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Preface

From the earliest days of statistics, statisticians have begun their analysis
by proposing a distribution for their observations and then, perhaps with
somewhat less enthusiasm, have checked on whether this distribution is
true. Thus over the years a vast number of test procedures have appeared,
and the study of these procedures has come to be known as goodness-of-fit.
When several of the present authors met at the Annual Meeting of the Ameri-
can Statistical Association in Boston in 1976 and proposed writing a book on
goodness-of-fit techniques, we certainly did not foresee the magnitude of

the task ahead. Quite early on we asked Professor E. S. Pearson if he would
join us. He declined and stated his view that the time was not yet ripe for a
book on the subject. As we, nevertheless, have slowly written it, it has often
appeared that his assessment was correct. As fast as we have tried to survey
what we know, with every issue the journals produce new papers with new
techniques and new information.

However, many colleagues have told us that the time is ready for a major
summary of the literature, and for some sorting and sifting to take place.
This we have tried to do. The emphasis of this book was determined by the
writers to be mostly on the practical side. The intent is to give a survey of
the leading methods of testing fit, to provide tables where necessary to make
the tests available, to make (where possible) some assessment of the com-
parative merits of different test procedures, and finally to supply numerical
examples to aid in understanding the techniques.

This applied emphasis has led to some difficult decisions. Many goodness-
of-fit techniques are supported by elegant mathematics involving combina-
torics, analysis, and geometric probability, mostly arising in the distribution
theory, both small-sample and asymptotic, or in examining power and effi-
ciency. Furthermore, there are many unsolved problems, especially in
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discovering the relationships between different approaches, which would
require sophisticated mathematics to resolve. However, for the book to be

of manageable size, mathematical details have had to be held to the minimum
necessary to describe clearly the various techniques. References to fuller
mathematical treatments are given throughout the book. We also leave out
tests comparing several samples. Although these are often closely related

to the one-sample tests of this volume, they are not usually classified as
goodness-of-fit tests. Including them here would have made the book too large.

In arranging the book it was necessary to decide whether to collect to-
gether all methods of testing for specific famous distributions, such as the
normal or the exponential, or whether to group tests according to techniques
such as chi-squared tests, empirical distribution function tests, or tests
based on probability plotting. In the end, and perhaps because of the fact that
many authors were involved, we reached the inevitable compromise to try to
do both. In order to make chapters as complete as possible, there is some
necessary overlap.

There is also some imbalance with respect to tables. Some major, well-
established techniques require quite small tables—surely an attractive fea-
ture—while many new and unproven techniques need fairly extensive tables,
often based on Monte Carlo studies. Where we have judged the techniques
important, either as new methods or to complete a group of existing methods,
we have included the necessary tables and, in fact, have considerably ex-
tended some of those in the literature. By doing so we hope not only to make
the newer techniques available for practical use but also to make the book
useful for further research in making the comparisons between methods which
we feel are still necessary. On the other hand, we at times only refer to
tables for some techniques which have never appeared to win much favor.

As we have surveyed the tests available, it has become clear that much
work remains to be done. It sometimes seems that new test statistics, even
for standard problems, are invented every day. In goodness-of-fit, where
there is a wide range of problems and almost never a best solution, this ap-
pears to be easy to do. However, the simple invention of a test statistic is
surely not enough. We suggest that, to gain acceptance, new methods should
have a clear motivation, be easily understood by the mractical statistician,
and be well documented, Where new tables are necessary, they should be
comprehensive. The day may well come when computer algorithms will re-
place tables, but for most statisticians this day has not yet arrived. Also
new methods should be compared with the array of procedures which often
already exist.

Finally, of course, this book is inevitably a reflection of the interests of
the editors and the contributors. Although we have tried to cast our net wide,
some special techniques for testing fit may seem to have received too much
attention, while others have been neglected. For the latter cases it is,
we believe, mostly because the practical aspects are not yet sufficiently
developed. We have attempted throughout the book to at least summarize the
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present state of knowledge for these. We hope that by drawing attention to
them, we can again encourage further research.

We also acknowledge gratefully Ms. Sylvia Holmes and Mr. Thomas
Orowan of Simon Fraser University and Boston University, respectively,
for much help with the typing of the manuscript, and the staff of Marcel
Dekker, Inc., for their patient editorial work with this volume.

RALPH B. D'AGOSTINO
MICHAEL A. STEPHENS
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1

Overview

Ralph B. D'Agostino Boston University, Boston, Massachusetts

Michael A. Stephens Simon Fraser University, Burnaby, B.C., Canada

1.1 GOODNESS-OF-FIT TECHNIQUES

This book is devoted to the presentation and discussion of goodness-of-fit
techniques. By these we mean methods of examining how well a sample of
data agrees with a given distribution as its population. The techniques dis-
cussed are almost entirely for univariate data, for which there is a vast
literature; methods for multivariate data are much less well developed.

In the formal framework of hypothesis testing the null hypothesis H, is
that a given random variable x follows a stated probability law F(x) (for ex-
ample, the normal distribution or the Weibull distribution); the random vari-
able may come from a process which is under investigation. The goodness-
of-fit techniques applied to test H, are based on measuring in some way the
conformity of the sample data (a set of x-values) to the hypothesized distri-
bution, or, equivalently, its discrepancy from it. The techniques usually
give formal statistical tests and the measures of consistency or of discrep-
ancy are test statistics.

The null hypothesis H, can be a simple hypothesis, when F(x) is specified
completely, for example, normal with mean g = 100 and standard deviation
o = 10; or H, can give an incomplete specification and will then be a com-
posite hypothesis, for example, when it states only that F(x) is normal with
unspecified p and o.

In most applications of goodness-of-fit techniques, the alternative
hypothesis H; is composite—it gives little or no information on the distribu-
tion of the data, and simply states that H, is false. The major focus is on
the measure of agreement of the data with the null hypothesis; in fact, it is
usually hoped to accept that H, is true.
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There are several reasons for this. First, the distribution of sample
data may throw light on the process that generated the data; if a suggested
model for the process is correct, the sample data follow a specific distri-
bution, which can be tested. Also, parameters of the distribution may be
connected with important parameters in describing the basic model. Sec-
ondly, knowledge of the distribution of data allows for application of standard
statistical testing and estimation procedures. For example, if the data follow
a normal distribution, inferences concerning the means and variances can
be made using t tests, analyses of variances, and F tests; similarly, if the
residuals after fitting a regression model are normal, tests may be made
on the model parameters. Estimation procedures such as the calculation of
confidence intervals, tolerance intervals, and prediction intervals, often
depend strongly on the underlying distribution. Finally, when a distribution
can be assumed, extreme tail percentiles, which are needed, for example,
in environmental work, can be computed.

The fact that it is usually hoped to accept the null hypothesis and proceed
with other analyses as if it were true, sets goodness-of-fit testing apart
from most statistical testing procedures. In many testing situations it is
rejection of the null hypothesis which appears to prove a point. This might
be so, for example, in a test for no treatment effects in a factorial analysis—
rejection of H, indicates one or more treatments to be better than others.
Even when one would like to accept a null hypothesis—for example, in a test
for no interaction in the above factorial analysis—the statistical test is
usually clear and the only problem is with the level of significance. In a
test of fit, where the alternative is very vague, the appropriate statistical
test will often be by no means clear and no general theory of Neyman-
Pearson type appears applicable in these situations. Thus many different,
sometimes elaborate, procedures have been generated to test the same null
hypothesis, and the ideas and motivations behind these are diverse. Even
when concepts such as statistical power of the procedures are considered it
rarely happens that one testing procedure emerges as superior.

It may happen that the alternative hypothesis has some specification,
although it could be incomplete; for example, an alternative to the null
hypothesis of normality may be that the random variable has positive skew-
ness. When the alternative distribution contains some such specification,
tests of fit should be designed to be sensitive to it. Even in these situations
uniquely best tests are rarities.

In addition to formal hypothesis testing procedures, goodness-of-fit
techniques also include less formal methods, in particular, graphical tech-
niques. These have a long history in statistical analysis. Graphs are drawn
so that adherence to or deviation from the hypothesized distribution results
in certain features of the graph. For example, in the probability plot the
ordered observations are plotted against functions of the ranks. In such plots
a straight line indicates that the hypothesized distribution is a reasonable
model for the data and deviations from the straight line indicate inappropri-
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ateness of the model. The type of departure from the straight line may indi-
cate the nature of the true distribution. Historically the straight line has
been judged by eye, and it is only recently that more formal techniques have
been given.

1.2 OBJECTIVES OF THE BOOK
There are five major objectives of this book. They are:

1. To identify the major theories behind goodness-of-fit techniques;
2. To present an up-to-date picture of the status of these techniques;
3. To give references to the relevant literature;

4. To illustrate with numerical examples, and

5. To make some recommendations on the use of different techniques.

There are several features that bear mention. First, a substantial
number of numerical examples are included. These are for the most part
easy to find. In many chapters subsections containing numerical examples
are identified by the letter E before the section number. For example, in
Chapter 9, Section E9.3.4.1.1 contains a numerical example of the Shapiro-
Wilk test for normality.

Second, a set of data sets is used throughout the book. These allow for
comparisons of some of the techniques on the same data sets. Some of these
data sets are real data and others are simulated. The data sets are given in
full in the appendix.

Third, the chapters contain specific recommendations for use of the
test methods. Nevertheless, we have avoided the attempt to present final
definitive recommendations. The authors for the chapters of this book each
have significant expertise, but there is not always complete agreement among
them on what is best. As we stated previously, theory does not exist which
can identify the uniquely best procedure for most goodness-of-fit situations,
and personal opinion and judgment will often enter any consideration. Each
author has made recommendations based on his or her understanding and
view of the problem.

Fourth, many references are given. There is an enormous literature
and we have made no attempt to survey all of it. We have especially
avoided heavy mathematical treatment and the details of theorems. A sub-
stantial list of references is given with each chapter, they include references
to earlier source material and to the theoretical background of the test pro-
cedures; it is hoped they will aid the development of further research.

Finally we recognize that it is impossible to include all goodness-of-fit
topics in this survey; our emphasis is largely on the practical aspects of
testing. Some techniques are still underdeveloped, and, for example, sug-
gested tests may lack tables for practical application, or enough comparisons
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have not been made to assess their merits; for these and similar reasons,
some subjects have been lightly treated, if at all.

In goodness-of-fit there are many areas with unsolved problems, or
unanswered questions. Some of the subjects on which there will surely be
much work in the future include tests for censored data, especially for ran-
domly censored data, tests based on the empirical characteristic function,
tests based on spacings, and tests for multivariate distributions, especially
for multivariate normality. Many comparisons between techniques are still
needed, and also the exploration of wider questions such as the relationship
of formal goodness-of-fit testing (as, indeed, in other forms of testing) to
modern, more informal, approaches to statistical analysis where distribu-
tional models are not so rigidly specified. We hope this book sets forth the
major topics of its subject, and will act as a base from which these and many
other questions can be explored.

1.3 THE TOPICS OF THE BOOK

In addition to this chapter the book consists of eleven other chapters. These
are divided into three groups. The first consists of Chapters 2 to 7, con-
taining general concepts applicable to testing for a variety of distributions.
Chapter 2 describes graphical procedures for evaluating goodness-of-fit.
These are informal procedures based mainly on the probability plot, useful
for exploring data and for supplementing the formal testing procedures of the
other chapters.

Chapter 3 reviews chi-square-type tests. The classical chi-square
goodness-of-fit tests are reviewed first and then recent developments in-
volving general quadratic forms and nonstandard chi-squared statistics are
also discussed.

Chapter 4 presents tests based on the empirical distribution function
(edf). These tests include the classical Kolmogorov-Smirnov test and other
tests such as the Cramér-von Mises and Anderson-Darling tests. Considera-
tion is given to simple and composite null hypotheses. The normal, expo-
nential, extreme-value, Weibull, and gamma distributions among other
distributions are given individual discussion.

Chapter 5 deals with tests based on regression and correlation. Some
of these procedures can be viewed as arising from computing a correlation
coefficient from a probability plot and testing if it differs significantly from
unity. Also involved are tests based on comparisons of linear regression
estimates of the scale parameter of the hypothesized distribution to the esti-
mate coming from the sample standard deviation. The Shapiro-Wilk test for
normality is one such test.

In Chapter 6 transformation techniques are reviewed. Here the data are
first transformed to uniformity and goodness-of-fit tests for uniformity are
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applied to these transformed data. These techniques can deal with simple
and composite hypotheses.

Tests based on the third and fourth sample moments are presented in
Chapter 7. These techniques were first developed to test for normality. In
Chapter 7 they are extended to nonnormal distributions.

The second group of chapters consists of Chapters 8, 9, and 10. These
deal with tests for three distributions—the uniform, the normal, and the
exponential~which have played prominent roles in statistical methodology.
Many tests for these distributions have been devised, often based on the
methods of previous chapters, and they are brought together, for each dis-
tribution, in these three chapters.

Chapters 11 and 12 form the last group; they cover extra materials.

The problem of analyzing censored data is of great importance and Chapter 11
is devoted to this. Many of the previous chapters have sections on censored
data. Chapter 11 collects these together, fills in some omissions, and gives
examples; there is also a discussion on probability plotting of censored data.

The final chapter 12 is on the analysis and detection of outliers. This
material might be considered outside the direct scope of goodness-of-fit
techniques; however, it is closely related to them since they are often applied
with this problem in mind, so we felt it would be useful to close the book with
a chapter on outliers.







2
Graphical Analysis

Ralph B. D'Agostino Boston University, Boston, Massachusetts

2.1 INTRODUCTION

The purpose of this chapter is to illustrate the use of graphical techniques
as they relate to goodness-of-fit problems. Graphical techniques as pre-
sented here are simple tools which can be implemented easily with the use
of graph paper or simple computer programs. They are less formal than
the numerical techniques that are presented in the following chapters and
are great aids in understanding the numerous relationships present in data.
For goodness-of-fit problems they can be used in at least two ways:

1. As an exploratory technique. Here the objective is to uncover charac-
teristics of the data that are suggestive of mathematical properties of
the underlying phenomena ranging from incomplete specifications such
as symmetry or thick tailness to complete specification such as normal-
ity with specific mean and standard deviation.

2. In conjunction with formal numerical techniques. Here the objective is
to test formally a preconceived hypothesis or one suggested by the
graphs. The graphs can help reveal departures from the assumed
models and statistical distributions. Often they uncover features of the
data that were totally unanticipated prior to the analysis. The numer-
ical techniques quantify the information and evidence in the data or
graphs and act as a verification of inferences suggested from these.
The use of graphs alone may lead to spurious conclusions and the use
of numerical techniques is often essential in order to avoid this.

In general, with goodness-of-fit problems, it is useful for numer-
ical testing to be preceded and supplemented by graphical analysis. In
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the following we will point out the specific relations between some
graphical procedures and those formal numerical tests that quantify the
information revealed in the graphs.

This chapter deliberately concerns itself with simple to use graphical
procedures involving arithmetic or log graph papers in conjunction possibly
with simple arithmetic and table look-ups, or else with procedures involving
readily available special probability plotting papers. Further most of the
procedures are or can be easily computerized. The view underlying this
approach is that graphical techniques are useful because of their ease and
informality. Involved, complicated procedures detract from this usefulness.

This chapter borrows heavily from the works, concepts, and spirit of
Wilk and Gnanadesikan (1968), Feder (1974), Daniel (1959), Bliss (1967),

W. Nelson and Thompson (1971), W. Nelscen (1972), Tukey (1977), and
Chambers, Cleveland, Kleiner, and Tukey (1983).

2.2 EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION
2.2.1 Definition

Say we have a random sample X;, ..., X, drawn from a distribution with
cumulative distribution function (cdf) F, then the empirical cumulative dis-
tribution function (ecdf) is defined as

#(X. < x)
Fn(x)=-—3n—,-°°<x<°o 2.1

where #(Xj < x) is read, the number of Xj's less than or equal to x. The
ecdf is also often called the edf, empirical distribution function. The plot of
the ecdf is done on arithmetic graph paper plotting i/n as ordinate against
the i'th ordered value of the sample, X(i)’ as abscissa. Figure 2.1a is an
ecdf plot of the data set NOR given in the appendix which is a random sample
of size 100 from the normal distribution with mean 100 and standard devia-
tion 10.

The ecdf plot provides an exhaustive representation of the data. For all
x values Fp(x) converges for large samples to F(x), the value of the under-
lying distribution's cdf at x. This convergence is actually strong convergence
uniformly for all x (Rényi, 1970, p. 400).

The use of the ecdf plot does not depend upon any assumptions concerning
the underlying parametric distribution and it has some definite advantages
over other statistical devices, viz.,

1. It is invariant under monotone transformations with regard to quan-
tiles. However, its appearance may change.

2. Its complexity is independent of the number of observations.
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3. It supplies immediate and direct information regarding the shape of
the underlying distribution {(e.g., on skewness and bimodality).

4. It is an effective indicator of peculiarities (e.g., outliers).

5. It supplies robust information on location and dispersion.

6. It does not involve grouping difficulties that arise in using for ex-
ample, a histogram.

7. It can be used effectively in censored samples.

There is, however, one serious potential drawback with the use of ecdf
plots and other graphical techniques which was already mentioned in the last
section. They can be sensitive to random occurrences in the data and sole
reliance on them can lead to spurious conclusions. This is especially true
if the sample size is small. This warning always should be kept in mind. In
the following we will illustrate uses of the ecdf and related graphs. We will
also indicate situations where the user may be misled by them and where
further clarification or confirmation via other graphical analyses (e.g.,
probability plotting) or numerical techniques may be needed.

The ecdf is a standard item in a number of computer packages such as
the Statistical Package for the Social Sciences (SPSS), the Statistical Analy-
sis System (SAS), and Biomedical Computer Programs (BMDP).

101 ,
9t ,,..'”
8r __.'"’
7t 7
F(x) 6F ./(
st e
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2t i
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1 1 1 1 L 3
b 76 80 90 100 1o 120 126

FIGURE 2.1 Empirical distribution function of NOR data set. (a) Ecdf of
full data set (n = 100). (b) Ecdf of first ten observations.
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Two other technical points are worth mentioning here. First, as defined
by formula (2.1) the ecdf is actually a step function with steps or jumps at
the values of the variable that occur in the data. Figure 2. 1a does not dis-
play the ecdf as a step function. Very often it is not displayed as such, espe-
cially when the sample size is large and the underlying variable is continuous
as is the case with the NOR data. Figure 2. 1b displays the ecdf as a step
function for the first ten observations of the NOR data set. The ordered val-
ues of these first ten observations along with their ecdf values are:

Ordered observations

Number (i) Value Fn(x) =i/n
1 84.27 .1
2 90. 87 .2
3 92.55 .3
4 96.20 -4
5 98.70 .5
6 98.98 .6
7 100.42 T
8 101.58 .8
9 106.82 .9

10 113.75 1.0

Second, if the data set consists of grouped data and the variable is con-
tinuous, then the ecdf should be defined so that the steps occur at the true
upper class limits. For example, if the frequency table is

Classes Frequency
10-13 15
14-17 20
18-21 15

and an observation is categorized in the first class if it is in the interval
9.5 < x < 13.5 and similarly for the other classes, then the ecdf is defined
as

X Fn(x)
13.5 .30
17.5 .70

21.5 1.00
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2.2.2 Investigation of Symmetry

Figure 2.2 contains plots of three distributions to illustrate different situa-
tions one can encounter in attempting to determine if a distribution is sym-
metric or skewed. The three distributions are the normal (which is sym-
metric), the negative exponential (which is positively skewed—i.e., "its
upper tail is longer than its lower tail" or "its upper percentage points are
farther from the median than are the lower") and the Johnson unbounded

Sy (1,2) curve (which is negatively skewed—i.e., "its lower tail is longer
than its upper tail"). The density functions for these three distributions are,
respectively,

fx) = — xp[— x - u)/olz]

= e
oN2T
f(x)=%e_X/o
and
1 b [ 1 2
f(x) = -={y + 8 sinh ! [(x - p)/ ]
W =TT e o exp[ g1y +6 sish™[(x - w/o] }

Here u, o, 0, ¥, and 6 are parameters of the distributions.

If a distribution is symmetric, then in the plot of the population cdf F(x)
the distance on the horizontal axis between the median (50-th percentile) and
any percentile P below the median (0 < P < 50) is equal to the distance from
the median to the (100 - P)th percentile. Figure 2.3a represents this relation

myaaRwa

Normal Negative Exponential Johnson SU(1,2)
(Symmetric) (Positive Skew) (Negative Skew)

FIGURE 2.2 Differentiation of symmetric and skewed distributions.
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(b) Ecdfs for three distributions.

FIGURE 2.3 Use of ecdfs for investigation of symmetry.
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in diagram form. This relation should be reflected in the ecdf. An examina-
tion of the ecdfs given in Figure 2.3b shows it clearly is in the NOR data set
and clearly is not for the other two data sets (EXP for the negative exponen-
tial distribution and SU(1, 2) for the Johnson unbounded distribution). Some
rough numerical values from the ecdfs are:

Absolute Values of Distances from Sample Median to Percentiles

Sample percentiles

P

100 - P NOR EXP SU(1,2)
10 21 3.5 1.75
90 25 15.0 1.55
20 11 2.3 .50
80 9 6.0 .85
25 10 2.0 .15
75 7 3.5 .55
40 4 .7 .05
60 3 1.1 .20

If the distribution has positive skewness the portion of the ecdf for i/n
values close to 1 (e.g., greater than .9) will usually be longer and flatter
(almost parallel to the horizontal axis) than the rest of the ecdf. Similarly,
if the distribution has negative skewness the long flat portion will lie in the
lower end of its ecdf (e.g., i/n values less than .1). The ecdfs from both
the EXP and SU(1, 2) data sets behave as expected.

Another, more sensitive and informative graph for studying asymmetry
is a simple scatter diagram plotting the upper half of the ordered observa-
tions against the lower. That is, letting X(l)’ X(2), cee, X(n represent the
ordered observations, plot X versus X(j), X(n-1) versus X(g), and in
general, X(n+1-j) versus Xj) for i < n/2. Figure 2.4 contains these plots
for the NOR, EXP, and SU(1,2) data sets. A negative unit slope indicates
symmetry, a negative slope exceeding unity in absolute value indicates posi-
tive skewness, and a negative slope less than unity in absolute value indi-
cates negative skewness. Notice how well this technique identifies the
behavior of the distribution with respect to symmetry. Note also that not all
of the observations are plotted. They are not needed usually for a correct
visual identification.

Another useful plotting technique involves plotting the sums x(n+1—i) +X(i)
against the differences X(n+1_j) - X(j), Which would produce a horizontal con-
figuration for a symmetric distribution (Wilk and Gnanadesikan, 1968). A
plot of the (100 - P)th sample percentile versus the pth sample percentile
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FIGURE 2.4 Plot of upper versus lower observations for investigation of
symmetry, slope computed on all data. (a) NOR data, slope = -1.06.
(b) EXP data, slope = 4.62. (c) SU(1,2) data, slope = -.75.

for 0 < p < 50 is called a symmetry plot and is also useful (Chambers et al.,
1983).

Formal numerical techniques for investigating and testing for symmetry
are often based on the sample N'b, statistic. A full treatment of this proce-
dure is given in Chapter 7.

2.2.3 Detection of Outliers

Outliers, observations that appear to deviate markedly from other members
of the sample (Grubbs, 1969), often can be detected by the use of ecdf plots.
They usually appear as one or a cluster of observations separated from the
rest of the sample and are identifiable in the ecdf if, in addition to the plot,
some knowledge is available concerning the features cf the underlying dis-
tribution which should be reflected in the data (e.g., the maximum permis-
sible range of the observations or the largest or smallest possible correct
values of the observations may be known or it may be known that the under-
lying distribution is symmetric.

Figure 2.5 illustrates the use of the ecdf for detecting an outlier. The
figure contains two ecdfs. The first (Figure 2.5a) is a plot of the first ten
observations of the NOR data set. These observations are: 92.55, 96.20,
84.27, 90.87, 101.58, 106.82, 98.70, 113.75, 98.98, and 100.42. The
second ecdf (Figure 2.5b) is a plot of the same data with the last observation,
100.42, replaced by an outlier equal to 140. This example is an exaggeration
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of what usually happens in practice, but it illustrates well the type of con-
figuration that results in an ecdf plot of a symmetric distribution such as
the normal distribution when an outlier or outliers are present. Note if it
were not known that the underlying distribution is symmetric or nearly sym-
metric, it would be impossible to judge if the ecdf of Figure 2.5b represents
data with an outlier present or data from a skewed distribution (see, for ex-
ample, the ecdfs of the SU(1, 2) and EXP data sets given in Figure 2.3b).

We will illustrate later in this chapter the use of the probability plotting
technique for detecting outliers. Further, Chapter 12 is devoted solely to
the problems of detecting and testing for outliers. The formal techniques of
that chapter should be used in conjunction with informal graphical techniques.

2.2.4 Mixtures of Distributions—
Presence of Contamination

At times we may be dealing with samples that arise as mixtures of two or
more distributions. For example, the author once was involved in a study
dealing with taking measurements on parasite transmitting snails obtained
from field sampling. There was no nonstatistical way to separate the differ-
ent generations (i.e., age groups) of snails in the sample. The parameters
that were desired were related to age. The author was also involved in
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FIGURE 2.5 Plots of ecdfs from NOR data set illustrating effect of an outlier.
(a) Ecdf of first ten observations. (b) Ecdf of first nine plus one outlier.
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another study dealing with oral glucose tolerance test data. In this study it
was suggested that there might exist two subpopulations—normals and dia-
betics. The data set consisted mainly of normals. Again there was no simple
nonstatistical way of removing the small "contaminating' subsample of dia-
betics. In both of these situations the graphical techniques of this chapter
proved to be extremely useful.

Unless the component distributions of the mixture are very distinct (e.g-.,
the difference between the means is much larger than the individual distri-
butions' standard deviation), the ecdf of the combined sample may not supply
much information to aid in determining if a mixture exists. Figure 2.6 illus-
trates the problem. It contains separate and combined densities of mixtures
of normal distributions. If the component distributions are ''close' as in (a)
and (b) of Figure 2.6, the combined distribution may very well be unimodal.

Figure 2.7 further illustrates the problem. These are ecdfs from mix-
tures of two normal distributions. The main underlying distribution is the
normal distribution with mean zero and standard deviation unity. However,
the sampling was done in such a way that for each observation drawn there
was a probability 7 that the observation would come from the normal distri-
bution with mean 3 and standard deviation unity. The data set for (a) of
Figure 2.7 had 7= .1 (data set LCN (.10, 3) of the appendix) and the set

separate
component
densities
combined
components /\/\
density
combined
components
cumulative
a b c

FIGURE 2.6 Mixtures of normal distributions. (a) Two equal close com-
ponents. (b) Two close components. (c) Well separated components.
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FIGURE 2.7 Ecdfs of contaminated distributions (main component is standard
normal: mean zero and standard deviation unity). (a) Standard normal with
10 percent contamination from normal with mean 3 and standard deviation 1.

(b) Standard normal with 20 percent contamination from normal with mean 3
and standard deviation 1.

for (b) of Figure 2.7 had 7= .2 (data set LCN (.20, 3)). The ecdfs in Fig-
ure 2.7 look very much like those that are produced by positively skewed
distributions. In fact the populations cdfs are positively skewed. The con-
tamination "caused" the skewness.

If the component distributions are "well separated" as in (c) of Figure
2.6, the resulting mixture will be bimodal and with sufficient data available,
the ecdf will show the changes from concavity to convexity to concavity as
does the cdf of (c) in Figure 2.6. In general only under the condition of sub-
stantial separation of the components will the ecdf reveal bimodality.

~ There is an extensive literature on mixtures (see, for example, Johnson
and Kotz, 1970, Section 7.2) and the usual procedure is to assume some
functional form for the components or for the major distribution or distri-
butions of the components. Specific parametric techniques are then employed
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to establish if a mixture does exist and to estimate the parameters of the
components (e.g., Bliss, 1967, Chapter 7). Given these assumptions about
the functional form of the underlying distributions, graphical techniques such
as the probability plotting techniques which will be discussed later in this
chapter can be very useful in detecting the presence of mixtures even in situ-
ations such as those in Figure 2.6a and 2.6b. These probability plotting
techniques are the graphical techniques we recommend for use. Other graph-
ical procedures are given in Harding (1949) and Taylor (1965).

2.2.5 Assessing Tail Thickness

At times the interest is not in describing the entire distribution of a variable
but rather only one or both of the tails of the distribution. For example, the
Environmental Protection Agency is interested often in making inferences
and issuing standards concerning high concentrations of various pollutants
(Curran and Frank, 1975). In such situations it is more important to under-
stand the behavior of the upper tail of the distribution than it is to fit the
entire distribution. Although a particular model may adequately describe
most of the distribution, it would be useless for predicting maximum or
extreme values if the model broke down for the upper percentiles. Also, a
model that is not accurate for a large portion of the data may still be useful
for predicting upper values if it adequately describes the behavior of the
upper percentiles. Bryson (1974) presented a graphical technique applicable
to deal with assessing the behavior of the tails of a distribution. The develop-
ment below is due to the adaptation of Curran and Frank (1975).

To be specific say the interest lies in assessing the behavior of the upper
tail. Mathematically, this is equivalent to assessing the thickness of the
upper tail or finding a mathematical model which "'fits" the upper tail. The
most convenient mathematical model is the negative exponential distribution.
Here, the probability density function is

f(x) = %e—X/O, >0, x>0 (2.2a)

and the cumulative distribution function is

Fx) =1- e-X/O' (2.2b)

From this we have

1-Fx) = e X/°

and

In(l - F®)) = -x/8 (2. 2¢)



GRAPHICAL ANALYSIS 19

1
L
g{llrlll

w0 \\\ _
1-F{x)

2] -
10 N

\\\
-3 \e;,\\
07 %\\ 2 \\(oe

%\\ \\~°

?\\\ /) \e{‘(
SO N TN T TN T TV I O N

01 2 3 4 5 6 7 8 910 1 121314

FIGURE 2.8 Relation of lognormal and Weibull distributions to negative
exponential on semi-log graph paper (for investigation of tail thickness).

The implication is that if 1 - F(x) is plotted against x on semi-log graph
paper the plot will be a straight line (see Figure 2.8). Because of this, it is
convenient to use the negative exponential distribution as the reference dis-
tribution and compare other distributions to it. The Weibull and lognormal
distributions are often the two major distributions of potential interest for
this type of problem. The two-parameter Weibull has as its probability
density and as its cdf

k-1 k
f(x) = l—;(%) e~ /0) , 6>0, x>0, k>0 (2. 3a)

k
Fx) =1- e'(X/e)

(2.3b)
The lognormal distribution has as its probability density

1 e—(ln x—41)%/20%

xoN2T

f(x) = (2.4)

Its cdf, F(x), does not have a closed form representation. Figure 2.8 con-
tains plots of 1 - F(x) versus x on semi-log paper for a negative exponential,
a Weibull with k > 1 and a lognormal distribution. Notice the negative expo-
nential produces a straight line, the lognormal distribution curves upward
and the Weibull with k > 1 curves downward. A distribution that curves down-
ward is termed "light tailed." A heavy tailed distribution has a probability
density function whose upper tail approaches zero less rapidly than the
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exponential or, in other words, a heavy tailed distribution has a greater
probability of yielding high values. On the other hand, a light tailed distri-
bution has a probability density function whose upper tail approaches zero
more rapidly than the exponential and, therefore, is less likely to yield high
values. In particular it should be mentioned that all lognormal distributions
are heavy tailed and all Weibull distributions with k > 1 are light tailed
(when k = 1, the Weibull is the negative exponential distribution). So if these
are the two models of interest for the upper tail, an examination of a plot of
1 - Fp(x) (i.e., one minus the ecdf) versus X(i)- the ordered observations
will often indicate which is the appropriate model.

The semi-log graph paper used in Figure 2.8 is four cycle paper. Three
quarters of the vertical axis concerns only the upper 107! to 10™# points of
the distribution (.90 < F(x) < .9990). So this graph does focus almost exclu-
sively on the upper 10 percent of the distribution. However, it does contain
on the vertical axis the rest of the distribution and plotting the full distribu-
tion can cause confusion in attempting to judge the fit of the upper tail. In
general, points for which Fp(x) < .5 should not be plotted. For samples as
small as 100 the author has found it convenient to use two cycle semi-log
paper, define Fp(x) as

(2.5)

and plot the data only for Fp(x) > .50. Note in (2.5) i= #(Xj < x).

E2.2.5.1 Example

Figure 2.9 contains the above described plots for the EXP and WE2 (Weibull
with k = 2) data sets. Consider first the EXP data set plotted in Figure 2.9a.
The dots represent the observed values of 1 - Fp(x) for Fp(x) > .50. These
appear to lie roughly on a straight line. If the negative exponential distribu-
tion is an adequate model for these data, then a straight line for the theo-
retical exponential as in Figure 2.8 should fit the observed points. To obtain
the theoretical line we need 9. The parameter 6 in (2.2) can be estimated by

X

9 = m (2.6)

where x represents any value for which the model is supposed to hold. In
particular the x for which Fp(x) = .6321 or 1 - Fy(x) = .3699 yields a direct
estimate of 9. For the EXP data set the estimate of 6 using this or almost
any choice of x is approximately 5 (i.e., 8 =5). The line drawn in Figure
2.9a is the line 1 - F(x) for the negative exponential with 6 = 5. Except for
the last two data points it fits well to the data. The inference to be drawn
from this exercise is that the negative exponential model is an appropriate
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model which accounts well for all the data points except possibly the last
two. Note that in judging the goodness-of-fit of these points it is the hori-
zontal distance from the points to the line that are important, not the vertical
distances. The last data point, in particular, may appear to be further away
from the line than might be expected. Such variability in the extreme obser-
vation is, however, often observed.

Consider next the WE2 data plotted in Figure 2.9b. Using the x for which
Fp(X) = .6321 to obtain § in (2.6) we obtain § = .98. The line 1 - F(x) for
the negative exponential with 9 = .98 is drawn in Figure 2.9b. Notice how it
lies above most of the data. Using Figure 2.8 as a guide this suggests (cor-
rectly) that the data is from a distribution with a thinner upper tail than the
negative exponential. Also on Figure 2.9b are plotted two other lines repre-
senting 1 - F(x) for the negative exponential of (2.2). These arose from
solving (2.6) for 6 using Fu(x) = .90 and Fp(x) = .95. The estimators of ¢
are, respectively, .59 and .52. Again the inference is the same, viz., the
negative exponential model of (2.2) is not appropriate and the distribution
under consideration has a thinner tail than the negative exponential. Note,
this inference is correct.

A further examination of the WE2 data plot in Figure 2.9b does reveal
that the points do appear to lie on a straight line. The above analysis estab-
lishes that the data cannot be explained by a model such as (2.2). They can,
however, be explained by a negative exponential model which incorporates a
displacement value, viz.,

-[(x-7A)/ 0]

1
f(x) =—0e >0, x>A 2.7

where A is the displacement value. The cdf for this distribution is

Fx) = 1 - e LEN/0]

If we start with this model then any two distinct x values (or two Fp(x)
values) can be used to produce linear equations for A and 8. The equations
are

- In(1 - Fn(xl))o +A= Xy
-In(l - F (x,)0 +A = x, 2.8

Using Fp(xy) = .50 and F,(Xg) = .90 in the WEZ data set produces §=.28,
X = .73. The line of 1 - F(x) for model (2.7) with these parameters is also
plotted in Figure 2.9b. This provides an excellent fit. So if we restrict our
attention solely to the upper tail the WE2 data can be well explained by a
negative exponential of the form (2.7). Of course, the correct model is the
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Weibull of (2.3) with k = 2. Completion of the first part of the above analysis
would have led correctly to the Weibull model.

2.2.5.2 Extensions

The above material can easily be modified to examine the lower tail of the
distribution (viz., by plotting Fp(x) of (2.5) versus the observations on
semi-log paper).

Often the normal distribution is used as the reference distribution in
discussing tail thickness and the standardized central fourth moment B, (the
kurtosis measure) is used as the appropriate measure. For these problems,
one is usually interested in fitting the complete distribution and not just the
tail. We will discuss this tail thickness concept in Section 2.4 below. Also,
Chapter 7 will discuss in detail the formal computational procedures associ-
ated with this concept.

2.2.6 Assessing the Fit of the Full Distribution

The ecdf can be used also for assessing how well a particular statistical
distribution fits the entire data set. The procedure starts by plotting on the
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FIGURE 2.10 Comparison of population and empirical cumulative distribution
functions for NOR data set. (a) Full data set (n = 100): population mean 100,
standard deviation 10. (b) First ten observations: sample mean 98.41,
standard deviation 8.28.
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same grid of a piece of graph paper the ecdf of the sample and the cdf of the
hypothetical distribution. For example, Figure 2.10a contains the ecdf of
the NOR data along with the cdf for the normal distribution with mean 100
and standard deviation 10 (i.e., the true underlying distribution). If values
of the parameters of the hypothetical distribution are unspecified, these
must be estimated for the data set under investigation by means of some
procedure such as the method of moments or the method of maximum likeli-
hood and then the cdf of the hypothetical distribution using these estimates
as parameter values are plotted. For an example, Figure 2.10b contains
the plot of the ecdf of the first ten observations of the NOR data set along
with the cdf of the normal distribution with mean and standard deviation equal
to the sample mean and standard deviation, viz., X = 98.41 and s = 8.28.

The next step in the informal graphical analysis involves comparing the
two plots (ecdf and cdf) and deciding if they are ''close.' Usually this infor-
mal procedure is the first step in a more elaborate analysis which includes
formal numerical techniques referred to as empirical cumulative distribution
function techniques or more simply empirical distribution function (EDF)
techniques. Chapter 4 contains a detailed account of these techniques.

While the above described graphical procedure has merit, especially
when used with the formal numerical EDF techniques, it is deficient as an
informal technique in that there are more informative simple graphical
techniques—namely those involving probability plotting which are the subject
matter of the remainder of this chapter.

2.3 GENERAL CONCEPTS OF PROBABILITY PLOTTING
-2.3.1 Introduction

A major problem with the use of the ecdf plot in attempting to judge visually
the correctness of a specific hypothesized distribution is due to the curva-
ture of the ecdf and cdf plots. it is usually very hard to judge visually the
closeness of the curved (or step function) ecdf plot to the curved cdf plot. If
one is attempting to reach a decision based on visual inspection it is prob-
ably easiest to judge if a set of points deviates from a straight line. A prob-
ability plot is a plot of the data that offers exactly the opportunity for such a
judgment, for it will be a straight line plot, to within sampling error, if the
hypothesized distribution is the true underlying distribution. The straight
line results from transforming the vertical scale of the ecdf plot to a scale
which will produce exactly a straight line if the hypothesized distribution is
plotted on the graph.

The principle behind this transformation is simple and is as follows.
Say the true underlying distribution depends on a location parameter u and a
scale parameter ¢. (4 and o need not be the mean and standard deviation,
respectively). The cdf of such a distribution can be written as
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Fo = 6(X22) = 6 2.9)
where
z = X4
o

is referred to as the standardized variable and G(-) is the cdf of the standard-
ized random variable Z. The ecdf plot is based on plotting F(x) on x. For
sample data F(x) is replaced by F(x) and the plotted values of x are the ob-
served values of the random variable X. Now if the plot were one of z on x
(or equivalently G~!(F(x)) on x where G~!(.) is the inverse transformation
which here transforms F(x) into the corresponding standardized value z), the
resulting plot would be the straight line

z = G-YF(x)) = x—(’;ﬁ = - §+ &1"‘ (2.102)
or interms of xon z

X =pu+zo (2.10b)
A probability plot is a plot of

z = G"(Fn(x)) on x (2.11a)

where x represents the observed values of the random variable X. Notice
F(x) in (2.10a) is replaced by Fy(x) in (2.11a). With observed ordered obser-
vations X(1) S " <Xqm)» 2 probability plot can also be described as a plot of

= Gg-1
zi =G (Fn(x(i))) on x (2.11b)

(i)
For probability plotting the ecdf Fp(x) of (2.11a) or Fn(xi)) of (2.11b) are
usually not defined as in (2.1) but rather as either

i-0.5

F (x = for i=1, ..., n 2.12)

(1)) =p;
or more generally as

i-c
—_— 2.13
n_2c+1for05c51 ( )
In (2.12) the c of (2.13) is equal to 0.5. See Barnett (1975) and Chapter 11
for further discussion of the selection of c. In the following we will always
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use the Fy(x) given by p; of (2.12). Given that F is the true cdf, the proba-
bility plot of (2.11) should be approximately a straight line. In fact there is
strong convergence to a straight line for large samples.

E 2.3.2 An Example—Logistic Distribution

As an example of the above consider the problem of investigating the appro-
priateness of the logistic distribution as the underlying distribution from
which the LOG data set was obtained. (The LOG data set was drawn from a
logistic distribution and is given in the Appendix.) The cdf of the logistic
distribution is

Fx) = [1+exp{-m(x - )/ (@N3) }1? (2-14)

Here i and o are the mean and standard deviation, respectively. The cdf of
the standardized logistic distribution (i.e., of Z = (X - )/0) is

G(z) = [1 + exp (-12z/N3)]}

100F;,(x)
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FIGURE 2.11 Logistic probability plot of LOG data set.
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TABLE 2.1 Partial Data for Logistic Probability Plot of LOG Data
(Plotted in Figures 2.11 and 2.12)

Ordered Observation F () =p.= i-.5 Ordered Observation
Number (i) n i n z X(i)

1 . 005 -2.90 51.90
2 .015 -2.31 60.57
3 .025 -2.02 63.35
4 .035 -1.83 65.87
5 .045 -1.68 66.35
6 . 055 -1.56 68.44
7 . 065 -1.47 74.29
8 .075 -1.39 76.52
9 .085 -1.31 78.32
10 . 095 -1.24 78.48
11 .105 -1.18 79.07
12 .115 -1.12 79.32
13 .125 -1.07 81.17
14 . 135 -1.02 81.61
15 . 145 - .98 82.45
86 . 855 .98 113.79
87 . 865 1.02 114.97
88 .875 1.07 116.01
89 .885 1.12 116.58
90 . 895 1.18 116.99
91 . 905 1.24 117.01
92 .915 1.31 118.54
93 .925 1.39 118.92
94 .935 1.47 121.83
95 . 945 1.56 123.39
96 . 955 1.68 123.58
97 . 965 1.83 131.24
98 . 975 2.02 132.40
99 . 985 2.31 144.28
100 .995 2.90 145.33
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Recalling from (2.9) that
= g(*=*#) =
Fo = 6(25) = a

where z = (x - ¢)/o and solving for z in terms of F(x) we obtain from the
above,

- a- N3, (_F®
= ¢'(Fe) = T n (7050 )

Now, according to (2.11) a logistic probability plot consists of plotting on
arithmetic graph paper

F ®

ln(1 —F (x) (2.15)
where Fp(x) is the ecdf defined by (2.12) on one axis (e.g., the vertical axis)
versus X on the other (horizontal) axis. Here x represents the observed val-
ues in the sample. Figure 2.11 contains an appropriate graph set up for

this problem.

Notice in Figure 2.11 there are two alternative ways of labeling the
vertical axis. The first way, which is probably the most informative, is to
label the axis in terms of Fp(x) (or 100F,(x) which is the more conventional
way). The second way is in terms of the values of the standardized vari-
able z. In Figure 2.11 we have labelled the left vertical axis as 100Fy(x) and
the right vertical axis as z. Notice the vertical axis is linear in z. It is not
linear in F(x).

Figure 2.11 contains the data plotted on it. To make more explicit the
actual points plotted on this graph we list in Table 2.1 the values of Fp(x) of
(2.12) and z obtained for (2.15) for the first and last fifteen ordered obser-
vations. Also listed are the corresponding ordered observations.

2.3.3. Informal Goodness-of-Fit and Estimation of Parameters

Once the data are plotted the next step is to determine the goodness-of-fit of
the data. For a probability plot this means determining if a straight line

""fits well" the data. This problem can be approached in a very formal manner
and Chapter 5 (Regression Techniques) discusses this approach in detail. For
the purposes of this chapter it means drawing a straight line through the
points and deciding in an informal manner if the fit is good.

2.3.3.1 First Procedure

The simplest procedure is to draw a line ""by eye' through the points. One
convenient way to do this is to locate a point on the plot corresponding to
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around the 10th percentile (Fp(x) = .10) and another around the 90th percent-
ile (Fp(x) = .90) and connect these two. Figure 2.12a contains such a line for
the logistic probability plot of the complete LOG data set. (Notice this is the
same plot as Figure 2.11. Here we have the straight line imposed on the
graph.) This line fits the data extremely well, accommodating even the ex-
treme points. There are two comments which need mentioning here. The
first concerns the non-random pattern of the points about the line. The
ordered observations are not independent and the type of pattern shown in
Figure 2.12a is to be expected. Second, in judging deviations from the line
remember it is the horizontal distances from the points to the line that are
important.

After the "'by eye' line is drawn it can be used to supply quick estimates
of the parameters of the distribution. For example, with the LOG data of
Figure 2.12a we can obtain estimates of the mean u and standard deviation o
by recalling that z = 0 corresponds to the mean 1 and z =1 (86th percentile)
corresponds to u + o. In Figure 2.12a we have lines extending from z =0
and 1 to the straight line and down to the x axis. From these we estimate
f=99 and 7 = 17.

2.3.3.2 Other Procedures

A second procedure for obtaining the line and estimates is to recognize that
from (2.10) we have that the desired line can be represented by

X=p+zo (2.16)

and estimates of 1 and o can be obtained by using unweighted least squares
(simple linear regression). The general solution for these are

"_Z(z-2Z A = A=
a=§g—_;))%andy=x-az (2.17

fi=xand 7= (2.18)

for the LOG data set, i = 99.78 and & = 16.170.

Still a third procedure applicable if 1 and o are the mean and standard
deviation, as they are in the logistic distribution of (2.14), is to use X and s,
the sample mean and standard deviation, as estimates. For the LOG data
X =99.78 and s = 16.67. Notice for the LOG data there are very little differ-
ences among the results of these different procedures. The true parameter
values are u =100 and o = 18.14.

More elaborate procedures involve finding the best linear unbiased esti-
mators of 1 and o (see D'Agostino and Lee, 1976, for the logistic distribu-
tion). These procedures lead to the regression techniques of Chapter 5.
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2.3.4 Small Samples

When the size of the sample is small (say 50 or less) the probability plots

of z on x as given by (2.11) may display curvature in the tails even if the
hypothesized distribution is correct. For these cases the usual recommen-
dation is to use the expected values of the ordered statistics from the stand-
ardized distribution of the hypothesized distribution for the plotting positions
of the vertical axis. These are used in place of the z of (2.11) which are the
percentile points of the standardized distribution. The expected values are
defined as follows. Say Z(1) < *** < Z(n) represent the ordered observations
for a sample of size n from a standardized distribution. Then the expected
values are defined as EZgy) for i=1, ..., n where E represents the expected
value operator.

E 2.3.4.1 Example

For the logistic distribution the expected values are readily available (Gupta
and Shah, 1965, and Gupta, Qureishi and Shah, 1967). However, for this
particular distribution there appears to be no reason to use them in plotting.
Figure 2.12b contains a logistic probability plot (i.e., a logistic analysis) of
the first ten unordered observations of the LOG data. The data along with the
expected values of the ordered observations, Fj(x) and z of (2.11) and (2.15)
are as follows:

Expected values

Ordered of standardized F (0 = z of (2.11)

observations logistic ordered observations n Py and (2.15)
63.35 -1.56 .05 -1.62
78.32 -.95 .15 -.96
94.63 -.60 .25 -.61
96.91 -.34 .35 -.34
102.97 -.11 .45 -.11
104.47 .11 .55 .11
109.99 .34 .65 .34
111.81 .60 .75 .61
118.54 .95 .85 .96
144.28 1.56 .95 1.62

The differences between the expected values and the z's of (2.15) are not
large enough to influence the plots. This is seen clearly in Figure 2.12b.
Remember in judging the fit it is the horizontal distance from a point to the
line that is important.
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FIGURE 2.13 (c) Uniform analysis of UNI data.

2.3.5 Grouped Data/Ties in Data

For grouped data such as discussed in Section 2.2.1 the simplest procedure
for probability plotting is to plot only the data at the true upper class limit
for each interval. Of course, use (2.12) for the Fp(x). This is equivalent

to representing all the observations in the interval at the upper end points
of the intervals. For ungrouped data with ties the simplest procedure is to
average the z values for the observations in the ties (see E2.4.1.1 for a
numerical example).

2.3.6 Use of Simple Computer Graphics

Elaborate sophisticated computer graphics are not needed to produce proba-
bility plots. Many interactive systems have the capability of ordering the
observations of a data set and defining new variables. In such systems a
probability plot is simply a scatter diagram with z of (2.11) on the vertical
axis and the sample observations on the horizontal axis. Figure 2.13 dis-
plays such scatter diagram-probability plots. Figure 2.13a is the logistic
plot of the LOG data (already plotted in Figures 2.11 and 2.12a). Figure
2.13b is a logistic analysis of the UNI data. The UNI data were drawn from
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the uniform distribution defined on the interval 0 to 10. This analysis clearly
indicates lack of fit. Figure 2.13c is a uniform analysis of the UNI data.
That is, it is a probability plot investigating if the UNI data were drawn from
a uniform distribution. In Chapter 6 techniques are discussed which involve
transforming the data first to a uniform distribution. In that chapter the
uniform probability plot plays a very important adjunct role in judging
goodness-of-fit. For a uniform probability plot the standardized variable z
usually is defined as the uniform distribution on the unit interval.

In addition to the plotting, many interactive computer programs can also
be used to obtain the estimates of 1 and o given by (2.17). These are just the
intercept and slope estimates from a simple linear regression of x on z.
However, the correlation coefficient from this simple linear regression must
be viewed with care in attempting to judge goodness-of-{it. Because of the
matching of the ordered observations with increasing z values both x and z
‘are monotonically increasing, so the correlation coefficient will be usually
large in magnitude regardless of how well the data fit a straight line. For
example, the correlation coefficient for the data of Figure 2.13b (logistic
analysis of the UNI data) is .947. The fit of these data to a straight line
obviously leaves much to be desired.

In addition to the use of programs as described above to do probability
plotting, many standard software packages (e.g., SAS) have specific routines
for probability plotting. These should be used when available.

2.3.7 Summary Comments

As given above a probability plot is a plot of

- -1 - o-1
zi =G (Fn<x(i))) =G (pi) on xa) (2.19)

where G~I(-) is the inverse transformation of the standardized distribution
of the population (hypothesized distribution) under consideration. We recom-
mend for Fp(x())

. i-.5
@ P a

F_(x (2. 20)

In the examples above we have used arithmetic graph paper placing z on the
vertical axis and x on the horizontal axis. Of course, it is not incorrect to
place x on the vertical axis and z on the horizontal axis. (In Chapter 11 prob-
ability plotting is done that way.) Nor is it essential to use arithmetic paper.
Many probability plotting papers, which have the axes appropriately labelled,
are available commercially. Logistic paper and many other probability
papers are available from the Codex Book Company, 74 Broadway in Norwood,
Massachusetts.
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TABLE 2.2 Plotting Formulas for Some Familiar Distributions

(pi 1 -n0. 5)

Horizontal Vertical Axis

Distribution cdf F(x) Axis Zi

. X-p _i-.5
Uniform - for u<x< puto x(i) pi =0

x -
Normal s (T) % See (2.22) to (2.24)
Inx-pu
Lognormal @(—a—) In(x (i)) See (2.22) to (2.24)
¢ k
Weibull 1- exp(—(;) ) ln(t(i)) In(-In(1 - p,))
X-4
Extreme Value 1 - exp (—exp(—;—)) o In(-In(1 - p))
- a N3

Logistic [1+exp{-m(x-p)/oN3}] X0 - In (p;/(1 - py))
Exponential 1 - exp (-(x/6)) X0 -In(1 -p)

Once the points are plotted the major task is to judge if the plotted data
form a straight line. If they do not, the task is then to decide what are the
properties of the underlying distribution or data which cause this nonlinearity.
We will now illustrate this probability procedure with the normal, lognormal
and Weibull plotting. Table 2.2 contains the appropriate formulas for proba-
bility plotting for those and other familiar distributions.

2.4 NORMAL PROBABILITY PLOTTING
2.4.1 Probability Plotting

Normal probability plotting, normal plotting or normal analysis is the plotting
of data in order to investigate the goodness-of-fit of the data to the normal
distribution with density given by

1 -3lx-w/0]? (2.21)

N2mo

fx) =
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TABLE 2.3 Plotting Positions z for Normal Probability Plotting (n < 50)
(Expected Values of Standard Normal Order Statistics¥)
(n = Sample Size, i = Observation Number)

i\n 3 4 5 6 7 8 9 10
1 -0.85 -1.03 -1.16 -1.27 -1.35 -1.42 -1.49 -1.54
2 0.00 -0.30 -0.50 -0.64 -0.76 -0.85 -0.93 -1.00
3 0.00 -0.20 -0.35 -0.47 -0.57 -0.66
4 0.00 -0.15 -0.27 -0.38
5 0.00 -0.12

11 12 13 14 15 16 17 18
1 -1.59 -1.63 -1.67 -1.70 -1.74 -1.77 -1.79 -1.82
2 -1.06 -1.12 -1.16 -1.21 -1.25 -1.28 -1.32 -1.35
3 -0.73 -0.79 -0.8 -0.90 -0.95 -0.99 -1.03 -1.07
4 -0.46 -0.54 -0.60 -0.66 -0.71 -0.76 -0.81 -0.85
5 -0.22 -0.31 -0.39 -0.46 -0.52 -0.57 -0.62 -0.66
6 0.00 -0.10 -0.19 -0.27 -0.34 -0.40 -0.45 -0.50
7 0.00 -0.09 -0.17 -0.23 -0.30 -0.35
8 0.00 -0.08 -0.15 -0.21
9 0.00 --0.07
19 20 21 22 23 24 25 26
1 -1.84 -1.87 -1.89 -1.91 -1.93 -1.95 -1.97 -1.98
2 -1.38 -1.41 -1.43 -1.46 -1.48 -1.50 -1.52 -1.54
3 -1.10 -1.13 -1.16 -1.19 -1.21 -1.24 -1.26 -1.29
4 -0.89 -0.92 -0.95 -0.98 -1.01 -1.04 -1.07 -1.09
5 -0.71 -0.75 -0.78 -0.82 -0.85 -0.88 -0.91 -0.93
6 -0.55 -0.59 -0.63 -0.67 -0.70 -0.73 -0.76 -0.79
7 -0.40 -0.45 -0.49 -0.53 -0.57 -0.60 -0.64 -0.67
8 -0.26 -0.31 -0.36 -0.41 -0.45 -0.48 -0.52 -0.55
9 -0.13 -0.19 -0.24 -0.29 -0.33 -0.37 -0.41 -0.44
10 0.00 -0.06 -0.12 -0.17 -0.22 -0.26 -0.30 -0.34
11 0.00 -0.06 -0.11 -0.16 -0.20 -0.24
12 0.00 -0.05 -0.10 -0.14
13 0.00 -0.05

*z for order statistic X(j) where i> n/2 is -z of order statistic X( j) where

j=n+1-i.

(continued)



TABLE 2.3 (continued)

i\n

33

32

31

30

29

28

27

-2.09
-1.68
-1.43
-1.25
-1.11
-0.98
-0.87
-0.76
-0.67
-0.58
-0.50
-0.41

-2.08
-1.66
-1.42
-1.23
-1.09
-0.96
-0.85
-0.74
-0.65
-0.56
-0.47
-0.39

-2.07
-1.65
-1.40
-1.22
-1.07
-0.94
-0.82
-0.72
-0.62
-0.53
-0.44
-0.36

-2.06

-2.04
-1.62
-1.36
-1.18
-1.03

-2.03
-1.60
-1.35
-1.16
-1.00
-0.87

-2.01
-1.58
-1.33
-1.14
-0.98
-0.85

-2.00
-1.56
-1.31
-1.11
-0.96
-0.82
-0.70
-0.58
-0.48
-0.38
-0.28

1
2
3
4
5
6

-1.63
-1.38
-1.20
-1.05
-0.92
-6.80
-0.69
-0.60
-0.50
-0.41
-0.33

-0.89
-0.78
-0.67
-0.57
-0.47
-0.38
-0.29

-0.75
-0.64
-0.54
-0.44
-0.35
-0.26

-0.73
-0.61
-0.51
-0.41
-0.32
-0.22

7
8
9
10
11
12

-0.19
0.09
0.00

-0.34
-0.26
-0.18

-0.31
-0.23
-0.15
-0.08

0.00

-0.28
-0.20
-0.12
-0.04

-0.24
-0.16
-0.08

0.00

-0.21
-0.12
-0.04

-0.17
-0.09

-0.13
-0.04

13
14
15
16
17

0.00

-0.11
-0.04

42

41

40

39

38

37

36

35

-2.18
-1.78
-1.54

.=1.37

-2.17
-1.76
-1.53
-1.36
-1.22
-1.10
-0.99

-2.16
-1.75
-1.52
-1.34
-1.20
-1.08
-0.98
-0.88
-0.79
-0.71
-0.63
-0.56
-0.49
-0.42

-2.15
-1.74
-1.50
-1.33
-1.19
-1.07
-0.96
-0.86
-0.77
-0.69
-0.61
-0.54
-0.46
-0.39

-2.14
-1.73
-1.49
-1.32
-1.17
-1.05
-0.94
-0.85
-0.75
-0.67
-0.59
-0.51
-0.44
-0.37
-0.30
-0.23
-0.16
-0.10
-0.03

-2.13
-1.72
-1.48
-1.30
-1.16
-1.03
-0.92
-0.83
-0.73
-0.65

-2.12
-1.70
-1.46
-1.28
-1.14
-1.02
-0.91
-0.81
-0.71
-0.63
-0.54
-0.47
-0.39
-0.32

-2.11
-1.69
-1.45
-1.27
-1.13
-1.00
-0.87
-0.79
-0.69
-0.60
-0.52
-0.44
-0.36
-0.29
-0.22
-0.14
-0.07

0.00

1
2
3
4

-1.23
-1.11
-1.01
-0.91
-0.83
-0.75
-0.67
-0.60
-0.53
-0.46

5
6
7
8
9
10
11
12
13
14

-0.90
-0.81
-0.73
-0.65
-0.58
-0.51
-0.44

-0.57
-0.49
-0.42
-0.34
-0.27
-0.20
-0.14
-0.07

-0.33
-0.26
-0.19
-0.13
-0.06

-0.40
-0.33
-0.27
-0.21
-0.14
~0.09
-0.03

-0.37
-0.31
-0.25
-0.18
-0.12
-0.06

0.00

-0.35
-0.28
-0.22
-0.16
-0.09
-0.03

-0.24
-0.17
-0.10
-0.03

15
16
17
18
19
20
21

0.00

0.00

*z for order statistic X(i) where i> n/2 is -z of order statistic X( j) where

=n+1-1i.

i
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TABLE 2.3 (continued)

i\n

50

49

48

47

46

45

44

43

-2.25
-1.85
-1.63
-1.46
-1.33
-1.22

-2.24
-1.85
-1.62
-1.45
-1.32
-1.21

-2.23
-1.84
-1.61
-1.44
-1.31
-1.19
-1.09
-1.00
-0.92
-0.84
-0.177
-0.70
-0.64
-0.58
-0.52
-0.46
-0.40
-0.34

-2.22
-1.83
-1.60
-1.43
-1.30
-1.18
-1.08
-0.99
-0.91
-0.83
-0.76
-0.69
-0.62
-0.56
-0.50
-0.44
-0.38
-0.32
-0.27
-0.21
-0.16
-0.11
-0.05

0.00

-2.22
-1.82
-1.59
-1.42
-1.28
-1.17
-1.07
-0.98
-0.89
-0.81
-0.74
-0.67
-0.60
-0.54
-0.48
-0.42
-0.36
-0.30

-2.21
-1.81
-1.58
-1.41
-1.27
-1.16
-1.05
-0.96
-0.88
-0.80
-0.72
-0.65
-0.59
-0.52
-0.46
-0.40
-0.34
-0.28
-0.22
-0.17
-0.11
-0.06

-2.20
-1.80
-1.57
-1.40
-1.26
-1.14
-1.04
-0.95
-0.86
-0.78
-0.71
-0.64
-0.57
-0.50
-0.44
-0.38
-0.32
-0.26

-2.19
-1.79
-1.55
-1.38
-1.25
-1.13
-1.02
-0.93
-0.84
-0.76
-0.69
-0.62
-0.55
-0.48
-0.42
-0.36
-0.29
-0.23
-0.17
-0.12
-0.06

1
2
3
4

5
6
7

-1.12
-1.03
-0.95
-0.87
-0.80
-0.74

-1.11
-1.02
-0.94
-0.86
-0.79
-0.72
-0.66
-0.59
-0.53
-0.48
-0.42
-0.36

8
9
10
11
12

-0.67
-0.61
-0.55
-0.49
-0.44
-0.38
-0.33
-0.28
-0.23
-0.18
-0.13

13
14
15
16
17
18
19
20
21

-0.31
-0.26

-0.29
-0.24
-0.18
-0.13
-0.08
-0.03

-0.25
-0.19
-0.14
-0.08
-0.03

-0.20
-0.14
-0.09
-0.03

-0.21
-0.15
-0.10
-0.05

0.00

0.00

22

0.00

23

-0.07
-0.02

24
25

*z for order statistic X(j) where i> n/2 is -z of order statistic X

j=n+1-1.

i) where

This plotting can be achieved by using already prepared normal probability
paper such as shown in Figure 2. 14 or by using arithmetic paper where the

z of (2.19) is approximated by

(2-22)

sign (F_() - -5)(1.238t(1 + 0.02621))

z =

Here

(2-23)

_ 3
t = {-In[4F_(®(1 - F N1}

and
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+1 if Fn(x) -.5>0
sign(F_(x) - .5) = (2.24)
n SLif F (®) - .5< 0

This approximation to z is given in Hamaker (1978) and appears to be of suf-
ficient accuracy for plotting. Notice this z function defined by (2.22) and
(2.24) can be programmed easily and so permits the use of simple computer
graphics for performing normal probability plotting (see Section 2.3.6 for
further details). )

For small samples (say less than 50 observations) the z of (2.22) should
be replaced with the expected values of the order statistics from the standard
normal distribution—i.e., the distribution with 4 = 0 and o = 1 (Harter,
1961). Table 2.3 contains these for sample sizes up to 50. The normal prob-
ability plots for samples smaller than 25 can show substantial variation and
nonlinearity even if the underlying distribution is normal (see, for example,
Daniel and Wood, 1971, and Hahn and Shapiro, 1967). We caution the reader
against placing too much reliance upon a plot in these situations. Remember,
in general and especially for these situations, graphs should be used for
informal preliminary judgments and/or as adjuncts to formal numerical
techniques. Chapter 9 contains the formal techniques for testing for normality.

E 2.4.1.1 Examples

Figure 2.15 contains two normal probability plots. Figure 2.15a is a plot of
the NOR data set already extensively discussed in Section 2.2. Figure 2. 15b
is a plot from a sample of 20 dosimeter readings of benzene (D'Agostino and
Gillespie, 1978). A dosimeter is a portable device for measuring a person's
exposure to various gases. The dosimeter data are in parts per million
(ppm). The frequency distribution and plotting points z are:

Dosimeter Data for Measuring Benzene

Data Expected values
values order statistics
(ppm) Frequencies (z)
.93 3 -1.47
.95 6 -.53
.97 3 .06
.98 1 .32
.99 1 .45
1.01 4 .85
1.05 1 1.41
1.07 1 1.87
20
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Notice in Figure 2.15b we plotted only 8 points since only eight different
values appeared in the sample. The z values are averaged in the case of the
ties. The line drawn in Figure 2.15b is the line X + zs, where X = .98 and
s =.04.

For grouped data (i.e., data grouped into frequency classes) only one
value per class should be plotted. This plotted value should be the true upper
limit of the class (see Section 2.2.1 for an illustration of true upper limits
and Section 2.3.5 for more details).

2.4.2 Deviations from Normality
2.4.2.1 Unimodal Distributions

A useful way to distinguish unimodal non-normal distributions from the
normal is in terms of the skewness and kurtosis measures defined as

u 3
Skewness: '\/fi_l = 33/2 - —EX- "33/2 (2. 25)
Ky {EX - w7}
and
Y Ex-pt
Kurtosis:  f, = — = ——(—ii‘%g (2.26)
#y, {EX-m7}

For the normal distribution NB, = 0 and B, = 3. The sample estimators of
these and the tests of fit based on them are discussed in Chapters 7 and 9.
Figure 2.16 contains normal probability plots of four data sets of the appen-
dix which represent various combinations of '\/—B_1 and B, . Figure 2.16a and
2.16b are plots of symmetric distributions. Notice for B8, < 3 (UNI data,

B, = 1.80) the plot is, within sampling error, antisymmetric about the
median, being concave for x < median and convex for x > median. For

B, > 3 (SU(0,2) data, B, =4.51) the plot is again, within sampling error,
antisymmetric about-the median. Now, however, it is convex for x < median
and concave for x > median. (See Figure 2. 18 for further illustrations.)
Notice also for skewed distributions (Figures 2.16c and 2.16d) the plots are
either convex or concave throughout.

2.4.2.2 Outliers, Mixtures and Contamination

Figure 2.17 illustrates the use of normal probabiiity plotting for the detection
of outliers and the presence of mixtures (or contamination). For previous
discussions see Sections 2.2.3 and 2.2.4, respectively. Figure 2.17a is a
plot of the data whose ecdf is given in Figure 2.5b (i.e., first nine observa-
tions of the NOR data set plus one outlier equal to 140). Notice how the point
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FIGURE 2.16 Normal probability plots for nonnormal unimodal distributions.
Symmetric distributions (NB; = 0). (a) UNI data 8, = 1.80. (b) SU(0,2),

B, =4.51. Skewed distributions (VB, # 0). (c) SU(1,2) data NB, = -.87,

B, =5.59. (d) EXP data NB, =2, B8, = 9.
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FIGURE 2.17 Normal analysis for outliers and mixtures (or contamination).
(a) -NOR data (n = 10) detection of outlier.

corresponding to the observation 140 is clearly out of line with the rest of
the data. In practice the techniques of Chapter 12 should now be used to con-
firm that this point is an outlier.

Figures 2.17b and 2.17¢ are normal probability plots of the contami-
nated normal data sets LCN(.10,3) and LCN(. 20, 3) whose ecdfs are given,
respectively, in Figures 2.7a and 2.7b. The reader should note two impor-
tant related points concerning both Figures 2.17b and 2.17c. First, both
reveal the presence of two straight lines. This is seen, for example, in
Figure 2.17b [LCN(. 1, 3) data set] where one straight line can be fit nicely
through the data below the 80th percentile of the sample and a second straight
line can be fit through the data from about the 92nd percentile up. The points
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100F, (x)

99

1

& -

b 2 a1 o 1 2 3
(b) LCN(.10,3) data, contaminated normal.

from the 80th to the 92nd percentiles represent a contaminated or transition
zone where the two distributions cannot be clearly separated. Second, neither
plot displays a convex nor a concave pattern throughout. One of these pat-
terns would be the case if we had simply skewed distributions under analysis
here as we did in Figures 2.16c and 2.16d. Recall the ecdfs of the LCN(. 10,
3 and LCN(.20, 3) data sets could not be distinguished from those of skewed
distributions. With probability plotting the underlying components can sur-
face as straight line segments in the plot, and so do produce a completely
different effect than what is produced by a unimodal skewed distribution (see
Figure 2.18 for further illustration). Once it is established that there are
two or more components in the data, the next step is to estimate the param-
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FIGURE 2. 17 (continued) (c)' LCN(. 20, 3) data, contaminated normal.

eters of the components. The reader is referred to Bliss (1967) and Johnson
and Kotz (1970) for further details.

2.4.2.3 Recognizing and Responding to Nonnormality

Figure 2.18 provides guidelines to aid the user in interpreting normal prob-

ability plots. Notice in the drawings of Figure 2. 18 the empirical cumulative

distribution function and/or z scale is on the vertical axis. Some graphs

have these on the horizontal axis. The resulting configurations will be differ-
ent if this is done.
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FIGURE 2.18 Indications of nonnormality from the normal probability plots.

2.5 LOGNORMAL PROBABILITY PLOTTING
2.5.1 Probability Plotting for Two Parameter Lognormal

The two parameter lognormal distribution has density

f(x) =
xo N2T

1 e-(ln x-p)%/202

x>0 (2.27)

The random variable Y = In X has a normal distribution with mean p and
standard deviation ¢. Probability plotting for this distribution can be achieved
in a number of ways: (1) on already prepared lognormal probability paper
(Figure 2.19), (2) on normal probability paper such as shown in Figure 2. 14
where x of the horizontal axis is replaced by log x, (3) on arithmetic graph
paper where z of (2.22) to (2.24) is the variable of the vertical axis and

log x is the variable of the horizontal axis, or (4) on semi-log graph paper
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FIGURE 2.20 Lognormal probability plots. (a) Total suspended particu-
lates. (b) CHEN data set.
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where the data x is the variable of the log axis and z of (2.22) to (2.24) is
the variable of the equal interval scale axis. In selecting graph paper with a
log scale, the user should select one with enough cycles to accommodate the
data. Graph papers with one to five cycles on the log axis are readily avail-
able. For samples of less than 50 the z of (2.22) to (2.24) should be replaced
with the expected values of the standardized order statistics of Table 2.3.

Figure 2.20 contains lognormal probability plots. Figure 2.20a contains
three plots of TSP (total suspended particulates) data from three air quality
monitoring sites near Boston, Massachusetts. Notice this figure uses log
normal paper. Figure 2.20b is a plot on arithmetic graph paper of the CHEN
data set given in the Appendix. These data are taken from Bliss (1967) and
they are the lethal doses of the drug cinobrifagin in 10 (mg/kg), as deter-
mined by titration to cardiac arrest in individual etherized cats. The loses,
In (doses), frequencies and plotting position z values are:

Dose In (Dose) f z Dose In (Dose) f z

1.26 .231 1 -1.97 2.34 . 850 1 .10
1.37 .315 1 -1.52 2.41 . 880 1 .20
1.55 .438 1 -1.26 2.56 . 940 1 .30
1.71 . 536 1 -1.07 2.63 . 967 2 .46
1.77 . 571 1 -.91 2.67 .982 1 .64
1.81 . 593 1 -.76 2.82 1.037 2 .84
1.89 .637 2 -.58 2.84 1.044 1 1.07
1.98 .683 1 -.41 2.99 1.095 1 1.26
2.03 .708 3 -.20 3.65 1.295 1 1.52
2.07 .728 1 .0 3.83 1.343 1 1.97

25
The straight line drawn in Figure 2.20b is the line
In(Dose) = i+ 25 = 7972 + z(.2790)

where /i and & are the sample mean and standard deviation, respectively, of
the logs of the data. For lognormal data the parameters of interest are
usually the geometric mean and geometric standard deviation. For the model
(2.27) these are, respectively,

e“ and &7

Estimates of these based on the data in Figure 2.20b are exp (.7972) = 2.2193
and exp (.2790) = 1.3218. For data plotted directly on log normal paper

exp (4) is estimated as the 50th percentile (i.e., x value corresponding to

z =0) and exp (¢) is estimated as the ratio of the 84th percentile to the 50th
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percentile (i.e., the ratio of the x value corresponding to z =1 to the x
value corresponding to z = 0).

2.5.1.1 Zero Data Values

At times, when dealing with a set of data that appears to be lognormally dis-
tributed, there may be a subset of these observations that are all equal to
zero. Before the data can be plotted these zeros must be "adjusted." First,
it is possible that they represent a contamination and simply should be re-
moved. Second, they may reflect a measurement limitation of the measure-
ment instrument. In this case it may be justified to replace them with the
"least detectable level" of the instrument. If this is not known then it may be
possible to adjust the zeros by adding a small arbitrary constant to them or
to all the data values before they are plotted. Careful consideration should
be given before any of these suggestions are employed.

2.5.2 Three Parameter Lognormal

The three parameter lognormal distribution has density
1 -(n(x-)-p%20*

IN

f(x) = X>A (2.28)
@) xo N 27

r

'| -

o -

a1 © Original Data

° X Data -1
2k line is In ( Data-1)= -17025+2.2781z
A=), 4 =17025, 5 =2.2781
1 1 1 1 1 L L J

-5 -4 -3 -2 A o 10 20 In (Data)

135 368 1.000 2718 7.389 Data

FIGURE 2.21 Lognormal plot for three parameter lognormal. ° Original data;
X Data-.1. Line is ln (Data -.1) = -1.7025 + 2.2781z; X = .1, fi = -1.7025,
G =2.2781.
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A plot of data from this distribution for a lognormal analysis will not produce
a straight line unless the A value cr an estimate of it is subtracted from all
the data. The data in Figure 2.21 illustrate the situation. These data come
from Leidel, Busch and Lynch (1977) and represent readings of hydrogen
fluoride. The dots represent the unadjusted data. These data and the plotting
positions for z are given in the first four columns below:

Data (ppm) f z In (Data) In (Data - .1)
.11 2 -1.38 -2.21 -4.61
.12 1 -.79 -2.12 -3.91
.14 2 -.42 -1.97 -3.22
.21 1 -.10 -1.56 -2.21
.33 1 .10 -1.11 -1.47
.80 1 .31 -.22 -.36
.91 1 .54 -.09 -.21

1.30 1 .79 .26 .18

2.60 1 1.12 .96 .92

10.00 1 1.63 2.30 2.29
12

Notice how the dots at the lower end bend in a concave manner while those
at the upper end do appear to follow a straight line.

There are many ways to obtain estimators of A for this type of data
(Aitchinson and Brown, 1957, and Johnson and Kotz, 1970, chapter 14). The
author has found the following two simple informal procedures to be useful
in the graphical stage of analysis. First, note in Figure 2.21 that the lower
end dots do appear to be approaching asymptotically the log value of ~2.3.
The antilog of this asymptote (viz., exp (-2.3) = .10) can be used as an esti-
mate of A. Second, if we use Xp to represent the Pth sample quantile
(0 < P < 100) then the following should be approximately true

InX, . o -3 +InX, -3
100-P . &p - @, -» @.29

for all P (0 < P < 50). From (2.29) we have as an estimator of A

5 = xlOO—PkP - x§0 (2.30)
X100-1> + xp - 2"‘50

The usually recommended value of P is 5, and so the suggested estimator is
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X X X2

5 = 95°5 ~ 50

+ -
X95 x5 zx50

(2.31)

As a value for the Pth sample quantile, the user can use either the ith order
statistics X(j) where

i=[n(.01P)] + 1 (2.32)

(here [y] is the largest integer in y) or else obtain it directly from a graph.
That is, draw a curve by hand through the data and use of the Pth quantile
the x value on the horizontal axis corresponding to 100Fy(x) = Pth value on
the vertical axis. Applying (2.31) to the data of Figure 2.21 we again obtain
.1 as a good approximation to A. Figure 2.21 also contains a plot of the data
minus this .1 value (i.e., In(Data - .1)). This plot is given as x values on
the graph. A straight line now does fit reasonably well these values indicating
the appropriateness of the lognormal distribution.

2.5.3 Responding to Lognormal Plots

Figure 2.22 provides guidelines to aid the user in interpreting lognormal
probability plots. As with Figure 2.18 the drawings in Figure 2.22 have the

DA Ve

indication Normal Distribution Weibull Distribution
Weibull Distribution

R
\
A\

indication Truncated Left Truncated Right Truncated Both Tails
Misclossified Data Left Misclassified Dato Right Finite Tailed Distribution
Possibly Norma! Distribution Mixture of Distributions

N
N
N

indication Outlier Left Tail Qutlier Right Tail Outliers Both Tails

FIGURE 2.22 Indications of non-lognormality from nonlinearity of lognormal
probability plots.



54 D'AGOSTINO

empirical cumulative distribution function and/or z scale on the vertical
axis.

2.6 WEIBULL PROBABILITY PLOTTING »
2.6.1 Probability Plotting for Two Parameter Weibull

The two parameter Weibull distribution has density

k-1 ., k
i = 5(4) /0 (2-33)
and cdf
k
F(t) =1 - e'(t/ o) (2.34)

where 6, k, t> 0. This is a very versatile distribution and by varying the
parameter k it can assume a large number of different shapes. For example,
when k =1 the Weibull distribution is the negative exponential distribution,
when k is in the neighborhood of 3.6 the Weibull distribution is similar in
shape to the normal distribution, when k < 3.6 the Weibull has positive
skewness (i.e., \I—B_l > 0) and when k > 3.6 it has negative skewness (i.e.,
'\IF; < 0). To illustrate this versatility we have in Figure 2.23a plots of the
Weibull density for four different k values.

A large number of probability plotting papers are available for a Weibull
analysis (see Nelson and Thompson, 1971). However, Weibull probabiiity
plotting can be achieved also simply by plotting

z=In(-In(1 - F_ () on Int (2.35)
15 154 151 154
k=) k=2 k=3 k=4
101 101 104 101
05 05 051 051
S e ey —p—y . —
a o 1 2 3+t 0 1 2 3+ 0 1 2 3t 0 1 2 3

FIGURE 2.23 Weibull analysis. (a) Weibull densities for different k values
6=1.
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This follows immediately from the cdf given in (2.34) and the general proce-
dure for probability plotting described in Section 2.3.1. In particular, from
(2.34) we obtain

k
1-F(t) = e'(t/ 9

In(1 - F(t)) = —(t/o)k
In(-In(1 -F¢t))) =klnt-klng

_X-u
(e}

where
x=Int,p=1m6 and o = 1/k (2. 36)

Note with Weibull plotting the log of the data (i.e., log t) Is put on the hori-
zontal axis rather than the data values directly. This is needed to obtain
linearity in the plots. Now applying (2.11) or (2.19) we obtain (2.35). Further
while small sample expected values of order statistics are available (Mann,
1968) Weibull probability plotting usually works well by simply employing
(2.35) for all sample sizes. To illustrate Weibull plotting we present two
plots. Figure 2.23b is a Weibull plot of the WE2 data set (i.e., 100 obser-
vations from the Weibull distribution with k =2 and 6 = 1). Figure 2.23c
is a plot of eleven survival times in months of cancer patients who have had
an adrenalectomy. This data set was obtained from a study by Dr. Richard.
Oberfield of the Lahey Clinic, Boston. The data are:

(1) (2) 3 (4 (5) (6)
Rank t x=Int Fn(t) z=In(-ln(1 —Fn(t))) z; Plotting points
1 6 1.79 .045 -3.07 -3.07
2 9 2.20 .136 -1.92 -1.92
3 13 2.56 . 227 -1.36 -1.36
4 18 2.89 .318 -.96 -.96
5 22 3.09 .409 -.64 -.50
6 22 3.09 . 500 -.37 -.50
7 36 3.58 . 590 -.11 .02
8 36 3.58 .682 .14 .02
9 37 3.61 .73 .39 .39
10 41 3.71 . 864 .69 .69
11 52 3.95 .955 1.13 1.13

Following our previous convention Figure 2.23c is a plot of the z's of
column (6) on the x's of column (3).
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The straight line drawn in Figure 2.23b was drawn using the "'by eye"
technique described in Section 2.3.3.1. From the line we obtain

~

X=1Int=[+20=-.05+2(.47)
Notice p and o are location and scale parameters of the distribution of In T.
However, they are not the mean and standard deviation. Using (2.36) we
next obtain

6 =exp(®) =.95 and K =1/6 = 2.13

Recall the true parameter values are 6
technique did well in this case.

Because the sample size is small for the data in Figure 2.23c we use
the unweighted least squares estimates of (2.17) to obtain the estimates of u
and ¢ from this data (columns (3) and (5) of the data above were used for the
x's and z's, respectively). The estimates are it =3.40 and o = .55. From
these we obtain § = exp (3.40) =29.96 and ¢ =1/.55 = 1.82.

1 and k = 2. The informal "by eye"

2.6.1.1 Zero Data

As with the lognormal distribution there may be a subset of zero values in
data that otherwise appears to have a Weibull distribution. For an example
dealing with wind speed data see Takle and Brown (1978). The recommended
procedures for dealing with these zero values are exactly those given for the
lognormal in Section 2.5.1.1.

2.6.2 Three Parameter Weibull
The three parameter Weibull has density

k-1 k
f(t) =%(%) eLENOT oy (2.37)

Similar to the three parameter lognormal distribution the A value must be
subtracted from all the data before a Weibull plot will produce a straight
line. In many cases a value close to the minimum t is adequate as an esti-
mate of A. Other more precise techniques can be employed (Johnson and
Kotz, 1970).

2.7 OTHER TOPICS

There are a number of other topics, for which due to space limitation, we
cannot give detail treatments. Some of these are:
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1. Analysis of Residuals from a Model. All of the above material
applies directly if we are dealing with residuals from a model. That is,
say we have a mathematical model

Y = b(X,8) + 7 (2-38)

where Y represents a random variable, X a vector of random variables or
known constants, B a vector of unknown parameters and 7 an error term.
For example, (2.38) can represent a multiple regression model. If the 8
vector is estimated from data, say estimator is 3, then the estimator of Y
is

Y = h(X, f) (2.39)

and

I

n=Y-% (2.40)
is the residual. While the residuals comprise a dependent sample the graph-
ical techniques described above can be used to analyze them. Chapter 12 on

- outliers discusses further the analysis of residuals.

2. Analysis of Censored Samples. There are no restrictions in the
above which make it necessary for all the data to be available for plotting.
The above techniques can be used on censored data. There are, however,
special concerns which arise with censored data (e.g., see Nelson, 1972)
that require careful and complete discussion. Chapter 11 is devoted solely
to this problem.

3. Q-Q Plots and P-P Plots. Wilk and Gnanadesikan (1968) discuss in
detail the quantile-quantile probability plots (Q-Q plots) and the percentage-
percentage probability plots (P-P plots). A Q-Q plot is the plot of the quan-
tiles (or, as we call them above, the percentiles) of one distribution on the
quantiles of a second distribution. If one of these distributions is a hypothe-
sized theoretical distribution a Q-Q plot is just a probability plot as devel-
oped in Section 2.3. A P-P plot is the plot of the percentages of one distri-
bution on the percentages of a second. Wilk and Gnanadesikan (1968) state
that while the P-P plots are limited in their usefulness, they are useful for
detecting discrepancies in the middle of a distribution (i.e., about the median)
and also may be useful for multivariate analysis.

4. Transformation to Normality. In some settings (e.g., analysis of
variance) it is suggested first to transform to normality and then analyze
the transformed data. Box and Cox (1964) suggest a power transformation for
this. Their transformation is as follows:

xo ifo>0
y=< logx if 9=0 (2.41)
x9 for 6 <0
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Here x refers to the original data and 6 is the power exponent. Box and Cox
develop a maximum likelihood estimator for 6. Once it is computed normal
probability plotting as developed in Section 2.4 can be applied directly to the
transformed data y of (2.41). The techniques of Chapter 9 can be used to
test formally the normality of the transformed data.

5. Probability Plotting for the Gamma Distribution. One important
distribution that does not lend itself immediately to the probability plotting
techniques described above is the Gamma distribution. Even with the aid of
transformations it cannot be put in the simple form of a distribution depend-
ent upon a location and scale parameter. Wilk, Gnanadesikan and Huyett
(1962) present a technique and accompanying tables to handle this situation.
See Chapter 11 for further comments on this.

6. Multivariate Normality. There has been much attention paid to the
problem of probability plotting for the multivariate normal distribution and
a number of techniques have been suggested (Gnanadesikan, 1973). The
author has found the following technique to be very informative. First trans-
form the data to principal components and then do univariate normal proba-
bility plotting (Section 2.4) for each component. Each component can be con-
sidered an independent variable. If the original data set is from a multivariate
normal distribution then each component should produce a straight line in the
univariate plots. More will be said about multivariate normality in Chapter 9.

2.8 CONCLUDING COMMENT

The aim of this chapter has been to present to the reader simple informal
graphical techniques which can be used in conjunction with the formal tech-
niques to be discussed in the following chapters. In performing an analysis
we suggest that the reader should draw a graph, examine it and judge if
other graphs are needed. As the formal numerical techniques are being
applied use the graphs to interpret them and to gain insight into the phenom-
enon under investigation.
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3
Tests of Chi-Squared Type

David S. Moore Purdue University, West Lafayette, Indiana

3.1 INTRODUCTION

In the course of his Mathematical Contributions to the Theory of Evolution,
Karl Pearson abandoned the assumption that biological populations are
normally distributed, introducing the Pearson system of distributions to
provide other models. The need to test fit arose naturally in this context,
and in 1900 Pearson invented his chi-squared test. This statistic and others
related to it remain among the most used statistical procedures.

Pearson's idea was to reduce the general problem of testing fit to a
multinomial setting by basing a test on a comparison of observed cell counts
with their expected values under the hypothesis to be tested. This reduction
in general discards some information, so that tests of chi-squared type are
often less powerful than other classes of tests of fit. But chi-squared tests
apply to discrete or continuous, univariate or multivariate data. They are
therefore the most generally applicable tests of fit.

Modern developments have increased the flexibility of chi-squared tests,
especially when unknown parameters must be estimated in the hypothesized
family. This chapter considers two classes of chi-squared procedures. One,
called "classical" because it contains such familiar statistics as the log
likelihood ratio, Neyman modified chi-squ