Section 10.5.6) converts a right-censored e^onential sample to a complete 
sample of exponentials, with the same scale, and then any of the tests of 
Chapter 10 can be used. This property is explored in a test based on leaps, 
in Section 1 1 .4 . 1 .3  below.

11.4.1.2 Correlation Statistics

Consider again the sample correlation coefficient between the Y(i) and a set 
of constants Ki, denoted, as in Chapter 5, by R (Y ,K ). Because R(Y,K ) is 
invariant with respect to a linear transformation of the Y (i), it follows that 
Its null distribution does not depend on location or scale parameters of the 
distribution. This makes it a useful statistic for testing fit. Suppose F(y) is



ANALYSIS OF DATA FROM CENSORED SAMPLES 489

the cdf of Y  for location parameter 0 and scale parameter I, and let F “^(*) 
be its Inverse. Suitable sets of constants are then Ki = mt, where mt is the 
eзфected value of the ith order statistic of a sample of size n from F(y), or  
Ki = Hi = F “^(i/(n + 1)). The statistic Z = n { l  -  R 2 (Y ,K )} has been discussed 
in Chapter 5, and percentage points have been given for censored versions 
of Z.

Chen (1984) presents a correlation statistic as an omnibus test for the 
composite hypothesis of exponentiality in the presence of random censoring. 
As3nnptotic distributions are derived under a particular censorship model, 
which is quite robust provided that less than 40% of the observations are 
censored.

E 11.4 . 1. 2. 1 Normal example revisited

Consider again the smallest 20 values among the first 40 values in the 
NOR data set. When testing for normality using R (Y ,K ), we obtain Z = 0.035 
which falls just below the .50 point. Thus on the basis of the statistic Z we 
cannot reject the hypothesis of normality at the usual levels. Another example 
of a correlation type statistic is given in the next section.

11«4.1.3 Statistics Based on Spaclngs and on Leaps

Spacings between ordered uniforms were defined in Section 10.9.3. Similarly, 
spaclngs can be defined between order statistics Y (i) of a sample from any 
distribution. If the distribution has no lower limit, the first spacing will be 
D i = Y(2) -  Y ( I ) , and so on. Similarly leaps jgj can be defined by f i  = D^ZE(Di).

An important property of leaps is that, for continuous distributions, they 
will (under regularity conditions) be asymptotically exponentially distributed 
with mean I . Then a test for a given distribution with unknown location and 
scale parameters is reduced to a test sim ilar to a test for е^фопеп^аШу of 
the f i. The test will not be exactly the same as a test for exponentiality 
because the f i  do not become an independent sample, even asymptotically.
We illustrate the technique with an example given by Mann, Scheuer, and 
Fertig (1973) who created a test for the extreme-value distribution by using 
leaps; the test is for right-censored data and can be adapted to a test for the 
Welbull distribution. Both these features are illustrated in the example.

E 11.4 . 1.3. 1 Weibull Example

The following values are t(i), i = 1......... 15, the first 15 order statistics of
a sample of 22 t-values; the null hypothesis is Hq : the t-sample comes from  
a two-parameter Welbull distribution (Section 10.4.4), against a three-  
parameter Weibull (with positive origin) as alternative. Values are: 15.5,
15.6, 16.5, 17.5, 19.5, 20.6, 22.8, 23.1, 23.5, 24.5, 26.5, 26.5, 32.7, 
33.8, 33.9. The steps in making the test are as follows. F irst find X(i) = 
log f(i)> I = 1> • • • » 15; Hq then reduces to a test that X(i) are from an 
extreme-value distribution (equation 4.7 or 5.22) with unknown location and 
scale parameters. The denominator E(Dj) of f j  depends on the unknown
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scale, so test statistics are calculated from normalized spacings. These 

are defined by = ” ^(i)^^^^i+1 ~ ^ i^ ’ where m  ̂ are the e^qjected

values of the order statistics from an extreme-value distribution with loca
tion 0 and scale I .  Tests based on normalized spacings, including the Mann, 
Scheuer, and Fertig statistic S, are discussed in Section 4.20. From the 
data above, the 14 normalized spacings are .0063, .1070, .1640, .3912,
.2408, .5177, .0752, .1089, .2858, .5724, 0.0, 1.6651, .2676, .0241.

i 14In the notation of Section 4.20, these give 13 values z,., = 2. , y,/2. , y, ;
(I) J=I-^i 3=1-^1

these are .0014, .0256, .0626, .1510, .2054, .3224, .3394, .3640, .4286, 
.5579, .5579, .9341, .9946. The Mann-Scheuer-Fertig statistic is S =
I -  z(7) = 0.661; the authors suggest a one-tail test, and reference to their 
tables shows S to be significant at about the 11% level. Tiku and Singh (1981) 
proposed using the mean Z of the z(i), and Lockhart, O ’Reilly, and Stephens 
(1985) have suggested a |, the Anderson-Darling statistic calculated from  
the Z(i). These statistics also are discussed in Section 4.20. For the data 
above, Z = 0.380 and a | = 1.878; these are significant at about the 4% and 
5% levels, respectively. These statistics appear to be more sensitive than S. 
Mann and Fertig (1975) consider ratios of other sums of leaps as well as 
ratios of weighted sums of leaps, and describe how their approach can be 
extended to progressively censored samples. For further discussion see 
Section 4 . 20.

We can use this example also to illustrate the use of correlation statis
tics for the extreme value distribution. The test is for distribution (5.22), 
which has a short tail to the right and a long left tail. The r  = 15 values of 
X(i) are tested to correlate with = log [-lo g  { l  -  i/(n + I ) } ] ,  i = I, . . . ,  15, 
n = 22; then R = 0.9446 and Z = n { l  -  R ^ (X ,H )} = 1.616. Interpolation in 
Table 5.10, for n = 22 and p = r/n = 0.68, shows Z to be significant at 
approximately the 0.25 level.

It might be useful also to illustrate a danger which may arise in testing 
for the extreme-value distribution. For a full sample, it does not matter 
whether one takes X = log t, where t is Welbull data, and tests that X is 
from (5.22), or takes X ’ = -  log t and tests that X ’ is from (5.21); the same 
value of the correlation coefficient is obtained by both methods, and both 
recommendations are seen in the literature. However, for a censored sample, 
it is important to follow the correct procedure: for right-censored Weibull 
data, take X  = log t and test for right-censored data from (5.22), as in the 
example above, and for left-censored Weibull data, take X ’ = -  log t and 
test for right-censored data from (5.21). This second test for Welbull is 
probably less likely to occur in practice, and the Mann, Scheuer, and Fertig 
test is not set up for this case, although it could be adapted.

Two tests for the two-parameter exponential that can be used with doubly 
censored samples have been presented by Brain and Shapiro (1983), These 
tests combine the properties of spacings and of the correlation statistic to 
have good sensitivity to alternatives with monotone and nonmonotone hazard 
functions, respectively. Still other related work on statistics based on spac-
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Ings may be found in Mehrotra (1982). Some statistics based on modified 
leaps have been studied by Tiku (1980, 1981).

11.4.2 Alternative Families of Distributions

Typically when testing for goodness of fit we assume only that the underl3ring 
cdf is absolutely continuous. Occasionally we may wish to limit our choices 
to, say, two families of distributions. In particular we may wish to test the 
composite null hypothesis

H i: F(y) = F i(y|6i)

against the composite alternate hypothesis 

F(y) = T ^ { y \ e ^ )

where 9 1 and 9 2 are unknown (nuisance) param eters. Because we have 
narrowed the set of alternate distributions considerably, we should be able 
to tailor tests to the specific hypothesis of interest which are more powerful 
than omnibus goodness-of-fit tests. There have been several approaches to 
this problem.

Let fi(yl0) be the probability density function for family i, i = I , 2. We 
will denote by L j the sample likelihood under Щ after has been replaced 
with its maximum likelihood estimator, This maximized likelihood is 
then

L = H  f .(Y ,. . ;0 . )  
i V ( 3) I

3=1

for the complete sample . . . ,  ^ ( д у  We w ill denote the ratio of maxi
mum likelihoods by

RM L = L 1/L 2

Cox (1961, 1962) formulates a test of Hj versus H2 which is based upon 
the statistic

T = In(RM L) -  E[ln (RML)]

where E is the expectation under the null hypothesis, H j . For complete 
samples the large sample distribution of T is approximated using maximum 
likelihood theory. Hoadley (1971) extends maximum likelihood theory to situ
ations which include censoring. Thus valid approximations to the distribution 
of T are also possible with censored samples.

For location-scale families with pdfs fjiy -  Mi)/o'!) > Lehmann (1959)
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shows that the uniformly most powerful Invariant (under linear transforma
tions) test is based upon the (Lehmann) ratio of integrals

LRI = I i /I2 

where

Ij = /  /  fj(vyj^ + u, vy^+u )d vd u
-O O  O

The RML statistic and some modified versions are discussed in a series of 
papers: Antle (1972, 1973, 1975); Dumonceaux, Antle, and Haas (1973); 
Dumonceaux and Antle (1973); Kllmko and Antle (1975); Kotz (1973). P e r 
centage points are given for the null distribution of RML for comparisons 
involving a number of different families of distributions. In some cases, the 
LRI and RML tests coincide. In others, the RML test is almost as powerful 
as the LRI test. The authors make use of the fact that the distribution of the 
RML statistic is parameter-free whenever the families to be compared are 
both location-scale fam ilies. This result appears to hold for any Type 2 
censored sample. The only tables of critical points which have been con
structed for use with censored samples appear in Antle (1975) and apply to 
the situation where one is testing the null hypothesis that the underlying dis
tribution is Weibull (or extreme-value) against the alternate hypothesis of 
Iognormality (or normality), and vice versa.

E 11.4 . 2. 1 Lognormal vs. Weibull Example

We once more consider the smallest 20 values among the first 40 values 
listed in the NOR data set. We first exponentiated the data, and then proceeded 
to test the lognormal against the Weibull family. An Interactive procedure was 
used to determine the value of RML. Entries in Table IX of Antle (1975) must

be compared to RML^^^^ which here was determined to be 1.063. This value 
is just above the 95 percent point and so we have the surprisiug result that 
we can reject the (true) hypothesis of normality in favor of the extreme-value 
distribution at the 0.05 level of significance.

Finally, a somewhat different approach to this general problem deserves 
mention. Farewell and Prentice (1977) construct a three-parameter family 
of generalized gamma distributions which includes the Weibull, lognormal, 
and gamma families as special cases. Likelihood ratio tests using asymptotic 
likelihood results are recommended which can accommodate censoring as 
well as regression variables.
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The Analysis and Detection o f Outliers
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12

12.1 INTRODUCTION

The term **outlier^  ̂ (straggler, sport, maverick, flyer or a wild, aberrant, 
discordant, or anomalous observation) has at best a subjective definition. It 
is an observation ’̂so far separated . . . from the remainder that [it] gives 
rise to the question of whether [it is] not from a different population” 
(Kendall and Buckland, 1957), or ”It is one that appears to deviate markedly 
from other members of the sample” (Grubbs, 1959). We shall adopt in this 
chapter the definition given by Beckman and Cook (1983): A discordant obser
vation is one that appears surprising or discrepant to the investigator; a 
contaminant is one that does not come from the target population; an outlier 
is either a contaminant or a discordant observation.

In order for an observation to ”appear surprising” to the investigator, 
he must have in mind some model of the data (symmetry, normality, upper 
bounds) which he is applying. We shall discuss here only the underlying 
assumption of normality since there is very little theory for any other case. 
The assumption of normality should not be taken lightly: The investigator 
needs some experience with his data generating process in order to decide 
whether the assumption holds. Lacking ejqjerience, he needs to ask himself 
whether the assumption is theoretically reasonable; he must bear in mind 
that there are numerous sets of data with genuinely skewed distributions (in 
which case the outlier theory is not applicable unless the data can be trans
formed to normality) and other instances where the data arise from a mix
ture of distributions. Gumbel (1960) has stated that ”The rejection of outliers 
on a purely statistical basis is and remains a dangerous procedure. Its very 
existence may be a proof that the underlying population is, in reality, not 
what it was assumed to b e .”
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Before beginning his search for outliers, the experimenter w ill need to 
ask himself why he is looking for outliers. It may be that he wishes only to 
estimate the mean and variance of his population. In that case, however 
dangerous the procedure, it may be more dangerous to do nothing. Anscombe 
(I960) has noted that ”No observations are absolutely trustworthy,’* and that 
’’one sufficiently erroneous reading can wreck the whole of a statistical anal
ysis. ” A set of bivariate data is especially sensitive to outliers, and one ob
servation can easily change the correlation coefficient from .01 to .99. A 
second Important reason for looking for outliers is that interest may be cen
tered in the outliers themselves. In prospecting for uranium, the prospector 
is interested only in the discordant observation; he is not at all Interested 
in estimating the average background of a region. Beckman and Cook (1983) 
cite the search for the Russian satellite which crashed in Canada as a similar 
instance. Barnett (1978) discusses a court case of doubtful paternity where 
the mother gave birth to a child 349 days after the father went overseas. Is 
this gestation period an outlier or is it within the range of variation? The 
main interest here is not in estimating the mean background or the standard 
deviation of the human gestation period. A third reason for looking for out
liers is for the information they may yield about the data gathering process. 
Kruskal (1960) pursues this issue: ”An apparently wild observation is a signal 
that says: ’’Here is something from which we may learn a lesson, perhaps of 
a kind not anticipated beforehand and perhaps more important than the main 
object of the study. Examples of such serendipity have been frequently dis
cussed—one of the most popular is Fleming’s recognition of the virtue of 
penicillin . . . .  Much depends on what we are after . . . . ”

Kruskal cites an example of five determinations on the concentration of 
a chemical in a certain mixture, one of which is badly out of line. It is deter
mined that the outlier stemmed from a miscalibratlon affecting only the one 
observation. If the objective is to estimate the concentration of that particular 
mixture, the outlier could be forgotten or a correction made. If the goal is to 
Investigate the method of measurement, the presence of the outlier ’’tells us 
something about the frequency and magnitude of serious errors in the method.*' 
If finding an outlier results in correcting a flaw in the measurement process, 
its discovery will be worthwhile. When an unusual observation is encountered, 
we should ask: (I) What was the likelihood, before taking the measurement, 
that something would go wrong with the experiment and that it would be wild ? 
(2) Is there any evidence, other than its magnitude, that something did go 
wild ? Can we check the notebooks to see whether the procedure was carried 
out properly or that the results were recorded correctly? What is done with 
an outlier may depend upon the answers to these questions. We agree with 
Kruskal (1960a) that ”it is of great importance to preach the doctrine that 
apparent outliers should always be reported, even when one feels that their 
causes are known or when one rejects them for whatever good rule or reason. 
The immediate pressures of practical statistical analysis are almost uni
formly in the direction of suppressing announcement of observations that do
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not fit the pattem; we must maintain a strong sea-wall against these 
pressures.”

Anscombe (1960) has identified three sources of e rro r in any measure
ment process: (I) the inherent variability in the experimental units them
selves, (2) the error in the measuring instruments, and (3) execution error, 
or any discrepancy between what we intend to do and what is actually done. 
The latter may include measuring a subject not belonging to the population 
or measuring some characteristic other than the one intended or selecting 
a biased sample. ”If we could be su re ," he continues, "that an outlier was 
caused by a large measurement or execution erro r which could not be recti
fied, we should be justified in discarding the observation and all memory of 
it. The act of observation would have failed; there would be nothing to report. 
Such an observation could just be described as spurious. " [Following the 
Kruskal doctrine, we would report such a value, tell what caused the error, 
then forget about it.] In some cases, measurement or execution errors may 
be giving US measurements which are not extreme. In an inter laboratory 
experiment, for example, one laboratory may be reporting the mean of sev
eral measurements while another is reporting single observations. The 
means will tend to fall toward the center of the data rather than toward the 
extremes. Goodness-of-fit techniques, rather than outlier methods should 
be resorted to in these cases.

Having given some thought to the objectives of an analysis, we need to 
realize that there are two principal methods of dealing with outliers: identi
fication and accommodation. If the outliers are detected or identified, they 
may be treated in one of several ways:

1.
2.
3.

4.

5.

Omit the outliers and treat the reduced sample as a "new" sample.
Omit the outliers and treat the reduced sample as a censored sample. 
Winsorlze the outliers, i . e . , replace them with the value of the nearest 
"good" observation. This at least preserves the direction of measure
ment.
Ask the experimenter to take additional observations to replace the 
outliers.
Present one analysis including the outliers and another excluding them. 
If the results are very different, view the conclusions cautiously.

Accommodation of the outliers without previously identifying them falls 
into the area of robust estimation. This may take the form of using trimmed 
means, Winsorized means, using the median instead of the mean (an extreme 
form of the other two), or it may involve the use of a weighted estimator 
(omission and trimming corresponds to zero weights, Winsorlzation to others, 
and Huber’s M-estimation to still others). Estimation of the variance in these 
circumstances is a very different matter from estimation of the mean and 
may be much more difficult.
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12.2 А SINGLE OUTLIER IN A UNIVARIATE SAMPLE

We begin first with the identification of a single outlier in a univariate sample 
of size n. Without going into the long history of work in this area (see Beck
man and Cook, 1983), the best one can do is to obtain the mean (¾ and the 
standard deviation (s) of the entire sample, and calculate the extreme student- 
ized residual Tj  ̂= -  x)/s where x^^j is the single largest suspect
observation. If the least observation is suspect, Tj  ̂= (x -  x (i))/ s . If T^ 
is larger than the critical value given by Grubbs (1959) in Table 12.1, the 
suspect observation is not regarded as being part of the underlying normal 
population. If the population standard deviation o* is considered "known”
(from considerable experience), one may use the fourth and fifth columns of 
Table 12.1 as critical values. If the standard deviation is estimated inde
pendently of the present sample, the second part of Table 12.1 should be 
used for critical values.

The test we have given is a one-sided test. To use it appropriately, 
we must decide, in advance, whether the outliers w ill occur only on the high 
side or only on the low side. Alternately, we may have decided that we were 
interested only in outliers on the high side or on the low side. If we do not 
know in advance whether the outlier w ill occur on the high side or on the low 
side, we should use a two-sided test. For a two-sided test at the o'-level of 
significance, we calculate both test statistics and compare the maximum of 
the two statistics it to the tabled critical value for 0 /̂2 .

E 12. 2. 1 Example

In this and the following examples, sample sizes were chosen partly for 
convenience in computation; the tests may not be as powerful as one would 
like. A set of eight mass spectrometer measurements were made on a single 
sample of a particular Isotope of uranium. The data, arranged in order, are 
as follows: 199.31, 199.53, 200.19, 200.82, 201.92, 201.95, 202.18, 
245.57. Experience has shown that outliers usually occur on the high side. 
Assuming normality, can the largest observation be rejected as an outlier? 
We calculate x = 206.43, s = 15.85, and Тд = (245.57 -  206.43)/15.85 = 
2.460. Since this is greater than the 5% critical value of 2.03 from Table
12.1, we reject the Ьзфоthesis ( i . e . , we decide that 245.57 is an outlier).

Anscombe (1970) saw no particular reason for treating outliers as a 
hypothesis-testing problem, partly because significance levels can be swamped 
by the assumptions made. He advocated a data analysis approach in which we 
treat a rejection rule like a homeowner*s fire insurance policy. A fire occurs 
when an observation is spurious (comes from a different population). Before 
bu5dng fire insurance, we should ask: (I) What is the premium? (2) How much 
protection does the policy give when there is a fire ? (3) How much danger is 
there of a fire ? Reduced to statistical term s, the premium measures the



TABLE 12.1 Critical Values for Grubbs’ One-Outlier 
Statistic Tjj

Std Dev Calculated from Sample 

n 5% 2.5% 1%

Std Dev Knovm 

5% 1%

3 1.15 1.15 1.15 1.74 2.22

4 1.46 1.48 1.49 1.94 2.43

5 1.67 1.71 1.75 2.08 2.57

6 1.82 1.89 1.94 2.18 2.68

7 1.94 2.02 2.10 2.27 2.76

8 2.03 2.13 2.22 2.33 2.83

9 2.11 2.21 2.32 2.39 2.88

10 2.18 2.29 2.41 2.44 2.93

11 2.23 2.36 2.48 2.48 2.97

12 2.29 2.41 2.55 2.52 3.01

13 2.33 2.46 2.61 2.56 3.04

14 2.37 2.51 2.66 2.59 3.07

15 2.41 2.55 2.71 2.62 3.10

16 2.44 2.59 2.75 2.64 3.12

17 2,47 2.62 2.79 2.67 3.15

18 2.50 2.65 2.82 2.69 3.17

19 2.53 2.68 2.85 2.71 3.19

20 2.56 2.71 2.88 2.73 3.21

21 2,58 2.73 2.Э1 2.75 3,22

22 2.60 2.76 2.94 2.77 3.24

23 2.62 2.78 2.96 2.78 3.26

24 2.64 2.80 2.99 2.80 3.27

25 2.66 2.82 3.01 2.81 3.28

30 2,75 2.91 3,10

35 2.82 2.98 3.18

40 2.87 3.04 3.24

45 2.92 3.09 3.29

50 2.96 3.13 3.34

(continued)
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Std Dev Calculated from Sample 

n 5% 2.5% 1%

Std Dev Known

60 3.03 3. 20 3. 41

70 3.09 3. 26 3. 47

80 3.14 3. 31 3. 52

90 3.18 3. 35 3. 56

100 3.21 3. 38 3. 60

Critical Values for T Std Dev Independently Estimated^

n 3 4 5 6 7 8 9 10 12

d.f. 1% points

10 2.78 3.10 3.32 3.48 3.62 3.73 3.82 3.90 4.04

11 2.72 3.02 3.24 3.39 3.52 3.63 3.72 3.79 3.93

12 2.67 2.96 3.17 3.32 3.45 3.55 3.64 3.71 3.84

13 2.63 2.92 3.12 3.27 3.38 3.48 3.57 3.64 3.76

14 2.60 2.88 3.07 3.22 3.33 3.43 3.51 3.58 3.70

15 2.57 2.84 3.03 3.17 3.29 3.38 3.46 3.53 3.65

16 2.54 2.81 3.00 3.14 3.25 3.34 3.42 3.49 3.60

17 2.52 2.79 2.97 3.11 3.22 3.31 3.38 3.45 3.56

18 2.50 2.77 2.95 3.08 3.19 3.28 3.35 3.42 3.53

19 2.49 2.75 2.93 3.06 3.16 3.25 3.33 3.39 3.50

20 2.47 2.73 2.91 3.04 3.14 3.23 3.30 3.37 3.47

24 2.42 2.68 2.84 2.97 3.07 3.16 3.23 3.29 3.38

30 2.38 2.62 2.79 2.91 3.01 3.08 3.15 3.21 3.30

40 2.34 2.57 2.73 2.85 2.94 3.02 3.08 3.13 3.22

60 2.29 2.52 2.68 2.79 2.88 2.95 3.01 3.06 3.15

120 2.25 2.48 2.62 2.73 2.82 2.89 2.95 3.00 3.08

OO 2.22 2.43 2.57 2.68 2.76 2.83 2.88 2.93 3.01

(continued)
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TABLE 12.1 (continued)
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n

Critical Values for Std Dev Independently Estimated^ 

3 4  5 6 7 8 9  10 12

d.f. 5% points

10 2.01 2.27 2.46 2.60 2.72 2.81 2.89 2.96 3.08

11 1.98 2.24 2.42 2.56 2.67 2.76 2.84 2.91 3.03

12 1.96 2.21 2.39 2.52 2.63 2.72 2.80 2.87 2.98

13 1.94 2.19 2.36 2.50 2.60 2.69 2.76 2.83 2.94

14 1.93 2.17 2.34 2.47 2.57 2.66 2.74 2.80 2.91

15 1.91 2.15 2.32 2.45 2.55 2.64 2.71 2.77 2.88

16 1.90 2.14 2.31 2.43 2.53 2.62 2.69 2.75 2.86

17 1.89 2.13 2.29 2.42 2.52 2.60 2.67 2.73 2.84

18 1.88 2.11 2.28 2.4Q 2.50 2.58 2.65 2.71 2.82

19 1.87 2.11 2.27 2.39 2.49 2.57 2.64 2.70 2.80

20 1.87 2.10 2.26 2.38 2.47 2.56 2.63 2.68 2.78

24 1.84 2.07 2.23 2.34 2.44 2.52 2.58 2.64 2.74

30 1.82 2.04 2.20 2.31 2.40 2.48 2.54 2.60 2.69

40 1.80 2.02 2.17 2.28 2.37 2.44 2.50 2.56 2.65

60 1.78 1.99 2.14 2.25 2.33 2.41 2.47 2.52 2.61

120 1.76 1.96 2.11 2.22 2.30 2.37 2.43 2.48 2.57

OO 1.74 1.94 2.08 2.18 2.27 2.33 2.39 2.44 2.52

inñation in the mean square error (MSE) of an estimator of location when in 
fact all the observations are from the underlying population (by falsely re 
jecting the hypothesis a fraction of the time, the MSE of our estimator is 
larger than it would be if we had no rejection rule). Protection measures 
the reduction in the mean square e rro r of the estimator when there are out
liers present, i . e . , we get a sm aller MSE using the rejection rule than not 
using it. Guttman has stated that **whlle the above concepts of premium and 
protection are relevant and appealing, numerical computation turns out to 
be quite difficult.” Nevertheless, considerable work has been done in meas
uring and comparing the premium and protection of different rejection ru les.
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The null hypothesis in Identifying outliers is that all the observations 
come from a normal population; rejection of the hypothesis can mean many 
things. Since only the extreme observations have been tested, we see that 
outlier-detection statistics would not be very useful as tests of normality 
(goodness-of-fit tests would be more appropriate). Two models for gener
ating a population containing outliers are widely used. The first is the mean 
shift model where n -  к observations are from a N(//,o- )̂ population and к 
from a N(/i + X, cr̂ ) population. In practice this is done by generating all n 
from the first population and adding X  to the first к of these. If some of the 
first к are below the mean, adding X  w ill make them close to the mean, so 
that they will be well "hidden” among the others. This naturally limits the 
power of any outlier procedure. An erroneous method of contamination is to 
add X  to the largest к of the n observations generated from the N(/z,cr )̂ popu
lation. This creates a non-normal truncated distribution for the bulk of the 
data, and makes it easy for any outlier test to perform well because of the 
large gap in the data- The second model for contamination contains к obser
vations from a population, and is called the variance-shift model.

12.3 M ULTIPLE OUTLIERS IN A UNIVARIATE SAMPLE

When there is a possibility of more than one outlier in the sample, compli
cations quickly a rise . Grubbs (1950) derived exact critical values for the two 
largest (or two smallest) outliers, but did not obtain critical values for the 
largest and smallest observations. Tietjen and Moore (1972) extended Grubbs’ 
critical values, by simulation, for up to 10 outliers. The statistic used was 
the ratio of the sum of squares in a sample which omits the outliers to the 
sum of squares for the complete sample. This statistic was called 
Tletjen and Moore obtained another statistic, Ej ,̂ which took the same form  
as L ĵ but the numerator was based on omitting the к most extreme observa
tions from the mean (from either or both ends). The test was based on the 
assumption that к was known and in practice determined by looking at the 
data. Since one does not anticipate any outliers in a sample, к could not be 
known in advance, and looking at the sample interfered with the a -level in 
an unknown way. Furthermore, if к were determined automatically, Ej  ̂ could 
pick the wrong observations to test. (In a sample of size 12, let 10 values be 
from a N (0 ,1), one be at 10 and one be at 100. Since the mean is close to 10, 
the two most extreme observations are the smallest one and the one at 100. 
Clearly the smallest observation is not an outlier.) The last problem is 
remedied simply by picking out the single observation furthest from the 
mean as outlier candidate #1, then omitting it from the sample and picking 
the farthest from the new mean as outlier candidate #2, etc.

Yet another problem arises in trying to choose a value for k, the number 
of observations to be tested as outliers. If there are two large observations 
which are nearly equal, and if one uses a one-outlier test on the largest, the 
test will usually fail to reject because the second outlier masks the presence
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TABLE 12.2 Critical Values for Rosner*s ESD (Тд) Statistic. 
Estimates of 10, 5, and 1%  Points for ESD^ у  for Selected N

Sample

a ce

N .10 .05 .01 N .10 .05 .01

к = 2 (for ESDi, ESDj) 40 3.01 3.17 3.52
2.64 2.77 2.98

10 2.39 2.55
2.17 2.32 45 3.17 3 .5 7

2.82 3.05
11 2.45 2.62

2.23 2.41 50 3.10 3.27 3.61
2.72 2.85 3.08

12 2.50 2.71
2.27 2.49 60 3.15 3.34 3.70

2.77 2.90 3.17
13 2.57 2.84

2.31 2.56 80 3.28 3.45 3.80
2.85 2.97 3.23

14 2.62 2.86
2.39 2.61 100 3.34 3.52 3.87

2.92 3.03 3.28
15 2.65 2.91

2.42 2.66 ,к == 3 (for ESDIJ ESD2 , ESD3)
16 2.70 2.95 20 2.76 2.88 3.13

2.44 2.64 2.47 2.60 2.83
17 2.75 3.03 2.34 2.45 2.68

2.48 2.65
30 2.97 3.12 3.41

18 2.79 3.08 2.61 2.73 3.01
J2.46 2.68 2.44 2.56 2.75

19 2.80 3.10 40 3.07 3.22 3.58
2.49 2.71 2.69 2.81 3.03

2.52 2.62 2.82
20 2.69 2.83 3.09

2.41 2.52 2.76 50 3.18 3.34 3.68
2.76 2.89 3.15

25 2.99 3.34 2.58 2.68 2.89
2.62 2.82

60 3.26 3.42 3.75
30 2.89 3.05 3.35 2.83 2.95 3.20

2.55 2.67 2.92 2.64 2.73 2.95
35 3.09 3.41

80 3.32 3.49 3.85
2.74 2.96 2.90 3.03 3.27

2.71 2.81 3.01

(continued)
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TABLE 12.2 (continued)

100

20

30

40

50

60

80

100

a a

.10 .05 .01 N .10 .05 .01

3.44 3.60 3.97 к = 5 (for ESDi, ESD2, ESD3,
2.97 3.10 3.34 ESD4 , ESDg )
2.77 2.86 3.06 20 2.85 2.97 3.10

If ESD2, ESD3, ESD4) 2.55
2.40

2.65
2.51

2.89
2.69

2.81 2.95 3.20 2.33 2.42 2.61
2.51 2.63 2.83 2.27 2.37 2.57
2.38
2.29

2.49
2.39

2.68
2.58

30 3.05
2.67

3.19
2.78

3.48
3.03

3.02 3.16 3.48 2.51 2.60 2.80
2.65 2.77 3.02 2.42 2.51 2.74
2.48 2.59 2,79 2.35 2.45 2.62
2.39 2.49 2.70

40 3.16 3.31 3.63
3.14 3.32 3.64 2.76 2.88 3.13
2.74 2.86 3.10 2.59 2.69 2.89
2.57 2.67 2.87 2.46 2.55 2.74
2.45 2.55 2.74 2.39 2.47 2.65

3.24 3.40 3.74 50 3.28 3.45 3.77
2.81 2.93 3.18 2.84 2.96 3.21
2.62 2.72 2.92 2.65 2.74 2.94
2.50 2.59 2.78 2.52 2.61 2.79

3.31 3.48 3.82
2.44 2.52 2.70

2.85 2.98 3.20 60 3.34 3,51 3.81
2.67 2.77 2.97 2.88 3.01 3.24
2.54 2.63 2.82 • 2.68 2.77 2.96

3.40
2.94

3.57
3.05

3.91
3.31

2.56
2.48

2.65
2.56

2.83
2.72

2.74 2.84 3.04 80 3.44 3.61 3.93
2.61 2.69 2.87 2.98 3.11 3.36

3.47
3.00
2.79

3.64
3.13
2.89

3.96
3.34
3.06

2.77
2.63
2.54

2.86
2.72
2.62

3.08
2.89
2.76

2.66 2.74 2.90 100 3.53 3.70 4.01
3.04 3.16 3.42
2.81 2.91 3.10
2.68 2.77 2.93
2.59 2.67 2.84
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of the first; the procedure caimot get started. Thus the repeated application 
of a single outlier test can easily fail. Furthermore, if there is only one 
large outlier and one uses a test for two outliers, the test is likely to reject 
Hq and claim that there are two outliers, a phenomenon known as swamping. 
Rosner (1975) devised a procedure which successfully overcame masking 
but is still subject to some swamping. Let Iq be the full data set and It+i be 
the set obtained by omitting from It the point most extreme from the mean 
of It* Let к be an upper bound on the number of outliers in the sample. 
Apply a one-outlier test in succession to Iq, I i , • • • , Ik -1 * and let the last 
significant result be for 1щ -1 - Decide that the m observations omitted from  
Im are outliers. The critical values have to hold simultaneously for the sev
eral tests, hence are difficult to generate. It should be easier to estimate ku 
than k, but the amount of swamping w ill depend on how badly we estimate кц. 
Despite the swamping, we recommend Rosner*s test for several outliers if 
the a -leve l is Important to maintain. We cannot state how effective Lj  ̂or Eĵ . 
might be because there is no objective way of deciding upon a value of k. The 
best tables are given by Jain (1981) as Table 12.2.

E 12.3 .1 Example

Twenty laboratories did an analysis on a single blood sample for lead content. 
Assuming the data are normally distributed, are there any outliers? .000, 
.015, .016, .022, .022, .023, .026, .027, .027, .028, .028, .031, .032, 
.033, .035, .037, .038, .041, .056, .058.

Using Rosner^s ESD procedure, we set 20% as an upper limit on the 
number of outliers and check for up to 4 outliers. Iq is the full set of data 
(x = .0298, S  = .0131), Ij the set with .000 omitted (¾ = .0313, s  ̂= .0114),
I 2 is the set with .000 and .058 omitted (¾ = .0298, S2 = .0097), I3 is the 
set with .000, .058, and .056 omitted (¾ = .0283, S3 = .0073), I4 is the set 
with .000, .058, .056, and .015 omitted. We calculate the Tj^ statistic for 
each set, obtaining Rj = 2.27 (for set I^), R2 =2 .34 , R3 = 2.70, R^ = 1.82. 
From Table 12.2  we obtain the 5% critical values for Ri, R2 , R3 , and R  ̂of 
2.95, 2.63, 2.49, and 2.39, respectively. R3 is the only one significant, 
hence we declare .000, .056, and .058 to be outliers.

12.4 THE IDENTIFICATION OF A SINGLE OUTLIER  
IN  LINEAR MODELS

In the univariate case the residuals are correlated and have a common vari
ance. In the regression case, the residuals are also correlated but each 
residual has its own variance which depends, to some extent, on the arrange
ment of the x-values. Let Y  = J g  + £ be the linear model in which X is the 
(n X I) vector of responses, X an (n x p) matrix of known constants, ß  a 
(p X I) vector of unknown parameters, and € an (n x I) vector of normally
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3 Critical Values for a Single Outlier in Linear Models 

{ a  = . 10)

n

q

I 2 3 4 5 6 8 10 15 25

5 1.87

6 2.00 1.89

7 2.10 2.02 1.90

8 2.18 2.12 2.03 1.91

9 2.24 2.20 2.13 2.05 1.92

10 2.30 2.26 2.21 2.15 2.06 1.92

12 2.39 2.37 2.33 2.29 2.24 2.17 1.93

14 2.47 2.45 2.42 2.39 2.36 2.32 2.19 1.94

16 2.53 2.51 2.50 2.47 2.45 2.42 2.34 2.20

18 2.58 2.57 2.56 2.54 2.52 2.50 2.44 2.35

20 2.63 2.62 2.61 2.59 2.58 2.56 2.52 2.46 2 .1 1

25 2.72 2.72 2.71 2.70 2.69 2.68 2.66 2.63 2.50

30 2.80 2.79 2.79 2.78 2.77 2.77 2.75 2.73 2.66 2.13

35 2.86 2.85 2.85 2.85 2.84 2.84 2.82 2.81 2.77 2.55

40 2.91 2.91 2.90 2.90 2.90 2.89 2.88 2.87 2.84 2.72

45 2.95 2.95 2.95 2.95 2.94 2.94 2.93 2.93 2.90 2.82

50 2.99 2.99 2.99 2.99 2.98 2.98 2.98 2.97 2.95 2.89

60 3.06 3.06 3.05 3.05 3.05 3.05 3.05 3.04 3.03 3.00

70 3.11 3.11 3.11 3.11 3.11 3.11 3.10 3.10 3.09 3.07

80 3.16 3.16 3.16 3.15 3.15 3.15 3.15 3.15 3.14 3.12

90 3.20 3.20 3.19 3.19 3.19 3.19 3.19 3.19 3.18 3.17

100 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.22 3.22 3.21

(continued)
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n

q

I 2 3 4 5 6 8 10 15 25

5 1.92

6 2.07 1.93

7 2.19 2.08 1.94

8 2.28 2.20 2.10 1.94

9 2.35 2.29 2.21 2 .10 1.95

10 2.42 2.37 2.31 2.22 2 .1 1 1.95

12 2.52 2.49 2.45 2.39 2.33 2.24 1.96

14 2.61 2.58 2.55 2.51 2.47 2.41 2.25 1.96

16 2.68 2.66 2.63 2.60 2.57 2.53 2.43 2.26

18 2.73 2.72 2.70 2.68 2.65 2.62 2.55 2.44

20 2.78 2.77 2.76 2.74 2.72 2.70 2.64 2.57 2.15

25 2.89 2.88 2.87 2.86 2.84 2.83 2.80 2.76 2.60

30 2.96 2.96 2.95 2.94 2.93 2.93 2.90 2.88 2.79 2.17

35 3.03 3.02 3.02 3.01 3.00 3.00 2.98 2.97 2.91 2.64

40 3.08 3.08 3.07 3.07 3.06 3.06 3.05 3.03 3.00 2.84

45 3.13 3.12 3.12 3.12 3.11 3.11 3.10 3.09 3.06 2.96

50 3.17 3.16 3.16 3.16 3.15 3.15 3.14 3.14 3.11 3.04

60 3.23 3.23 3.23 3.23 3.22 3.22 3.22 3.21 3.20 3.15

70 3.29 3.29 3.28 3.28 3.28 3.28 3.27 3.27 3.26 3.23

80 3.33 3.33 3.33 3.33 3.33 3.33 3.32 3.32 3.31 3.29

90 3.37 3.37 3.37 3.37 3.37 3.37 3.36 3.36 3.36 3.34

100 3.41 3.41 3.40 3.40 3.40 3.40 3.40 3.40 3.39 3.38

(continued)
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TABLE 12.3 (continued)

{a = . 01)

n

q

I 2 3 4 5 6 8 10 15 25

5 1.98

6 2.17 1.98

7 2.32 2.17 1.98

8 2.44 2.32 2.18 1.98

9 2.54 2.44 2.33 2.18 1.99

10 2.62 2.55 2.45 2.33 2.18 1.99

12 2.76 2.70 2.64 2.56 2.46 2.34 1.99

14 2.86 2.82 2.78 2.72 2.65 2.57 2.35 1.99

16 2.95 2.92 2.88 2.84 2,79 2.73 2.58 2.35

18 3.02 3.00 2.97 2.94 2.90 2.85 2.75 2.59

20 3.08 3.06 3.04 3.01 2.98 2.95 2.87 2.76 2.20

25 3.21 3.19 3.18 3.16 3.14 3.12 3.07 3.01 2.78

30 3.30 3.29 3.28 3.26 3.25 3.24 3.21 3.17 3.04 2.21

35 3.37 3.36 3.35 3.34 3.34 3.33 3.30 3.28 3.19 2.81

40 3.43 3.42 3.42 3.41 3.40 3.40 3.38 3.36 3.30 3.08

45 3.48 3.47 3.47 3.46 3.46 3.45 3.44 3.43 3.38 3.23

50 3.52 3.52 3.51 3.51 3.51 3.50 3.49 3.48 3.45 3.34

60 3.60 3.59 3.59 3.59 3.58 3.58 3.57 3.56 3.54 3.48

70 3.65 3.65 3.65 3.65 3.64 3.64 3.64 3.63 3.61 3,57

80 3.70 3.70 3.70 3.70 3.69 3.69 3.69 3.68 3.67 3.64

90 3.74 3.74 3.74 3.74 3.74 3.74 3.73 3.73 3.72 3.70

100 3.78 3.78 3.78 3.77 3.77 3.77 3.77 3.77 3.76 3.74

n = number of observations
q = number of independent variables (including count for intercept if fitted)
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TABLE 12.4 Critical Values for Balanced Two-Way  
and Three-Way Layouts

R C 6 8 10

Critical Values for the Two-Way Layout 
(asterisks denote theoretically exact values)

a  =  0.01

3 .66033*

4 .67484* .66511*

5 .66434* .63995* .60797*

6 .64597* .61302* .57774* .54628*

7 .62576* .58767* .55080* .51901* .49193

8 .60584* .56463* .52707* .49538 .46870 .44599

9 . 58696* .54386* .50611* .47475 .44857 .42641 .40736

10 .56935* .52516* .48750 .45658 .43094 .40931 .39079

a = 0.05

3 .64810*

4 .64512* . 62066*

5 .62415* .58971* .55513*

6 .60008* .56079* .52491* .49459

7 .57666* .53513* .49897 .46899 .44396

8 .55498* .51256* .47660 .44715 .42273 .40213

9 .53521* .49265 .45712 .42827 .40447 .38447 .36736

10 .51724 .47498 .43998 .41175 .38856 .36911 .35251

Critical Values for the Three-Way Layout 
(asterisks denote theoretically exact values ; differences (x 10”^ between upper 
and lower bounds are given in parentheses after the bound when necessary)

a  =  0.01

. 50294* 

.48778* 

.46011* .42529

(continued)
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R C 3 4 5 6 7 8 9 10

5 3 .46503*

4 .43209 .39515

5 .40257 .36509 .33582

6 3 .44276

4 .40755 .37024

5 .37783 .34087 .31267

6 .35352 .31756 . 29060 . 26969

7 3 .42260

4 .38649 .34951

5 .35709 .32100 .29387

6 .33341 .29858 .27279 .25290

7 .31397 .28044 .25585 .23697 .22191

8 3 .40468

4 .36836 .33200

5 .33949 .30436 .27824

6 .31647 .28278 .25804 .23903

7 .29770 .26538 .24186 .22386 .20953

8 .28203 .25099 .22852 .21138 . 19776 . 18660

9 3 .38877

4 .35261 .31697

5 .32434 .29018 .26498

6 .30198 .26937 .24557 .22734

7 .28383 .25264 .23005 .21281 . 19911

8 .26872 .23882 .21728 .20089 . 18788 . 17723

9 .25591 .22715 .20653 . 19086 .17845 . 16829 . 15977

10 3 .37461

4 .33878 .30391

5 .31115 .27791 .25355

(continued)
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R C 4 5 6 7 8 9

25779 .23484 .21730

24166 .21991 . 20334 .19019

22835 . 20763 . 19190 . 17942 .16921

,21714 . 19731 . 18228 . 17038 . 16065 . 15250

.20751 . 18847 . 17406 . 16265 . 15333 .14553

a = 0.05

10

3 .47790*

3 .45465* 

.42314 

.42912 

.39495

.38800

.35936

5 .36652 .33144 .30467

3 .40625

4 .37136 .33624

5 .34338 .30930 .28370

6 .32096 .28814 .26380 .24500

3 .38640

4 .35157 .31724

5 .32426 .29127 .26675

6 .30259 .27101 .24779 . 22993

7 .28496 .25468 .23259 .21565 .20214

3 .36920

4 .33476 .30131

5 .30817 .27625 .25270

6 .28723 .25679 .23455 .21750

7 .27025 .24116 .22004 .20389 . 19104

8 .25614 .22824 .20808 . 19271 . 18049 . 17046

(continued)
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TABLE 12.4 (continued)

R C 10

9 3 . 35418 (1)

4 .32028 .28770

10

5 .29441

6 .27414

7 .25776

8 .24417

9 . 23266 

.34094 (I)

.30765 .27590

.26347 .24079

.24474 .22337

.22972 .20945

.21732 .19800

.28246 

. 26280 

.24696

8 . 23384

9 .22275 

10 .21320

.20702

. 19399 . 18170

18329 .17161 .16204

20686 .18836 .17430 .16314 .15401 .14634

.25244 .23054

.23435 .21375 .19801

.21987 .20036 .18550 .17369

.20794 .18935 .17522 .16401 .15484

.19788 .18009 .16659 .15589 .14713

.18924 .17415 .15920 .14894

. 13979 

14055 . 13351 . 12750

distributed errors with mean zero and variance o^I. If Y  is the vector of fitted 
values, fe = IC -  X is the vector of residuals. Letting У  = (vy) = J(JC^X)

(n -  p) and var (ej) ^  ( I  ~ v jj). The ith studentized residual is 
r i  = e^/N/var ej and the maximum of the absolute values of the n w ill be de
noted by r^n* If is greater than some critical value hoj, the observation 
which gave rise to r̂ ĵ  is declared to be an outlier. Much of the early work in 
this area is due to Srlkantan (1961), but the best tables to date are those of 
Lund (1975), Table 12.3.

In cases where we "know” cr̂  or have an independent estimate Sy of it, 
we may use this knowledge in calculating r ^ ,  but should use the critical 
values given by Joshi (1972).

For a certain large class of designed experiments the residuals have a 
common variance. This class of experiments includes all balanced factorial 
arrangements, balanced incomplete blocks, and Latin squares. For these 
arrangements we fit the model and find the ith residual. The ith normalized

I
residual is = е^/(2е?)^ and the maximum of the absolute values of the 
is called the maximum normed residual, MNR. Important work in this area
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was done by Stefansky (1972), but Galpin and Hawkins (1981) have a better 
and more extensive set of tables (Table 12.4). If the MNR exceeds the tabu
lated critical values, the observation which gave rise to it is judged to be 
an outlier. The statistic given by C. Daniel (1960) in his work on half normal 
plots is equivalent to this test.

E 12.4 .1 Example

Snedecor and Cochran (1967) give an example of the use of organic phosphorus 
(X2) inorganic phosphorus (x^) on the yield of com  (y) on 18 Iowa soils. The 
data are shown below:

Soil
Sample

1

2

3

4

5

6

7

8 

910
1112
13

14

15

16

17

18

64

60

71

61

54

77

81

93

93

51

76 

96

77 

93 

95 

54

168

99

Ii i

0.4

0.4

3.10 .6
4.7

1.7 

9.410.1
11.6

12.6

10.9

23.1

23.1

21.6

23.1 

1.9

26.8

29.9

53

23 

19 

34

24 

65 

44 

31 

29 

58 

37 

46

50 

44 

56 

36 

58

51

61.56

58.96 

63.45 

60.27 

66.74 

64.93 

76.89 

77.01 

79.53 

83.83

78.97 

101.58 

101.93

98.72

102.45

62.77

109.24

114.18

2.44

1.04

7.55

0.73

-12.74

12.07

4.11

15.99

13.47

-32.83

-2.97

-5.58

-24.93

-5.72

-7.45

-8.77

58.76

-15.18

i

0.14 

0.06 

0.42 

0.04 

-0.67  

0.79 0.21 
0.81 

0.70 

-1.72 

-0.15  

-0.29  

-1.29  

-0.29  

-0.39  

-0.45  

3.18 

—0 O 84

Snedecor and Cochran thought the residual on soil 17 was ^suspiciously 
large. ” Using the above test for one outlier, we fit the equation E(y) = O' + 
ß i X i  + /З2Х2 to the data and obtain the predicted values shown above. The
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residuals are also shown, as well as the studentlzed residuals. The value 
of Гщ is 3.18, and from Table 12.3 with q = 3 (number of parameters) 
significant at the .05 level, hence is declared an outlier.

E 12.4.2 Example

The following two-way layout was given by Daniel (I960):

Data Fitted Residuals

35 32 40 37

29 29 36 34

25 29 20 30

19 25 35 25

22 20 29 29

33 34 39 38

29 30 35 34

23 24 29 28

23 24 29 -28

22 23 28 27

+2 -2 +1 - I  +0 - I  +1 +0 
+2 +5 -9 +2 

- 4 + 1 + 6 - 3  

+0 -3 +1 +2

The residual in the third row and column seems large. ____
For these data, Stefansky^s maximum normed residual is 9/n/202 =

. 6332. Consulting Table 12.4 we find a 5% critical value of . 590 and a 1% 
critical value of .640, hence the observation in the third row and third col
umn would be judged an outlier at the 5% level but not at the 1%  level.

12.5 M ULTIPLE  OUTLIERS IN THE LINEAR MODEL

In the simple linear regression case, the observation with largest residual 
may not be the one with the largest test statistic, Гщ» so that judging resid
uals by eye begins to fail as a tool. In a two-way table. Gentleman and Wilk 
(1975) declare that ”in the null case of no outliers, the residuals behave much 
like a normal sample. When one outlier is present, the direct statistical 
treatment of residuals provides a complete basis for data-analytic judgements, 
especially through judicious use of probability plots. When two outliers are 
present, however, the resulting residuals w ill often not have any noticeable 
statistical peculiarities.” These authors devised a test statistic (¾ = e*e-e*e  
where ”e*e is the sum of squares of revised residuals resulting from fitting 
the basic model to the data remaining after the omission of к data points” 
and e*e is the sum of squares of residuals obtained by fitting the model to

all of the data. They envisioned the computation of for each of the

possible data partitions, and used the largest of the to identify the ”k most 
likely outlier subset.” Such a procedure can be computationally awesome. 
Methods of reducing the labor have been devised, but they are still formidable, 
since one first chooses a maximum value for к (no easy task) then proceeds.
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If the Qk Is not significant, the value of к is reduced by I and the process 
repeated. A statistic useful in judging Qk Is F = (n -  p -  k)Qk/k(e^e -  Qk) 
with к and n -  p -  к degrees of freedom. The authors suggest that a plot be 
made of the largest Qk values against typical values obtained as medians 
from 10 Monte Carlo trials.

John and Draper (1978) showed that Qk is ”the sum of squares of к suc
cessive revised normalized uncorrelated residuals, ” and that one only need 
examine the subset of Qk which arose from the subset of the larger resid
uals. In practice they suggested examining a plot of the original residuals 
to see if one outlier appeared to be present. If so, that value was omitted 
and treated as a missing value and estimated as usual (by minimizing the 
error sum of squares). After estimation, the same process was repeated 
to see if a second outlier could be detected by examining the residuals. Con
tinuing this process, John and Draper (1980) show how to conduct a three- 
stage test for up to three outliers, using simulated critical values.

A  good example would take up more space than we have available, hence 
the reader is referred to the papers mentioned above.

12.6 ACCOMMODATION OF OUTLIERS

We have thus far concentrated on detecting or identifying outliers. We shall 
now discuss the use of robust regression techniques to get around the outliers 
without detecting them and without allowing them to "devastate" our analyses. 
Besides the use of trimmed means, Winsorized means, and medians, there 
is a set of techniques known as Huber M -estimation. Since the derivative of 
the log of the likelihood function for any f(xj;6) is equal to S f’ (xj -  0)/f(xj -  ¢), 
we set this equal to zero and have as a result that the maximum likelihood 
estimator of в is 0, the solution of 2ÿ(Xj -  ö) = 0, where ÿ(x) = -Г (х )Л (х ).  
Since f(x) is not known, we can choose a ÿ(x) which will have suitable robust 
estimation properties. Many forms of ф{х) have been suggested, but we shall 
confine ourselves to one. Andrews (1974) suggested a sine-v/ave function for 
jp{x), and showed that it could be carried out by using any iterative weighted 
least squares procedure in which the model for the data is yj = + e j, the
least squares estimate of g  is b , and the Ith residual is r¿ = yj To do
robust regression, we start with an initial estimate of ¢, denoted by bo, ob
tained as described below. From this estimate we calculate the residuals r^. 
We let S = median I r j j , and solve, by weighted least squares, the system of p 
equations 2wjXy(yi summation runs from i = I  to n where
j = I, 2, . . . ,  P- The weights are w? = sin (rj/s)/rj if Ir^j < 1.5тг and 
zero otherwise. The solution of the equations provides a new estimate b j , 
from which we obtain new residuals and new weights and get another esti
mate Ьз- This continues until the Ц  converge. On the last iteration, very 
small or zero weights for some residuals indicate that they are outliers or 
nearly so. By letting x be a vector of I ’s, the model will do for the univari
ate case as well. In most cases a starting value bo, obtained by solving the
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original equations for ß ,  w ill do nicely. Andrews has a rather involved alter
native when the data are "fa r from Gaussian. "

I would recommend the use of robust regression to accompany the usual 
parametric regression procedure. If the answers are quite different, there 
is an indication of outliers or influential observations which indicate that the 
situation should be studied further. Andrews also suggests that the procedure 
may give better results after a few iterations than if it is carried to con
vergence.

E 12.6.1 Example

A set of data from Brownlee (1965) on observations from a plant for oxidation 
of ammonia to nitric acid is given below.

Stack
Observation loss 

number y

Cooling water
Air flow inlet temperature 

Xl X2

1

2

3

4
5
6

7
8 

9
10

11

12

13
14
15
16
17
18
19
20 

21

42
37
37
28
18
18
19
20 

15 
14
14 
13 
11 

12

8

7
8 

8 

9
15 
15

80
80
75
62
62
62
62
62
58
58
58
58
58
58
50
50
50
50
50
56
70

27
27
25
24
22

23
24 
24 
23 
18 
18
17
18 
19 
18 
18 
19
19
20 

20 

20

Acid
concentration

Хз

89 
88

90 
87 
87 
87 
93 

93
87 
80 
89
88 

82 
93 

89 
86 

72
79
80 
82
91
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Daniel and Wood (1971) did careful work on this problem« Their fit to 
the original data was E(y) = -39.9 + .72xi + !.ЗОХз -  . 15x3 . After much 
consideration and plotting of the data, they discarded observations I , 3, 4, 
and 21 as outliers, and refitted the equation, obtaining E(y) = -37.6 + .80xi 
+ . 58X2 -  . 07x3 . A robust regression yields E(y) = -37.2 + .82Xi + . 52X3 
-  . 07x3 , and deletion of the four points does not alter the coefficients. The 
residuals from the four fits are shown below. The size of the residuals for 
points I , 3, 4, and 21 indicate, somewhat subjectively, that they are outliers.

Residuals

I = 1.5Least squares Robust fit c •
Observation ------------------------------ ------------------ -----------

number Response with 1,3,4,21 without with 1,3,4,21 without

1

2

3
4
5
6

7
8 

9
10

11

12

13
14
15
16
17
18
19
20 

21

42
37
37
28
18
18
19
20 

15 
14
14 
13 
11 

12

8

7
8 

8 

9
15 
15

3.24
-1.92
4.56
5.70

-1.71
-3.01
-2.39
-1.39
-3.14
1.27
2.64
2.78

-1.43
-0.05
2.36
0.91

-1.52
-0.46
-0.60
1.41

-7.24

6.08
1.15
6.44
8.18

-0.67
-1.25
-0.42
0.58

-1.06
0.35
0.96
0.47

-2.51
-1.34
1.34
0.14

-0.37
0.10

0.59
1.93

-8.63

6.11

1.04
6.31
8.24

-1.24
-0.71
-0.33
0.67

-0.97
0.14
0.79
0.24

-2.71
-1.44
1.33
0.11

-0.42
0.08
0.63
1.87

-8.91

6.11

1.04
6.31
8.24

-1.24
-0.71
-0.33
0.67

-0.97
0.14
0.79
0.24

-2.71
-1.44
1.33
0.11

-0.42
0.08
0.63
1.87

-8.91
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12.7 MULTIVARIATE OUTLIERS

A generalization of the univariate technique has been used here. Let S be 
the sample covariance matrix for all the data and S i be the covariance matrix

obtained by deleting к observations from the sample. ^The possible

ways of choosing the к outliers are indexed by i . )  Wilks (1963) suggested 
forming Ri = I ^ l  / I SI and using the minimum of the Ri as a test statistic 
and gave some critical values for one and two outliers. His test is recom
mended.

12.8 OUTLIERS IN TIME SERIES

Fox (1972) was apparently the first to take into account the correlations be
tween successive observations in processing time series for outliers. He 
considered a type I outlier as one in which a gross error of observation or  
recording errors affects only a single observation. The type П outlier occurs 
when a single ’^innovation” is extreme and will affect that observation and 
the subsequent ones.

As a model for the t y p e  I outlier, Fox used a stationary pth order auto
regressive process in which the qth observation has d added to it. The null 
hypothesis is Hq : Д = 0, and the alternative, H  ̂: A  0. Using an asymptotic 
expression for the elements w 4  of the inverse of the covariance matrix.
Fox obtained a likelihood ratio criterion.

= (y -  A ) 'W - y  -  A) 
q,n y ’^ ”V

(12.8.1)

where is the estimated Inverse under H j , is the estimated inverse 
under Hq , and A, the displacement in the qth observation, is a vector of 
zero$ except for the qth component which is estimated asymptotically by

The distribution of Aq ^ is not known except with W  known. Using 
simulation. Fox compared the distribution of Aq^n (a) the distribution 
obtained by replacing W “  ̂by and (b) the distribution obtained by assum
ing that W  is known instead of estimated in Eq. (12 .8 .1). The distributions 
in the three cases were very close, hence Fox recommended that we act as 
though the estimated W ’s were known in order to obtain the distribution (and 
critical values) of A q ^ Where the position of the outlier is not known. Fox 
simulates the situation and obtains a small table of critical values.

For the t5фe П outlier. Fox again employs a likelihood ratio criterion 
and obtains an approximate distribution for both cases (position known and 
unknown). In the case where the type of outlier is unknown, he suggests 
seeing whether one can detect the effect of the observation on subsequent 
observations. If not, the type I outlier is assumed. The above approach is
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shown to be superior to the one in which the observations are considered to 
be independent, and we recommend its use. Note that it has the characteris
tic form of a (weighted) sum of squares omitting outliers divided by a weighted 
sum of squares for the total sample.
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Appendix

1. Table I , Cumulative Distribution Function of the
Standard Normal Distribution

2. Table 2, Critical Values of the Chi-Square Distribution

3. Simulated Data Sets

4. Real Data Sets

B U S  Data Set 
CHEN Data Set 
BLAC Data Set 
EMEA Data Set 
BAEN Data Set

Set Name Distribution ^ ß i ß z

NOR Normal м = 100, o- = 10 .0 3.
UNI Uniform on Interval 0 to 10 .0 1.80
EXP Negative Exponential ^ = 5 2. 9.
LOG Logistic Ц = 100 .0 4.2
W E .5 Welbull к = . 5 6.62 87.72
WE2 Weibull к = 2 .63 3.25
SU(1,2) Johnson Unbounded (1,2) -.87 5.57
SU(0,3) Johnson Unbounded (0,3) .0 3.53
SU(0,2) Johnson Unbounded (0,2) .0 4.51
SB(0,2) Johnson Bounded (0, 2) .0 2.63
SB(0, .5) Johnson Bounded (0,. 5) .0 1.63
LCN(.05,3) Contaminated Normal p = .05, ß  =  3 .68 4.35
LCN (.1 ,3 ) Contaminated Normal p = . I , ß  -  3 .80 4.02
LCN (.2 ,3 ) Contaminated Normal p = . 2, ß  =  3 .68 3.09
SB(1,1) Johnson Bounded (1,1) .73 2.91
SB(1,2) Johnson Bounded (1,2) .28 2.77
SB(.533, .5) Johnson Bounded (.533, .5) .65 2.13
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I .  TABLE I Cumulative Distribution Function of the 
Standard Normal Distribution

Areas under the standard normal curve (Areas to the left)

6 8 9

-3 .0*
-2.9
- 2.8
-2.7
- 2.6
-2 .5
-2.4
-2.3
- 2.2
- 2 . 1
- 2.0
-1 .9
- 1.8
-1 .7
- 1.6
-1 .5
-1.4
-1.3
- 1.2
- 1.1
- 1.0
- .9
-.8
-.7
-.6
- .5
-.4
-.3
- . 2
-.1
-.0

.0013

.0019

.0026

.0035

.0047

.0062

.0082

.0107

.0139

.0179

.0228

.0287

.0359

.0446

.0548

.0668

.0808

.0968

.1151

.1357

.1587

.1841

.2119

.2420

.2743

.3085

.3446

.3821

.4207

.4602

.5000

.0013

.0018

.0025

.0034

.0045

.0060

.0080

.0104

.0136

.0174

.0222

.0281

.0351

.0436

.0537

.0655

.0793

.0951

.1131

.1335

.1562

.1814

.2090

.2389

.2709

.3050

.3409

.3783

.4168

.4562

.4960

.0013

.0017

.0024

.0033

.0044

.0059

.0078

.0102

.0132

.0170

.0217

.0274

.0344

.0427

.0526

.0643

.0778

.0934.1112

.1314

.1539

.1788

.2061

.2358

.2676

.3015

.3372

.3745

.4129

.4522

.4920

.0012 

.0017 

.0023 

.0032 

.0043 

.0057 

.0075 

.0099 

.0129 

.0166 

.0212 

.0268 

.0336 

.0418 

.0516 

.0630 

.0764 

.0918 

.1093 

.1292 

.1515 

.1762 

.2033 

.2327 

.2643 

.2981 

.3336 

.3707 

.4090 

.44 83 

.4880

.0012

.0016

.0023

.0031

.0041

.0055

.0073

.0096

.0125

.0162

.0207

.0262

.0329

.0409

.0505

.0618

.0749

.0901

.1075

.1271

.1492

.1736

.2005

.2296

.2611

.2946

.3300

.3669

.4052

.4443

.4840

.0011

.0016

.0022

.0030

.0040

.0054

.0071

.0094

.0122

.0158

.0202

.0256

.0322

.0401

.0495

.0606

.0735

.0885

.1056

.1251

.1469

.1711

.1977

.2266

.2578

.2912

.3264

.3632

.4013

.4404

.4801

.0011

.0015

.0021

.0029

.0039

.0052

.0069

.0091

.0119

.0154

.0197

.0250

.0314

.0392

.0485

.0594

.0721

.0869

.1038

.1230

.1446

.1685

.1949

.2236

.2546

.2877

.3228

.3594

.3974

.4364

.4761

.0011

.0015

.0020

.0028

.0038

.0051

.0068

.0089

.0116

.0150

.0192

.0244

.0307

.0384

.0475

.0582

.0708

.0853

.1020

.1210

.1423

.1660

.1922

.2206

.2514

.2843

.3192

.3557

.3936

.4325

.4721

.0010

.0014

.0020

.0027

.0037

.0049

.0066

.0087

.0113

.0146

.0188

.0239

.0301

.0375

.0465

.0571

.0694

.0838

.1003

.1190

.1401

.1635

.1894

.2177

.2483

.2810

.3516

.3520

.3897

.4286

.4681

.0010

.0014

.0019

.0026

.0036

.0048

.0064

.0084

.0110

.0143

.0183

.0233

.0294

.0367

.0455

.0559

.0681

.0823

.0985

.1170

.1379

.1611

.1867

.2148

.2451

.2776

.3121

.3483

.3859

.4247

.4641

*For Z < -4 the areas are 0 to four decimal places.
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TABLE I (continued)

8 9

.0

.1

.2

.3

.4

.5

.6

.7

.8

.91. 0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1 . 8
1.92 .0
2 . 1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9 
3.ot

.5000

.5398

.5793

.6179

.6554

.6915

.7257

.7580

.7881

.8159

.8413

.8643

.8849

.9032

.9192

.9332

.9452

.9554

.9641

.9713

.9772

.9821

.9861

.9893

.9918

.9938

.9953

.9965

.9974

.9981

.9987

.5040

.5438

.5832

.6217

.6591

.6950

.7291

.7611

.7910

.8186

.8438

.8665

.8869

.9049

.9207

.9345

.9463

.9564

.9649

.9719

.9778

.9826

.9864

.9896

.9920

.9940

.9955

.9966

.9975

.9982

.9987

.5080

.5478

.5871

.6255

.6628

.6985

.7324

.7642

.7939

.8212

.8461.8686

.8888

.9066

.9222

.9357

.9474

.9573

.9656

.9726

.9783

.9830

.9868

.9898

.9922

.9941

.9956

.9967

.9976

.9982

.9987

.5120

.5517

.5910

.6293

.6664

.7019

.7357

.7673

.7967

.8238

.8485

.8708

.8907

.9082

.9236

.9370

.9484

.9582

.9664

.9732

.9788

.9834

.9871

.9901

.9925

.9943

.9957

.9968

.9977

.9983

.9988

.5160

.5557

.5948

.6331

.6700

.7054

.7389

.7704

.7995

.8264

.8508

.8729

.8925

.9099

.9251

.9382

.9495

.9591

.9671

.9738

.9793

.9838

.9875

.9904

.9927

.9945

.9959

.9969

.9977

.9984

.9988

.5199

.5596

.5987

.6368

.6736

.7088

.7422

.7734

.8023

.8289

.8531

.8749

.8944

.9115

.9265

.9394

.9505

.9599

.9678

.9744

.9798

.9842

.9878

.9906

.9929

.9946

.9960

.9970

.9978

.9984

.9989

.5239

.5636

.6026

.6406

.6772

.7123

.7454

.7764

.8051

.8315

.8554

.8770

.8962

.9131

.9279

.9406

.9515

.9608

.9686

.9750

.9803

.9846

.9881

.9909

.9931

.9948

.9961

.9971

.9979

.9985

.9989

.5279

.5675

.6064

.6443

.6808

.7157

.7486

.7794

.8078

.8340

.8577

.8790

.8980

.9147

.9292

.9418

.9525

.9616

.9693

.9756

.9808

.9850

.9884

.9911

.9932

.9949

.9962

.9972

.9979

.9985

.9989

.5319

.5714

.6103

.6480

.6844

.7190

.7517

.7823

.8106

.8365

.8599

.8810

.8997

.9162

.9306

.9429

.9535

.9625

.9699

.9761

.9812

.9854

.9887

.9913

.9934

.9951

.9963

.9973

.9980

.9986

.9990

.5359

.5753

.6141

.6517

.6879

.7224

.7549

.7852

.8133

.8389

.8621

.8830

.9015

.9177

.9319

.9441

.9545

.9633

.9706

.9767

.9817

.9857

.9890

.9916

.9936

.9952

.9964

.9974

.9981

.9986

.9990

^For Z > 4  the areas are I to four decimal places.
Adapted from Probability with Statistical Applications, second edition, by
F.Mosteller, R. E. K. Rourke, and G. B. Thomas, Jr. Reading, JVàss.: 
Addison-Wesley, 1970, p. 473.
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d.f. .995 .99 .975 .95 .90 .10 .05 .025 .01 .005

1
2
3
4
5
6
7
8 
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
50

100
5001000

.00

.0 1

.07

.21

.41

.68

.99
1.34
1.73
2.16
2.60
3.07
3.57
4.07
4.60
5.14
5.70
6.26
6.84
7.43
8.03
8.64
9.26
9.89

10.52
11.16
11.81
12.46
13.12
13.79
27.99
67.33

422.3888.6

.00

.02

.11

.30

.55

.87
1.24
1.65
2.09
2.56
3.05
3.57
4.11
4.66
5.23
5.81
6.41
7.01
7.63
8.26
8.90
9.5410.2010.86

11.5212.20
12.88
13.56
14.26
14.95
29.71
70.06

429.4
898.8

.00

.05

.22

.48

.83
1.24
1.69 
2.18
2.70
3.25
3.82
4.40
5.01
5.63
6.26
6.91
7.56
8.23
8.91
9.59

10.28
10.98
11.69
12.40
13.12
13.84
14.57
15.31
16.05
16.76

.00

.10

.35

.71
1.15
1.64
2.17
2.73
3.33
3.94
4.57
5.23
5.89
6.57
7.26
7.96
8.67
9.39

10.12
10.85
11.59
12.34
13.09
13.85 
14.61
15.38
16.15
16.93
17.71
18.49

.02.21

.58
1.06
1.61
2.20
2.83
3.49
4.17
4.87
5.58
6.30
7.04 
7.79
8.55
9.31

10.09
10.86
11.65
12.44
13.24
14.04
14.85
15.66
16.47
17.29
18.11
18.94
19.77
20.60

2.71
4.61
6.25
7.78
9.24

10.6412.02
13.36
14.68
15.99
17.28
18.55
19.81
21.06
22.31
23.54
24.77
25.99
27.20
28.41
29.62
30.81
32.01
33.20
34.38
35.56
36.74
37.92
39.09
40.26

3.84
5.99
7.81
9.49

11.07
12.59
14.07 
15.51
16.92
18.31
19.68 
21.03
22.36
23.68
25.00
26.30
27.59 
28.87
30.14
31.41
32.67
33.92
35.17
36.42
37.65
38.89
40.11
41.34
42.56
43.77

5.02
7.38
9.35

11.14
12.83
14.45
16.01 
17.54
19.02
20.48
21.92
23.34
24.74
26.12
27.49
28.85
30.19
31.53
32.85
34.17
35.48
36.78
38.08
39.36
40.65
41.92
43.19
44.46
45.72
46.98

6.63
9.21

11.34
13.28
15.09
16.81
18.48
20.09
21.67
23.21
24.72
26.22
27.69
29.14
30.58
32.00
33.41
34.81
36.19
37.57
38.93
40.29
41.64
42.98
44.31
45.64
46.96 
48.28
49.59
50.89

7.88
10.60
12.84
14.86
16.75
18.55 
20.28
21.96
23.59
25.19
26.76 
28.30
29.82
31.32
32.80

34.27
35.72
37.16
38.58
40.00
41.40
42.80
44.18
45.56
46.93
48.29
49.65
50.99
52.34
53.67

32.36 34.76
74.22 77.93

439.9 449.1
914.3 927.6

37.69 63.17 67.50 71.42
82.36 118.5 124.3 129.6

459.9 540.9 553.1 563.9
943.1 1058 1075 1090

76.15 79.49
135.8 140.2
576.5 585.2

1107 1119

Adapted from D. B. Owen, Handbook of Statistical Tables. Courtesy of the 
Atomic Energy Commission. Reading, M ass.: Addlson-Wesley, 1962.
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There are 17 simulated data sets, each of 100 observations. Throughout the 
book these have been used to illustrate and compare procedures.

Set Name Distribution (nT^I, ß i )

NOR Normal distribution, ц. = 100, о- = 10 (0, 3)

UNI Uniform distribution, f(x) = ^  for 0 < x < 10 (0, 1.80)

EXP I “x/5Negative езфопеп11а11у f(x) = -  e for x > 0
5

(2, 9)

LOG Logistic, F(X) = (0, 4.2)

W E. 5

I
-X^

Welbull, F(X) = I -  e (6.62, 87.72)

WE2
-X^

Weibull, F(X) = I -  e (.63, 3.25)

SU(1,2) Johnson Unbounded (y,6) 
sinh“^(x) is standard normal ( - «  < x < «-)

(-.87 , 5.59)

A
y=/. ä-г /  \
ß, = a  7 6 , ß ,  = 5 . 5 9  \

SU (0,3) Johnson Unbounded (0,3) (0, 3.53)

SU(0,2) Johnson Unbounded (0, 2) (0, 4.51)

5r / \
y== 0 . 6 = 2  j  \

= 0 .  ß , = 4 . 5 l  \w

SB(0,2) Johnson Bounded (y,ô) (0, 2.63)

у + Ô In is a standard normal (0< x< I)
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Set Name Distribution

SB (0 ,. 5) Johnson Bounded (0 , . 5)

5«
y = ( ) ,  8 = 0 . 5  
ß , = ( ) ,  ß , = 1 . 6 3

APPENDIX  

(0, 1.63)

The above distributions were the first ones generated. To increase the 
number of skewed distributions, the following were added.

Location Contaminated Normals 

pN(M,l) + ( l - p )N (0 , l )

The three Included here are:

Data Set
P M ß2 Name

.05 3 .68 4.35 LCN (.05,3)

.10 3 .80 4.02 LCN (.10,3)

.20 3 .68 3.09 LCN (.20,3)

The last three simulated data sets are from Johnson Bounded SB(y,ô) distri
bution where SB(y,0) is defined above. The three samples here are from:

Data Set
У Ô Name

I I .73 2.91 SB (1,1)
I 2 .28 2.77 SB (1.2)
.533 .5 .65 2.13 SB (.533,.5)
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NOR Data Set Normal Distribution = 
d  =

100
10

nT̂ I = 0
¢2 = 3

No.
Obser
vation No.

Obser
vation No.

Obser
vation

Obser
vation

I 92.55 26 102.56 51 111.38 76 88.13

2 96.20 27 79.43 52 103.22 77 102.98

3 84.27 28 105.48 53 113.17 78 103.71

4 90.87 29 85.29 54 108.39 79 95.14

5 101.58 30 83.53 55 103.60 80 85.71

6 106.82 31 104.21 56 103.90 81 103.56

7 98.70 32 100.75 57 89.35 82 89.44

8 113.75 33 92.02 58 124.60 83 88.26

9 98.98 34 100.10 59 104.34 84 97.80

10 100.42 35 87.83 60 85.29 85 97.33

11 118.52 36 89.00 61 97.78 86 103.90

12 89.90 37 108.67 62 109.76 87 96.38

13 92.45 38 103.09 63 94.92 88 94.33

14 115.92 39 99.12 64 95.12 89 99.62

15 103.61 40 91.46 65 88.56 90 95.94

16 96.13 41 125.28 66 115.95 91 104. 89

17 95.45 42 91.45 67 100.79 92 83.34

18 108.52 43 92.56 68 104. 87 93 87.04

19 112.69 44 102.66 69 95.89 94 89.80

20 90.03 45 101.91 70 110.72 95 83.07

21 111.56 46 76.35 71 86.28 96 112.14

22 109.26 47 111.30 72 107.97 97 113.90

23 83.67 48 89.33 73 117.23 98 100.46

24 112.97 49 79.89 74 104.12 99 110.39

25 116.87 50 110.17 75 95.97 100 98.43
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UNI Data Set Uniform Distribution on Interval 0 to 10 n/̂ 1 = 0  
ß2 = 1.80

Obser
vation

Obser
vation No.

Obser
vation No.

Obser
vation

I 8.10 26 6.54 51 3.93 76 4.26

2 2.06 27 8.24 52 0.08 77 3.32

3 1.60 28 9.12 53 3.51 78 9.29

4 8.87 29 0.31 54 0.44 79 2.57

5 9.90 30 2.63 55 1.22 80 0.55

6 6.58 31 6.20 56 1.12 81 6.53

7 8.68 32 5.47 57 2.34 82 2.33

8 7.31 33 7.80 58 1.86 83 9.01

9 2.85 34 1.30 59 8.35 84 7.86

10 6.09 35 9.39 60 3.53 85 7.06

11 6.10 36 8.67 61 5.05 86 8.54

12 2.94 37 1.87 62 5.28 87 9.71

13 1.85 38 6.67 63 6.87 88 8.49

14 9.04 39 5.90 64 2.96 89 2.08

15 9.38 40 0.15 65 2.35 90 0.50

16 7.30 41 3.91 66 4.02 91 3.54

17 2.11 42 8.87 67 1.44 92 3.75

18 4.55 43 2.50 68 9.63 93 9.46

19 7.66 44 7.49 69 9.44 94 0.04

20 9.63 45 0.55 70 5.44 95 7.79

21 9.48 46 5.25 71 3.71 96 8.08

22 5.31 47 5.61 72 4.21 97 3.60

23 5.76 48 1.00 73 2.22 98 8.85

24 9.66 49 3.23 74 2.87 99 1.50

25 4.37 50 1.05 75 0.72 100 0.18
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EXP Data Set

O bser- 
No. vation

Negative Exponential with Mean = 5

O bser- 
No. vation

Obser- 
No. vation

-vT̂ i = 2  
= 9

Obser- 
No. vation

1

2

3

4

5

6

7

8 

9

10

11

12

13

14

15

16

17

18

19

20 

21 

22

23

24

25

8.15

4.69 

2.17 

0.37

16.69

0.06

6.48

2.63

0.44

0.89

6.96

5.15 

9.78 

6.47 

0.99

7.70 

1.61 

1.68 
0.92 

1.87

14.80

9.96 

25.92

3.37

2.76

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

11.89

7.26

14.71

0.231.21
0.18

1.24

12.94

4.78

18.53

9.20 

1.65

2.20

1.13

5.20 

14.74

2.86

0.19

0.08

3.221.21 
3.51 

5.67

10.50

10.45

51

52

53

54

55

56

57

58

59

60 

61 

62

63

64

65

66

67

68

69

70

71

72

73

74

75

1.27

1.56

16.81

6.07

3.89

9.60 

3.12 

4.16 

0.07 

1.67 

3.80

1.52 

2.79 

0.36 

4.49

9.76 

2.37

9.91

6.60 

0.17

14.68

3.72

6.92

2.53

4.77

76

77

78

79

80 

81 

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99 

100

5.19 

0.26 

9.46 

0.95 

0.51

1.39 

3.74 

4.37 

3.87

5.40

2.41 

5.93

39.12

1.05

0.47

9.57 

8.29 

3.79 

2.35 

1.09

4.19

12.21

1.57 

3.52 

0.48
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LOG Data Set Logistic M = 100 •^ßi = 0  
/Зг = 4 .2

No.
Obser
vation No.

Obser
vation No.

Obser
vation No.

Obser
vation

I 96.91 26 86.98 51 112.50 76 98.51

2 109.99 27 79.23 52 109.82 77 107.91

3 102.97 28 110.70 53 94.66 78 132.40

4 118.54 29 98.58 54 107.08 79 103.32

5 63.35 30 76.52 55 108.22 80 116.01

6 94.63 31 93.44 56 81.61 81 111.18

7 144.28 32 89.81 57 102.90 82 65.87

8 104.47 33 100.62 58 85.94 83 96.30

9 111.81 34 108.75 59 66.35 84 83.74

10 78.32 35 103.91 60 97.12 85 91.97

11 109.91 36 87.71 61 90.09 86 94.95

12 98.07 37 145.33 62 111.92 87 98.95

13 82.45 38 121.83 63 83.89 88 98.21

14 114.97 39 99.52 64 77.45 89 98.71

15 103.08 40 116.58 65 74.29 90 108.88

16 78.48 41 106.05 66 102.90 91 68.44

17 97.45 42 92.55 67 113.41 92 118.92

18 107.64 43 79.07 68 104.37 93 117.01

19 83.73 44 111.59 69 100.46 94 89.22

20 116.99 45 103.18 70 104.14 95 123.39

21 103.82 46 105.03 71 51.90 96 85.30

22 131.24 47 101.19 72 105.34 97 123.58

23 95.86 48 102.81 73 108.94 98 113.79

24 111.90 49 106.17 74 103.43 99 102.86

25 60.57 50 112.12 75 81.17 100 88.22
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W E. 5 Data Set Weibull with к = . 5 ^ ß i

ßz

= 6.62 
= 87.72

No.
Obser
vation № .

Obser
vation № .

Obser
vation No.

Obser
vation

I .30 26 .06 51 2.26 76 .39

2 1.72 27 .01 52 1.69 77 1.36

3 .73 28 1.86 53 .21 78 10.75

4 4.00 29 .39 54 1.23 79 .76

5 .00 30 .01 55 1.41 80 3.19

6 .21 31 .17 56 .02 81 1.96

7 19.71 32 .09 57 .72 82 .00

8 .89 33 .52 58 .05 83 .28

9 2.10 34 1.50 59 .00 84 .03

10 .01 35 .82 60 ,31 85 .14

11 1.71 36 .07 61 .10 86 .22

12 .36 37 20.64 62 2.12 87 .41

13 .03 38 5.24 63 .03 88 .37

14 2.89 39 .45 64 .01 89 .40

15 .74 40 3.36 65 .01 90 1.52

16 .01 41 1.08 66 .72 91 .00

17 .33 42 .15 67 2.47 92 4.13

18 1.31 43 .01 68 ,87 93 3.49

19 .03 44 2.05 69 .51 94 .09

20 3.48 45 .75 70 .85 95 5.91

21 .81 46 .95 71 .00 96 .04

22 10.03 47 .57 72 .99 97 6.00

23 .26 48 .71 73 1.53 98 2.57

24 2.12 49 1.10 74 .77 99 .72

25 .00 50 2.17 75 .02 100 .07
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WE 2 Data Set Weibull with к = 2 ^ ß i

ßz

= .63 
= 3.25

Obser
vation No.

Obser
vation No.

Obser
vation No.

Obser
vation

I .74 26 .49 51 1.23 76 .79

2 1.15 27 .34 52 1.14 77 1.08

3 .92 28 1.17 53 .68 78 1.81

4 lo41 29 .79 54 1.05 79 .93

5 .16 30 .30 55 1.09 80 1.34

6 o68 31 .65 56 .38 81 1.18

7 2.11 32 .56 57 .92 82 .18

8 .97 33 .85 58 .47 83 .72

9 1.20 34 1.11 59 .18 84 .42

10 .33 35 .95 60 .75 85 .61

11 1.14 36 .51 61 .56 86 .69

12 .78 37 2.13 62 1.21 87 .80

13 .40 38 1.51 63 .43 88 .78

14 1.30 39 .82 64 .32 89 .79

15 .93 40 1.35 65 .27 90 1.11

16 .33 41 1.02 66 .92 91 .20

17 .76 42 .62 67 1.25 92 1.43

18 1.07 43 .34 68 .97 93 1.37

19 .42 44 1.20 69 .85 94 .54

20 1.37 45 .93 70 .96 95 1.56

21 .95 46 .99 71 .09 96 .45

22 1.78 47 .87 72 1.00 97 1.56

23 .71 48 .92 93 1.11 98 1.27

24 1.21 49 1.02 74 .94 99 .92

25 .14 50 1.21 75 .36 100 .52
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SU(1,2) Data Set

Obser- 
No. vatlon No.

Johnson Unbounded (1,2)

O bser- Obser
vation No. vation №

535

Nfß, = .87 
ß i  = 5.59

Obser- 
. vation

1 -.41 26 -.10 51 -1.00 76 -.47

2 -.90 27 .11 52 -.89 77 -.82

3 -.63 28 -.93 53 -.34 78 -1.88

4 -1.25 29 -.47 54 -.78 79 -.64

5 .50 30 .18 55 -.83 80 -1.15

6 -.34 31 -.30 56 .05 81 -.95

7 -2.46 32 -.19 57 -.63 82 .44

8 -.68 33 -.54 58 -.07 83 -.39

9 -.97 34 -.85 59 .43 84 -.01

10 .13 35 -.66 60 -.42 85 -.25

11 -.90 36 -.13 61 -.20 86 .35

12 -.45 37 -2.51 62 -.98 87 -.48

13 .02 38 -1.40 63 -.02 88 -.46

14 -1.10 39 -.50 64 .16 89 -.48

15 -.63 40 -1.17 65 .24 90 -.85

16 .13 41 -.74 66 -.63 91 .38

17 -.43 42 -.27 67 -1.04 92 -1.27

18 -.81 43 .11 68 -.68 93 -1.19

19 -.01 44 -.96 69 -.54 94 -.17

20 -1.19 45 -.64 70 -.67 95 -1.47

21 -.66 46 -.71 71 .76 96 -.06

22 -1.83 47 -.56 72 -.72 97 -1.48

23 -.38 48 -.62 73 -.86 98 -1.05

24 -.98 49 -.75 74 -.64 99 -.62

25 .56 50 -  98 75 .09 100 -, 14
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SU(0,3) Data Set Johnson Unbounded (0,3) nT̂ i = 0  
ß 2 = 3 . 5

Obser
vation No.

Obser
vation No.

Obser
vation No

Obser- 
. vation

1 .06 26 .27 51 -.26 76 .03

2 -.21 27 .42 52 -.20 77 -.16

3 -.06 28 -.22 53 .11 78 -.63

4 -.38 29 .03 54 -.15 79 -.07

5 .70 30 .47 55 -.17 80 -.33

6 .11 31 .14 56 .37 81 -.23

7 -.83 32 .21 57 -.06 82 .66

8 -.09 33 -.01 58 .29 83 .08

9 -.24 34 -.18 59 .65 84 .33

10 .43 35 -.08 60 .06 85 .17

11 -.20 36 .25 61 .20 86 .11

12 .04 37 -.85 62 -.25 87 .02

13 .36 38 -.44 63 .33 88 .04

14 -.31 39 .01 64 .45 89 .03

15 -.06 40 -.34 65 .51 90 -.18

16 .43 41 -.13 66 -.06 91 .61

17 .05 42 .15 67 -.28 92 -.38

18 -.16 43 .42 68 -.09 93 -.35

19 .33 44 -.24 69 -.01 94 .22

20 -.35 45 -.07 70 -.09 95 -.47

21 -.08 46 -.10 71 .89 96 .30

22 -.61 47 -.02 72 -.11 97 -.47

23 .09 48 -.06 73 -.19 98 -.28

24 -.24 49 -.13 74 -.07 99 -.06

25 .75 50 -.25 75 .40 100 .24
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SU(0,2) Johnson Unbounded (0, 2) nT̂ i = 0  
ßz “  4 . Ê

No.
Obser
vation

Obser
vation No.

Obser
vation No

Obser 
. vation

1 .10 26 .41 51 -.39 76 .05

2 -.31 27 .65 52 -.31 77 -.25

3 -.09 28 -.33 53 .17 78 -1.01

4 -.58 29 .04 54 -.22 79 -.10

5 1.15 30 .73 55 -.26 80 -.50

6 .17 31 .21 56 .57 81 -.35

7 -1.39 32 .32 57 -.09 82 1.07

8 -.14 33 -.02 58 .44 83 .12

9 -.37 34 -.27 59 1.05 84 .51

10 .68 35 -.12 60 .09 85 .25

11 -.31 36 .38 61 .31 86 .16

12 .06 37 -1.42 62 -.37 87 .03

13 .55 38 -.68 63 .50 88 .06

14 -.47 39 .01 64 .70 89 .04

15 -.10 40 -.52 65 .80 90 -.28

16 .67 41 -.19 66 -.09 91 .98

17 .08 42 .23 67 -.42 92 -.59

18 -.24 43 .65 68 -.14 93 -.53

19 .51 44 -.36 69 -.01 94 .34

20 -.53 45 -.10 70 -.13 95 -.73

21 -.12 46 -.16 71 1.51 96 .46

22 -.97 47 -.04 72 -.17 97 -.74

23 .13 48 -.09 73 -.28 98 -.43

24 -.37 49 -.19 74 -.11 99 -.09

25 1.23 50 -.38 75 .62 100 .37
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SB(0, 2) Data Set

O bser- 
No. vation

Johnson Bounded (0, 2)

1

2

3

4

5

6

7

8 

9

10

11

12

13

14

15

16

17

18

19

20 21 
22

23

24

25

.52

.42

.48

.37

.73

.54

.24

.47

.41

.65

.42

.52

.63

.39

.48

.65

.52

.44

.62

.38

.47

.30

.53

.41

.74

№ .

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Obser
vation

.60

.65

.42

.51

.66

.55

.58

.50

.43

.47

.59

.24

.35

.50

.38

.45

.56

.65

.41

.48

.46

.49

.48

.45

.41

Obser- 
No. vation

Nfßi = 0  
ß i  =  2.63

Obser- 
No. vation

51

52

53

54

55

56

57

58

59

60 

61 

62

63

64

65

66

6768
69

70

71

72

73

74

75

.41

.42

.54

.45

.44

.63

.48

.60

.71

.52

.58

.41

.62

.66.68

.48

.40

.47

.50

.47

.77

.46

.43

.47

.64

76

77

78

79

80 

81 

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99 

100

.51

.44

.29

.47

.38

.42

.72

.53

.62

.56

.54

.51

.51

.51

.43

.70

.36

.38

.58

.34

.61

.34

.40

.48

.59
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SB(0, .5) Johnson Bounded (0, .5) ^Гß^ = 0
ßz = l- (

Obser
vation

Obser
vation No.

Obser
vation No.

Obser
vation

1 .60 26 .83 51 .18 76 .55

2 .23 27 .92 52 .23 77 .27

3 .41 28 .21 53 .66 78 .03

4 .10 29 .54 54 .29 79 .40

5 .98 30 .94 55 .27 80 .13

6 .66 31 .69 56 .90 81 .20

7 .01 32 .78 57 .41 82 .98

8 .36 33 .48 58 .85 83 .61

9 .19 34 .25 59 .98 84 .88

10 .93 35 .38 60 .59 85 .73

11 .23 36 .82 61 .77 86 .65

12 .56 37 .01 62 .19 87 .53

13 .89 38 .07 63 .87 88 .56

U .14 39 .51 64 .93 89 .54

15 .40 40 .12 65 .95 90 .25

16 .93 41 .32 66 .41 91 .97

17 .58 42 .72 67 .16 92 .10

18 .28 43 .92 68 .37 93 .12

19 .88 44 .19 69 .49 94 .79

20 .12 45 .40 70 .37 95 .06

21 .38 46 .35 71 .99 96 .86

22 .03 47 .46 72 .34 97 .06

23 .63 48 .41 73 .25 98 .16

24 .19 49 .32 74 .39 99 .41

25 .98 50 .19 75 .91 100 .81
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LCN(.05,3) Data Set Contaminated Normal 
(p = .05, /X = 3) 

.95N(0,1) + .05N(3,1)

n/̂ 1 = .68 
ß2 = 4.35

No,
Obser
vation No.

Obser
vation № .

Obser
vation №

O bser- 
. vatioii

I .19 26 -.76 51 .60 76 3.77

2 -,19 27 .33 52 -.50 77 -.46

3 1.96 28 -.51 53 .69 78 1.40

4 -2.26 29 -.18 54 .28 79 .13

5 -.72 30 1.83 55 1.15 80 -.08

6 -,61 31 .61 56 -.24 81 .71

7 1.05 32 .97 57 -.02 82 1.14

8 -.19 33 1.^7 58 -1.31 83 -1.21

9 .16 34 -.82 59 1.82 84 -.32

10 .98 35 -.03 60 .48 85 .00

11 -.24 36 2.41 61 -1.52 86 .58

12 .26 37 -.55 62 .84 87 -.24

13 2.07 38 1.17 63 -.77 88 -1.88

14 1.22 39 -.49 64 -1.17 89 .44

15 .09 40 -.21 65 -.65 90 .27

16 . A l 41 2.31 66 .79 91 .66

17 -.04 A2 ,23 67 -.97 92 -.51

18 -.24 43 .50 68 -.14 93 -1.24

19 -2.30 44 .07 69 .20 94 -1.19

20 ,03 45 .08 70 .19 95 .27

21 -.38 46 1.74 71 .20 96 .13

22 1.23 47 -1.02 72 .50 97 1.68

23 -.20 48 -1.35 73 -.13 98 -.05

24 -.07 49 -1.36 74 -2.25 99 -.30

25 -.38 50 -.18 75 1.77 100 -1.70



APPENDIX

LCN(.10,3)

O bser- 
No. vation No.

Contaminated Normal 
(P =  .10, ß =  3)

.90N(0,1) + .10N(3,1)

O bser- O bser
vation No. vation

541

- f ß i  = .8 
ß2 = 4.02

O bser- 
. vation

1 -.78 26 .96 51 -2.01 76 .78

2 -1.98 27 -.81 52 -1.12 77 .24

3 .57 28 -.04 53 .18 78 -.40

4 2.10 29 .88 54 .31 79 -1.42

5 .36 30 .07 55 3.54 80 .37

6 2.33 31 3.78 56 .00 81 -.47

7 .99 32 2.61 57 1.66 82 -.09

8 1.23 33 3.93 58 .74 83 .11

9 -1.05 34 -.06 59 .87 84 -1.24

10 .00 35 1.48 60 -1.02 85 3.67

11 -1.05 36 -.92 61 .67 86 .67

12 -.55 37 .87 62 3.03 87 .70

13 -.26 38 -2.60 63 3.42 88 -1.43

14 .09 39 .28 64 -1.95 89 -1.70

15 .08 40 .26 65 .83 90 .33

16 -.81 41 -.13 66 -.67 91 .44

17 3.30 42 -.69 67 -1.71 92 -1.00

18 -1.21 43 -2.13 68 -Л 0 93 .49

19 -1.31 44 -.27 69 3.54 94 -.10

20 .07 45 .49 70 .26 95 -.10

21 .71 46 .48 71 .32 96 1.84

22 .89 47 .02 72 .04 97 -.99

23 -1.54 48 .69 73 .16 98 .15

24 2.45 49 -.25 74 -.51 99 1.67

25 -.91 50 -.84 75 .52 100 1.30
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LCN(.20,3) Data Set Contaminated Normal 
(p  = . 20, /X = 3) 

.80N(0,1) + .20N(3,1)

= .68 
=3.09

No.
Obser
vation No.

Obser
vation No.

Obser
vation No

O bser- 
. vatioii

I .09 26 -.95 51 1.42 76 4.12

2 -.24 27 2.03 52 1.17 77 3.57

3 1 . 4 4 28 -.87 53 2.00 78 .13

4 1.25 29 -1.61 54 .26 79 -1.55

5 2.24 30 2.93 55 -1.87 80 -.49

6 .16 31 -1.14 56 .80 81 .47

7 .05 32 -1.05 57 3.45 82 1.08

8 -.62 33 -.32 58 -.29 83 -.59

9 3.44 34 1.12 59 -.27 84 .64

10 -.04 35 -.25 60 1.29 85 1.49

11 -.41 36 1.12 61 -.04 86 2.39

12 1.49 37 1.31 62 .78 87 -.43

13 -.87 38 -.31 63 .62 88 .46

14 -2.61 39 -1.17 64 .79 87 -.68

15 .08 40 .05 65 .43 90 -.08

16 -.83 41 -.02 66 2.83 91 -.16

17 .32 42 3.86 67 .69 92 4.80

18 .43 43 .09 68 .55 93 1.71

19 2.86 44 -.34 69 .35 94 3.59

20 1.40 45 -1.05 70 1.78 95 2.25

21 -.08 46 -2.20 71 .02 96 -.71

22 2.03 47 -.22 72 2.01 97 -.53

23 .31 48 2.49 73 3.86 98 -1.82

24 4.58 49 -1.41 74 .06 99 -.03

25 .07 50 .49 75 -.54 100 5.04



APPENDIX

SB(1,1) Data Set

O bser- 
No. vation No.

Johnson Bounded (1,1)

O bser- Obser
vation No. vation No

543

^Tßi =  .73 
=2.91

O bser- 
. vation

1 .31 26 .45 51 .15 76 .29

2 .17 27 .55 52 .17 77 .18

3 .23 28 .16 53 .34 78 .06

4 .11 29 .29 54 .19 79 .23

5 .72 30 .59 55 .18 80 .12

6 .34 31 .36 56 .52 81 .16

7 .04 32 .41 57 .23 82 .70

8 .22 33 .26 58 .46 83 .32

9 .15 34 .18 59 .70 84 .49

10 .57 35 .22 60 .31 85 .38

11 .17 36 .44 61 .40 86 .34

12 .29 37 .04 62 .15 87 .28

13 .51 38 .09 63 .49 88 .29

14 .13 39 .27 64 .58 89 .29

15 .23 40 .12 65 .61 90 .18

16 .56 41 .20 66 .23 91 .68

17 .30 42 .37 67 .14 92 .11

18 .19 43 .56 68 .22 93 .12

19 .49 44 .15 69 .26 94 .42

20 .12 45 .23 70 .22 95 .09

21 .22 46 .21 71 .80 96 .47

22 .06 47 .25 72 .21 97 .09

23 .32 48 .24 73 .17 98 .14

24 .15 49 .20 74 .23 99 .24

25 .75 50 .15 75 .54 100 .43
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SB(1,2) Data Date Johnson Bounded (1,2) ^Гß^ =  .28 
=2.77

No.
Obser
vation No.

Obser
vation

Obser
vation

Obser- 
. vation

I .35 26 .39 51 .41 76 .49

2 .26 27 .46 52 .42 77 .43

3 .29 28 .46 53 .33 78 .44

4 .21 29 .43 54 .29 79 .17

5 .36 30 .31 55 .27 80 .57

6 .24 31 .37 56 .22 81 .37

7 .46 32 .39 57 .15 82 .37

8 .42 33 .68 58 .38 83 .34 -

9 .21 34 .61 59 .55 84 .25

10 .43 35 .51 60 .22 85 .34

11 .42 36 .37 61 .25 86 .28

12 .42 37 .23 62 .21 87 .45

13 .26 38 .27 63 .32 88 .39

14 .22 39 .32 64 .37 89 .47

15 .29 40 .33 65 .53 90 .45

16 .46 41 .29 66 .29 91 .33

17 .39 42 .34 67 .30 92 .44

18 .38 43 .30 68 .41 93 .65

19 .29 44 .24 69 .32 94 .43

20 .45 45 .30 70 .37 95 .26

21 .37 46 .42 71 .22 96 .50

22 .31 47 .44 72 .24 97 .44

23 .31 48 .33 73 .24 98 .44

24 .27 49 .45 74 .43 99 .53

25 .38 50 .33 75 .26 100 .68
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SB(. 535,. 5) Data Set Johnson Bounded (..535, .5) ^Гßl = .65 
= 2.13

No.
Obser
vation No.

Obser
vation

Obser
vation

Obser
vation

1 .07 26 .00 51 .02 76 .03

2 .03 27 .01 52 .02 77 .15

3 .45 28 .05 53 .62 78 .05

4 .80 29 .49 54 .05 79 .41

5 .14 30 .32 55 .82 80 .15

6 .02 31 .02 56 .91 81 .25

7 .16 32 .24 57 .39 82 .39

8 .22 33 .01 58 .04 83 .11

9 .12 34 .00 59 .14 84 .08

10 .56 35 .30 60 .44 85 .43

11 .41 36 .07 61 .69 86 .55

12 .03 37 .20 62 .01 87 .30

13 .93 38 .33 63 .71 88 .42

14 .56 39 .23 64 .36 89 .93

15 .66 40 .55 65 .01 90 .95

16 ,03 41 .04 66 .78 91 .04

17 .23 42 .10 67 .81 92 .05

18 .57 43 .15 68 .22 93 .30

19 .07 44 .42 69 .49 94 .63

20 .39 45 .26 70 .02 95 .72

21 .41 46 .06 71 .03 96 .98

22 .08 47 .52 72 .06 97 .15

23 .56 48 .25 73 .01 98 .09

24 .07 49 .22 74 .25 99 .09

25 .45 50 .15 75 .36 100 .08
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4 . Real Data Sets

There are five data sets which are given here. These can be used to illus-
trate and compare various techniques. Some are used in the text.

B U S  Data Set Data Set for Two Independent Normal Populations

Body weight in grams of white Leghorn chicks at 21 days; from two labora-
tories in a collaborative vitamin D assay (Blisses data)

Series A Series B

Weight Frequency Weight Frequency

156 I 130 I
162 I 147 I
168 I 155 I
182 I 156 I
186 I 167 I
190 2 177 I
196 I 179 I
202 I 183 I
210 I 187 2
214 I 193 I
220 I 195 I
226 I 196 I
230 2 199 I
236 2 203 I
242 I 208 I
246 I 225 I
270 231 I

20 232 I
236 I
246 I

21

Source: B liss, C. I. (1946). Collaborativecomparison of three ratios for
chick assay of vitamin D. J. Assoc. Off. A g r . Chem. 396-408, given in
Bliss, C.
p. 108.

I. (1967). Statistics in Biology, vol. I, New York: McGraw-Hill,
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Lethal dose of the drug clnobufagln in 10 (mg/kg), as determined by titration 
to cardiac arrest in individual etherized cats (Chen et a l . , 1931)

CHEN Data Set Data Set for Lognormal Population

Dose log Dose Dose log Dose f

1.26 0.100 I 2.34 0.369 I
1.37 0.137 I 2.41 0.382 I
1.55 0.190 I 2.56 0.408 I
1.71 0.233 I 2.63 0.420 2
1.77 0.248 I 2.67 0.427 I
1.81 0.258 I 2.82 0.450 2
1.89 0.276 2 2.84 0.453 I
1.98 0.297 I 2.99 0.476 I
2.03 0.308 3 3.65 0.562 I
2.07 0.316 I 3.83 0.583

25

Source: Chen, K. K ., H. Jensen, and A. L . Chen (1931). The pharmacolog
ical action of the principles isolated from ch*an su, the dried venom of the 
Chinese toad. J. Pharmacol. Expt. Therap. 43, 13-50. Given in B liss,
C . I. (1967). Statistics in Biology, vol. I, New York: M cGraw-Hill, p. 114.

BLAC Data Set Data Set for Testing for Poisson Model

Density of Eryngium Marltlmum (Blackman* s data)

Number of plants 
per quadrat 

square Frequency

0 16
I 41
2 49
3 20
4 14
5 5
6 I
7 I

8 and over __ 0
147

Source: Blackman, G. E. (1935). A study by statistical methods of the dis
tribution of species in grassland associations. Ann. Bot. 49, 749-777. Given 
in K. Mather (1966). Statistical Analysis in Biology. London: Methuen, p. 37.
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Distribution of the Heights of Maize Plants (in decimeters) 
(Emerson and East*s data)

EMEA Data Set Data Set for Testing for Normality

Height of plants 
in dms

(class center) Frequency

7 I
8 3
9 4

10 12
11 25
12 49
13 68
14 95
15 96
16 78
17 53
18 26
19 16
20 3
21 __ I

530

X =  14.5396

= 4.9936N - I

4.9936 -  .0833 (Sheppard^s correction) =4.9103

S = \/4.9103 = 2.2159

Source: Emerson, K. A .,  and E. M. East (1913). Inheritanceofquantitative 
characters in maize, Neb. Exp. Stat. Res. Bull. 2. Given in K. Mather 
(1966). Statistical Analysis in Biology. London: Methuen, p. 29.
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Differences in flood stages for two stations on the Fox River in Wisconsin 
(Bain and Engelhardt's data)

lo97, 1.96, 3.60, 3.80, 4.79, 5.66, 5.76, 5.78, 6.27, 6.30, 6.78, 7.65, 
7.84, 7.99, 8.51, 9.18, 10.13, 10.24, 10.25, 10.43, 11.45, 11.48, 11.75, 
11.81, 12.34, 12.78, 13.06, 13.29, 13.98, 14.18, 14.40, 16.22, 17.06

BAEN Data Set Data Set for Testing for Double Eзфonential (Laplace)

Source: Bain, L . J . , and M. Engelhardt (1973). Interval estimation for the 
two-parametric double exponential distribution. Technometrics 15, 875- 
887, p. 885.
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Accommodation of outliers, 499, 517 
Alternative families, 491-492 
Anderson-Darling test (see edf sta

tistic and edf tests)
ANOVA, test for constant variance, 

153
Asymmetry, 13 
Asymptotics, 280, 291

^ ib i statistic (see also normality, 
tests of), 14, 283, 288, 289, 
290, 292, 293, 294, 295, 296, 
297, 302, 306, 321, 375, 376- 
381

D^Agostino’s approximation, 281, 
285, 377

normal approximation, 382 
t approximation, 377 
Johnson^s Su transformation, 281, 

285, 377
b 2 statistics (see also normality, 

tests of), 283, 286, 288, 290, 
292, 293, 294, 295, 296, 297, 
302, 306, 322, 375. 388-390 

Anscombe and Glynn's approxi
mation, 388

[b 2 statistics]
Bowman and Shenton’s approxi

mation, 283, 322 
D'Agostino and Pearson’s simu

lations, 388
D'Agostino and Tietjen’s simu

lations, 388 
Beta distribution, 338 

transformation to F, 338 
42, 279, 375

Beta random variables, 248 
/?2, 23, 42, 279, 375 
Biased tests, 250 
Bivariate contours, 312, 315, 316, 

317
Bivariate model, 306, 311, 314, 317 
BMDP (Biomedical Computer P ro 

grams P), 9 
Borel subsets, 244

Cauchy distribution, edf test for, 160 
Censored data, 86-88 

confidence bands for, 120 
doubly-censored, 118 
edf statistics, and, 111-122, 480- 

481

551
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[Censored data]
Greenwood statistic, 339 
left censoring, 476, 478, 479 
multiply censored, 468-473 
progressively, 462, 468-471 
random censoring, 119 
replacement method, 120 
right censoring, 461, 462, 467,

468, 469, 476, 478, 480, 483 
singly-C en sored samples, 466-468 
test for exponential distribution,

141
test for normality, 128 
transformation to complete sample, 121
type I censoring, 112, 200, 461, 

467-468
type П censoring. 113. 199, 461, 

467-468
Central limit theorem, 367 
Chi-squared statistic: 

Chernoff-Lehmann, 67. 73-75. 76 
Dzhaparidze-Nikolin. 79. 83 
Freeman-Tukey, 68 
log likelihood. 65. 68 
modified, 66 
Pearson, 64, 67, 72. 73 
Pearson-Fisher, 66, 87 
power of. 69. 72, 78, 91 
Rao-Robson, 78, 79-82, 85-86, 92 
Wald's method. 79. 87 
Watson-Roy, 76

Choice of cells in chi-square, 69-71 
Coefficient of variation, 424, 428, 

435. 457
Circle, tests for observations on a. 

107, 347
omnibus tests. 350 

Combination of tests, 176-179, 357 
Combining independent tests for 

several samples. 357 
Competing models, 4 73-474 
Complete sufficient statistic. 243 
Component distributions, 17 
Components of edf statistics, 374

Components of uniformity test sta
tistics, 355

Composite goodness-of-fit problem 
( see hypothesis , composite) 

Computer version of K| test, 322 
Concentration bands, 248 
Conditional probability integral 

transformation (see CPIT and 
transformation)

Conditioning, 483
Confidence bands, censored data,120
Confidence intervals using 

Kolmogorov D, 109 
Consistency, 223 

Shapiro-Wilk W, 223 
Shapiro-Wllk W ^, lack of con

sistency, 223 
Shapiro-FranciaW ', 223 

Consonance set, 109 
Contaminant, 497
Cornish-Fisher transformation, 398 
Correlation coefficient (see also 

correlation statistics and cor
relation tests), 336 

ANOVA, and, 198 
censored data, 196 
consistent, 197

Correlation between 'Æiand Ьз, 292, 
293, 294

Correlation intervals. 434 
Correlation statistics (see also cor

relation tests), 482 
Correlation tests (see also regression 

tests), 195, 223
Cauchy distribution, for the, 230 
censored samples, 199, 200 
exponential distribution, for the,

215
exponential power distribution, for 

the, 230
extreme value distribution, for the. 

225
logistic distribution, for the, 225 
normal distribution, for the. 201
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[Correlation tests]
R* (X, l i ) , based on, 205 
R^(X ,m ), based on, 204 
uniform distribution, for the, 199, 

201
U(0,1), 201

Covariance of order statistics for the 
normal distribution, 208 

Cram^r-von Mises statistic (see edf 
statistics and tests)

СРГГ, 240. 254, 433 
exponential distribution. 253-254 
lognormal distribution, 256-257 
normal analysis of variance, 259- 

260
normal distribution, 255-256 
normal linear regression, 257-259 
Pareto distribution, 254-255 
uniform distribution, 252-253 

Contamination, 15, 42 
cdf. 8, 19, 22, 24-25, 28, 35, 64. 

235, 236. 239
Cumulative distribution function 

(see cdf)
Cumulative total time on test statis

tic. 448

Data-dependent cells (in chi-squared).
75, 80. 82-84, 84-86, 87-88 

Data sets for examples:
BAEN. 82-84
BLIS. 98-99, 125. 204. 213, 267. 

285
CHEN, 49-50 
EMEA, 75
EXP, 12-14. 15, 20-21. 43, 81, 88. 

266, 285, 316, 373, 382, 383, 
389, 392. 394-395, 399 

LOG, 26-31. 32-33, 75, 285, 316 
LCN(.05,3). 316 
LCN (.1 ,3 ), 16. 44-45. 316 
LCN (.2 .3 ), 17, 44-46, 316 
NOR, 8-9. 12-14, 15, 23-24, 40- 

41, 42. 44, 73-74. 266, 285,
316, 373. 382, 383. 389, 392.

[Data sets for examples]
[NOR] 394-395, 399, 465-466,

467, 487, 489, 492 
SB(0, .5), 316 
SB(0,2), 316 
SB(.533, .5), 316 
SB(1,1), 316 
SB(1,2), 316
SU(0,2), 42-43, 316, 382, 383,

389, 392
SU(0,3), 286, 316 
SU(1,2), 12-14, 15, 316, 382, 383, 

389, 392
UNI, 32-34, 42-43, 266, 285, 316, 

382, 383. 389, 392, 481 
316

1\E2, 20-22. 55-56. 80-81. 316. 
469-471

Delta theorems, 367 
Dependent observations, 89 
DFR (decreasing failure rate). 167. 

422. 428, 432, 435, 447, 451, 
454, 456

Directed divergence, 68 
Discordant observation, 497 
Discrete distributions, edf tests for, 

171-176
Distribution function (see cdf) 
df (see cdf)
Divergent series, 292 
Double trans it iv ity, 241

ecdf, 8-10 
plotting, 8

edf statistics (see also edf tests) : 
Anderson-DarlingA^, 100, 101 
components, 164
confidence sets, use of edf statis

tics for. 109
Cramer-von Mises , 100, 101 
indicators of the parent population, 

as, 180
quadratic statistics, 100 
Kolmogorov D, 100, 101 
Kuiper V, 100. 101
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[edf statistics]
Supremum statistics, 100 
WatsonU^. 100, 101 

edf techniques, 24 
edf tests (see also edf statistics), 

102-184
Ander son-D ar ling, 4, 372-373, 485 
Cauchy distribution, for the, 160 
chi square distribution, for the, 153 
combining edf tests statistics, 177- 

179
use of standardized values, 179 

Cram^r-von Mises, 4. 480 
discrete distributions, test for, 

171-176
empirical characteristic function, 

tests based on. 170 
exponential distribution, for. 133- 

145
extreme value distribution, for. 

145-149
fully specified distribution, for a 

(Case 0), 104-122 
censored data, tests on. 111-122 
circle, observations on a. 107, 481 
power. HO

gamma distribution, for the. 151- 
156

half sample method. 169 
Kolmogorov-Smirnov. 4, 111, 481 
Kuiper. 481
logistic distribution, for the. 156- 

160
Mann. Scheuer, and Fertig. 183 
median and mean of transformed 

SpacingS, tests based on. 183 
normality, tests for, 122-133 

censored data. 128 
power. 166-168 
Renyi statistics. 121 
symmetry, for, 170 
unknown shape parameter in edf.

103
using normalized spacings. 180 

power. 184

[edf tests]
von Mises distribution, for, 164- 

166
Weibull distribution, for the, 149- 

150
Empirical characteristic function, 

tests based on, 170 
Empirical cumulative distribution 

function (see ecdf and edf) 
Entropy, 344
Equivalent normal deviates, 287, 

296, 297, 300, 322, 328 
Estimates of scale, tests based on, 

206
Exchangeability, 483 
Expected values of ordered statis

tics. 31
standard normal, 37-39. 41. 202 

Exploratory technique, 7 
Exponential distributlon : 

gamma distribution as an alterna
tive, 454, 457

J transformation, 422, 424, 430 
K transformation. 422, 424. 431, 

433. 445
N transformation. 422. 424, 429, 

431, 445
test situations, 432 

test on interval between events. 
432

tests on lifetimes, 432 
Weibull distribution as an alterna

tive, 449. 454, 457 
Exponential distribution, applica

tions of, 426
lifetime experiments. 427 
Poisson process, 426, 433, 434 
reliability theory, 427 
time to failure, 426 

Exponential distribution, tests of 
the. (origin known). 435-455 

Bickel and Doksum tests. 449 
censored data, on, 141 
correlation tests. 215 
edf tests, 133-145. 436. 438
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[Exponential distribution, tests of 
the, (origin known)] 

gamma distribution as an alterna
tive, 454, 457

Greenwood statistics, 217, 439, 
440-441, 454

Gurland and Dahiya moment tests, 
436, 454

Jackson J, 436, 454 
Kendall-Sherman К, 439, 443, 454 
linear failure rate alternatives, 449 
Lorenz curve, tests based on, 444, 

454
Makeham alternative, 449 
mean U statistic, 439, 447, 454 
median U statistic, 439, 447, 454 
Moran M , 442, 454 
omnibus tests, 451, 454 
power study, 222, 451-455 
ratio of two estimates of scale, 

tests based on, 218 
regression tests, 215, 436, 438 

deWet-Venter, 222 
Jackson J, 222 
power of tests, 222 
Shaplro-Wilk W g , 218 
Stephens W s, 219 

residuals, tests based on, 218 
sample moment tests, 436, 454 
tests based on J transformation, 

438-444
tests based on K transformation, 

445-451
tests based on N transformation, 

445-451
tests for trend, 439 
Shaplro-Wilk W g , 218, 438 
Stephens Ws, 219, 436, 454 
Weibull as an alternative, 449,

454, 457
Exponential distribution, tests of 

the, (origin and scale unknown), 
455-456

correlation statistics, 455 
edf statistics, 455

[Exponential distribution, tests of 
the, (origin and scale unknown)) 

power comparison, 455-456 
Shaplro-Wilk W g , 455 

Extreme tail percentiles, 2 
Extreme value distribution, edf 

tests for, 145-149 
using normalized spacings, 181

Failure censoring, 461 
Failure rate, 422, 428 
Fiducial limits, 239 
Fisher distribution on the sphere,

348
Fisher, R. A . , 280, 281 
Fisher's P, 347, 358, 359, 360 
Formal numerical techniques, 7 
Formal statistical tests, I

Gamma distribution, edf tests, 151- 
156

Gaps, 343
Generalized least squares, 206 
Generalized likelihood ratio statis

tic, 487
Geometric mean, 50 
Geometric standard deviation, 50 
Gram -Charlier system, 281 
Graphical display of a random 

sample, 195
Graphical techniques, 2, 7 
Graph paper (see also probability 

plotting papers) : 
arithmetic, 8, 39 
four cycle, 21 
log, 8
sem i-log, 19, 21 

Greenwood statistic (see also edf 
tests, exponential distribution, 
tests of the, and uniform distri
bution, test of the), equivalent 
to other statistics, 441 

Grouped data, 10, 33, 65, 171, 405, 
478
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Half sample method, 169 
Hazard plotting, 469 
Hazard rate, 428 
Heavy tailed distribution, 19 
Heteroscedasticity, 246 
Higher order spaeings, 343 
Hypothesis:

alternative, I, 2, 369, 372, 373 
eomposite, I, 4, 235, 368, 372, 

373, 487-492
null, I, 2, 102, 104, 122, 368,

372, 422, 479
simple, I, 4, 235, 368, 372, 479 

surrogate, 237

Identifieation of outliers, 499 
Independent tests, 359, 360 
IFR (inereasing failure rate), 167, 

422, 428, 432, 435, 447, 450, 
454, 456

Intervals between events, 456 
Invarianee, 432 
Invariate : 

maximal, 244 
permutation, 245 

Iteration, 324

Jaekknife teehnlque, 469 
Johnson’s S translation system, 281, 

287, 294, 297, 306, 307, 322 
J transformation, 332, 422, 424, 430 
K transformation, 422, 424, 431,

433, 445
Kaplan-Meler estimator, 119, 468 
Kolmogorov-Smirnov statlstle D 

(see edf tests and edf statistlos) 
к statistles, 280
K  ̂ test (see D ’Agostino and Pearson 

omnibus test under normality, 
test for)

K| test:
normality, for (see normality, 

tests for)
nonnormal sampling, 296 

kurtosis (see also and Ьз ), 435

Leaps, 429, 489-491 
Life testing, 461 
Lifetime data, tests on, 434 
Lifetime, model for the, 426 
Light tailed distribution, 21 
Linear funetions of order statlstios, 

367
Linear models, outlier Identification, 

507, 516
Loglikellhood ratio statistic, 65, 68, 

358
Logistic distribution: 

edf test for, 156-160 
using normalized spaeings, 181 

probability plotting, 26-32 
regression test for, 224 

Lognormal distribution: 
censored data, 492 
probability plotting, 47-54, 473- 

474
three parameter, 51 
two parameter, 47 

Lorenz curve, test based on, 444,
454

Maximal invariant, 244 
MLE (maximum likelihood estimator), 

65, 79, 84 
raw data, 67, 87 

Mean Ü ,^347, 439 
Median Û, 338, 439 
Maximum value, 18 
Minimum chi-squared estimator, 65 
Minimum modified chi-squared esti

mator, 66-67
Mixtures of distributions, 15-18, 42 

parametric techniques, 18 
Moments of sample moments: 

bivariate, 288
normal mixture, 290, 304, 305,

314, 315, 316
Pearson Type I distribution, 290 
uniform distribution, 289 
univariate, 288 

Monte Carlo simulations, 315
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Most powerful sim ilar test, 245 
Multivariate normality, tests of: 

directional normality, 411 
generalization of univariate tests, 

409-411 
Machado, 410 
MaIkovich and A fifi, 410 
Mardia, 409
maximum curvature test, 412 
nearest distance test, 412 
radius and angle decomposition, 411 
solely multivariate procedures, 

411-413
univariate procedures, 409

Negatively skewed, 11 
Neyman-Pearson theory, 2 
Nonparametric estimator of the cdf, 

468, 476
Normal mixture, 290, 304, 305, 314, 

315, 316
Normality, multivariate (see multi

variate normality, tests of) 
Normality, tests of: 

Anderson-Darling, 372-374 
n/Ь̂ , 376-381, 403-406 
Bowman and Shenton’s omnibus test 

(see Kg test under normality, 
tests of)

b2, 388-390, 403-406 
chi-squared type, 370-371 
comparison of, 403-405 
correlation coefficient tests, 201- 

205
D’Agostino and Pearson’s omnibus, 

283, 297, 390, 403-406 
D ’Agostino’s D, 212, 395-399, 

403-406
effects of ties on, 405
edf, 122-133, 214, 371-374
edf for simple null hypothesis, 372
entropy, 344
Filliben, 400
fourth standardized moment, 388- 

390, 403-406

[Normality, tests of]
Geary’s a, 392

test, 283, 297, 390, 403-406 
Kg test, 282, 283, 286, 296, 300, 

301, 309, 322, 328, 391, 403, 406 
LaBrecque, 400 
likelihood ratio, 400 
Locke and Spurrier’s U statistic, 

401
moment, 375
Neyman smooth test, 249, 261 
normalized spacings, using, 181 
omnibus tests based on moments, 

390-391
power studies, 214, 403-404 
R test, 390
regression tests, 201-205, 393- 

401
residuals, on, 406-408 

autoregressive, 408 
linear regression, 132, 407 

Royston, 400 
sample range, 392 
Shapiro-Francia W ’ , 213, 223,

399, 403-406
Shapiro-Wilk W , 3, 4, 206, 208, 

211, 252, 393, 403-406 
Spiegelhalter, 402 
third standardized moment, 376- 

381, 403-406 
ties, effect of, 405 
Tiku, 402
l^^tsonU^, 249, 261 
Weisberg-Bingham, 399

N transformation, 422, 424, 429,
431

NU residuals (normal uniform 
residuals), 247, 250, 251

Omnibus tests (see also normality, 
tests of), 251, 283, 285, 315, 
390-391, 486

Omnlbustest contours, 296-297,
302, 315

Ordinary least squares, 197, 198
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Outliers, 14-15, 42, 497 
accommodation of, 499, 517 
identification of, 499 
multiple outliers in a univariate 

sample, 504
multiple outliers in the linear 

model, 516
single outlier in the linear model, 

507
time series, in, 520

Padd approximations, 291, 292 
Parameter estimation from plots: 

best linear unbiased, 29 
informal, 26
unweighted least squares, 29 

Patterns of U-values, 356 
Peakedness, 369, 375 
Pearson, 280, 281 
Pearson curve (see Pearson system) 
Pearson populations (see Pearson 

system)
Pearson system, 280, 281, 286,

287, 398
Pearson Type I distribution, 293,

304, 306, 317
Periodicity of events, 434, 438 
Permutation invariant transforma

tions, 246
Poisson process, 426, 433 

independence of intervals, 434 
periodic alternatives, 434 
trend alternatives, 433 

Positively skewed, 11, 17 
Power (see also power entries under 

chi-squared tests, edf tests, 
exponential distribution tests, 
normal distribution tests, and 
uniform distribution tests), 2, 69, 
72, 78

Power of a test (see power entries 
under chi-squared tests, edf 
tests, exponential distribution 
tests, normal distribution tests, 
and uniform distribution tests)

Power transformation, 58 
P -P  plots, 58
PIT (see probability Integral trans

formation)
Probability integral transformation, 

101, 207, 239-246, 332, 357, 
422, 480 

classical, 247 
conditional, 240, 254 

Probability plot, 2, 4, 25, 34, 412 
Probability plotting, 24-57, 463-479 

СРГГ analysis, 261-271 
gamma distribution, 59, 475, 478 
general concepts, 24, 34 
normal distribution, 35-47, 465- 

467
lognormal distribution, 47-54, 

473-474 
logistic, 26-28 
Weibull, 54-57, 469-471 

Probability plotting papers, 8, 34 
normal probability paper, 39 
logistic, 34 
lognormal, 50 
Weibull, 54

Proportional hazards, 478-479 
P-statistic, 358

Quantile probabilities, 464 
Quadratic form, 197 
Quadratic statistics (see edf statis

tics and edf tests), 357 
Q-Q plots, 58, 462 
Quantile-quantile plots (see Q-Q  

plots)

Rao-Blackwell estimate, 243 
Rao-Blackwell theorem, 168 
Ratio of maximum likelihood, 491 
Rational fraction approxlmants, 287 
Recursive residuals, 258-259 
Regression tests (see also corre

lation tests), 195 
Cauchy distribution, for the, 224 
deWet and Venter’s general pro

cedure for tests, 224
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[Regression tests]
exponential distribution, for the, 215 
extreme value distribution, for the, 

224
logistic distribution, for the, 224 
normal distribution, for the, 201- 

215
residuals, based on, 205 

Reliability theory, 427 
Renewal processes, 478 
Residuals, 197

tests for normality of, 132, 207, 
406-408

Renyi statistics, 121 
Reversals, 450 
Robust regression, 517

Safe sample size, 290, 301 
Sample, delete, 242 
Scaled residuals, 412 
Scan statistic, 345 

on the circle, 345 
Scatter diagram, 33 
Separate families, 236 

several samples, 236 
testing problem, 236 

Series of events, tests on a, 433 
Several samples goodness-of-fit 

problem, 236
Shapiro-Wilk (see tests for exponen

tial distribution and normal 
distribution)

Significant tall of a test statistic,
425, 454

Similar test, 237
Simple goodness-of-fit problem (see 

hypothesis, simple)
Simultaneous behavior of \/Ц and Ь з , 

295
Skewness (see also and ^/Vl), 2, 

13, 435 
Slippage, 246 
Spacing, 483
Spacings, 332, 424, 429, 440, 442, 456 

autocorrelation, 343

[Spacings]
between the U set, 440 
correlated, 434 
normalized spacings, 429, 456 
unordered uniform spacings, 333 

Spheres:
distributions on, 348 
tests on, 347 

omnibus tests, 350 
Standardized moments (see also

/Зг, ^/Fl, b j ) ,  281
SAS (Statistical Analysis System), 9 
SPSS (Statistical Package for the 

Social Sciences), 9
Statistics for the circle or the sphere, 

347
Step function, 10 
Stleltes continued fractions, 291 
Stretches, 344 
Sufficient statistics, 168 
Summation technique, 296 
Superuniform observations, 106,

334, 432, 434, 438 
Supremum class, 357 
Symmetry, 11-14 

tests for, 170 
Symmetry plots, 14

Tail thickness, 18-20, 23, 369-370 
Taylor expansions, 288 
Taylor series, 297 
Tests of normality (see normality, 

tests of)
Ties in data, 33, 405, 444 
Time censoring, 461 
Time series, outliers in, 520 
Total time on test statistic, 429 
Total time on test till rth failure,

430
Transform ation : 

censored data, on, 431 
conditional probability integral 

(see СРГГ) 
exponential, to, 422 

N transformation, 422, 424, 429, 
445
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[ Transformation] 
normality, to, 58 
permutation Invariant, 246 
probability integral, 239-246 
uniform, to, 332 

exponential to uniform, 332 
G transformation, 333, 433 
J transformation, 332, 422, 424, 

430, 433, 438
K transformation, 332, 422, 424, 

433, 445
uniform to uniform, 333 
W transformation, 333, 433 

Transformation group, 244 
Transformation to normality, 58 
Transition zone, 45 
Transitive, 244 
Truncated data. 461 
Truncation parameter families, 241

Unbiasedness, 69 
Uniform conditional test, 435 
Uniform distribution and sample: 

ordered uniform sample, 332, 421 
standard uniform, 332 
uniform random variable, 332 
uniform sample, 332, 421 

Uniform distribution, tests of the. 331 
Ajne’s statistic, 349 
Anderson-Darling, 252 
C-Class, 336
censored uniforms, 331, 361 
circle or sphere, on, 347 
components of test statistics, 355 
correlation tests, 336 
effect on due to patterns of 

U-statistlcs, 356 
edf tests, 334 
entropy, 344

[Uniform distribution, tests of the] 
Fisher’s P, 347 
Greenwood statistic, 339, 440 

adapted to censored data, 339 
likelihood ratio methods, 345 
Moran’s statistic, 343 
Neyman (Neyman-Barton) smooth 

tests, 249, 351, 357 
order statistics, tests based on, 

336
P^, 250
power of tests, 357 
Quesenberry and M iller, 343 
unknown limits, 360 
regression tests, 336 
scan statistics, 345 
Shapiro-WiUc, 224 
Ü statistics, 346 
^^¾tson U^, 249

Uniformity, tests of (see uniform 
distribution, tests of)

Uniform residuals, 247 
Unknown shape parameters, 103 
Unweighted least squares (see also 

ordinary least squares), 29 
Updating formulas, 257

Variance, sample, 197 
von Mises distribution, 347 

edf test for, 164-166

Weibull distribution: 
censored data, 492 
e d ftests, 149-150 
probability plotting, 469-473 
three parameter, 57 
two parameter

Zero data values, 51, 57, 444
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