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If you are reading this as a web page: have fun!
If you are reading this as a PDF: please visit

https://www.hep.uniovi.es/vischia/persistent/2025-10-26_TutorialECAI2025.html

to get the version with working animations
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Complex accelerators Complex phenomena Complex experiments and
reconstruction

Disclaimer (who am I)
Particle physicist (PhD 2016, IST Lisboa) now at Universidad de Oviedo and ICTEA

Most of my career at the CMS Experiment at CERN

Specialized in statistics and machine learning applied to proton-proton collision data

We like frequentist properties

In the past five years, I specialized in AI for experiment design

Check out the MODE Collaboration, https://mode-collaboration.github.io/

Lately focussing on neuromorphic computing (spiking neural networks) for nanophotonics readout of calorimeters

―
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PHINDER Pathfinder Open (shameful advertisement
part 1)

Pathfinder Open 2025: Consortium just funded with 3.2 million euros

Will be hiring a PhD student on spiking neural networks and neuromorphic computing very soon: if you are interested, drop me a line!

Picosecond-scale event processing with energy-efficient architectures

Particle physics detectors

Proton therapy detectors

Chemical process control
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COST CA24146 (shameful advertisement part 2)
WG1 coleader: Applications in Particle Physics

Budget for travelling and organising events

Anyone can join (just some reasonable loose acceptance criterion)
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What do
we do

―
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https://indico.nikhef.nl/event/4875/contributions/21153/attachments/8264/11798/DeepLearning_EUCAIFCon_Amsterdam_2024_v2.pdf


Where
we can
plug AI

―
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What is uncertainty?
Aleatoric uncertainty: noise that is irreducible

"Statistical uncertainty", e.g. because of the stochasticity of a physical process

Epistemic uncertainty: in the model itself

reduced by improving the model architecture or (sometimes) training on more data

Out-of-distribution (OOD) uncertainty: response of the model to data that are significantly different from the training data set

Outliers

Sampled from a different distribution (but anomaly detection!)

Critical for model safety!
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The program for this 1.5h
Quantifying uncertainty

Deployable techniques/algorithms

Highlight the pitfalls and defects of these techniques

Connect the various techniques (conformal prediction, calibration, regularization, and OOD) into a single pipeline
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Why quantify uncertainty?







Avoid catastrophic errors due to overconfidence in high-accuracy models

Keeps the human in the loop: when uncertainty is large, abstain, request new data, or in general flag the outcome for human
review

Estimating uncertainty means estimating risk and therefore costs. In safety-critical settings, decisions are driven by costs, not
accuracy only

Uncertainty estimates must be calibrated, robust, and computationally feasible

―
Further reading: Amodei et al, 2016: Concrete problems in AI Safety Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 9 / 57

https://arxiv.org/abs/1606.06565


What you will learn (hopefully)







How to distinguish aleatoric and epistemic uncertainty and explain why the distinction matters.

How to implement split conformal prediction and conformalized quantile regression with coverage guarantees

And why sometimes it's dangerous

How regularization and inductive bias shape generalization and uncertainty

How to filter out OOD data by OOD gating so that predictions are trusted only in-distribution
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End users should know when to trust the prediction

E.g. when to alert a nurse for human judgment

A suitable pipeline should combine calibrated models,
conformal intervals, and OOD gates to support these
choices




A first example are Model cards: short documents
accompanying trained ML models, providing
benchmarked evaluation in a variety of conditions

Across relevant groups (e.g. cultural, demographic, phenotipic) to
the intended application domains

Communicate clearly about uncertainty

―
Figure from Mitchell et al., 2019 Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 11 / 57

https://arxiv.org/abs/1810.03993


Outline







Uncertainty foundations and calibration

Conformal prediction and its main variants

Regularization, inductive bias, and their interaction with uncertainty

Out-of-Distribution (OOD) detection and the integration of all components into a pipeline
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Aleatoric vs Epistemic uncertainty
Aleatoric uncertainty: irreducible noise in the data (e.g. from a sensor)

Enlarging training dataset does not reduce it

Minimum achievable error (even with perfect dataset)

Epistemic uncertainty: typically due to limited or nonrepresentative data

Enlarging training dataset reduces it

Requesting the model to extrapolate increases it

Mixing the two leads to misguided interventions!!!
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For a single earthquake, no distinction: then maybe failure
prob is Poisson:

Actually, failure events in time are not statistically
independent

Aleatory uncertainties in  and  are renewed at each

earthquake, all the others are common

Do not mix aleatoric and epistemic uncertainties
Earthquake load on a structure:  (peak ground acceleration) as intensity measure;  capacity to withstand a certain .

,  modelled as Poisson models

 are the errors in modelling the structure

 are the errors due to the stochastic ground motion

―
Example and plots from Kiureghian & Ditlevsen, 2009
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g(r, s, ϵ) = ln(r) + ϵ ​ −1 ln(s) + ϵ ​2
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Probabilistic predictions FTW
A predictive distribution summarizes beliefs about future outcomes, not just a point estimate

In Bayesian terms, you want the full posterior

Medical diagnosis: false positives (distress, further tests) preferrable to false negatives (patient dies due to being untreated)

Probabilistic predictions minimise risk

When loss matrix needs to be revisited, having the full posterior allows revising the decision criterion without having to retrain

Probabilistic predictions allow us to determine a rejection criterion

e.g. minimise expected loss for a given fraction of rejected data points (connected to coverage, see later)

Probabilistic predictions allow us to compensate for class priors

Incidence of disease in population dramatically shifts the posterior probability

Probabilistic predictions allow us to combine models

E.g. break the problem in different subdiagnoses, then combine posteriors

Sharpness measures concentration, while calibration measures honesty of probabilities.

In practice, we prefer predictions that are both sharp and well calibrated.

Th t lid h h t d i lib ti

―
Figure from C. Bishop, "Pattern Recognition and Machine Learning", 2006 Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 15 / 57

https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


Mortal disease

: the patient is diseased (sick)

: the patient is healthy

Diagnostic test

: the patient flags positive to the disease

: the patient flags negative to the disease

(The Obligatory COVID-19 slide)

A very good test

You take the test and you flag positive: do you have the disease?

We need the incidence of the disease in the population, !

 (very rare disease): then , which is fairly small

 (only a factor 10 more likely): then , which is pretty high

: then , almost certainty!

D

H

+

−

P (+∣D) = 0.99

P (+∣H) = 0.01

P (D∣+) = ​ =
P (+)

P (+∣D)P (D)
​

P (+∣D)P (D)+P (+∣H)P (H)
P (+∣D)P (D)

P (D)
P (D) = 0.001 P (D∣+) = 0.0902

P (D) = 0.01 P (D∣+) = 0.50

P (D) = 0.1 P (D∣+) = 0.92
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(Loss function comes from inference)
Decision-theoretic approach (C.P. Robert, "The Bayesian Choice")

: observation space

: parameter space

: decision (action) space

Statistical inference take a decision  related to parameter  based on observation , under 

Typically,  consists in estimating  accurately

X

Θ

D

d ∈ D θ ∈ Θ x ∈ X f(x∣θ)
d h(θ)

U(θ, d) = E ​[U(r)]θ,d
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(Loss function comes from inference)
Loss function: 

Represents intuitively the loss or error in which you incur when you make a bad decision (a bad estimation of the target function)

Lower bound at 0: avoids "infinite utility" paradoxes (St. Petersburg paradox, martingale-based stragegies)

Generally impossible to uniformly minimize in  the loss for  unknown

Need for a practical prescription to use the loss function as a comparison criterion in practice

L(θ, d) = −U(θ, d)

d θ
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(Frequentist loss, Bayesian loss)
Frequentist loss (risk) is integrated (averaged) on : 

 is an \textbf{estimator} of  (e.g. MLE)

Compare estimators, find the best estimator based on long-run performance for all values of unknown 

Issues: based on long run performance (not optimal for ); repeatability of the experiment; no total ordering on the set of estimators

Bayesian loss: is integrated on : 

 is the prior distribution

Posterior expected loss averages the error over the posterior distribution of  conditional on 

Can use the conditionality because  is known!

Can also integrate the frequentist risk; integrated risk  averaged over  according to  (total ordering)

X R(θ, δ) = E ​[L(θ, δ(x))]θ

δ(⋅) θ

θ

x ​obs

Θ ρ(π, d∣x) = E [L(θ, d)∣x]π

π

θ x ​obs

x ​obs

r(π, δ) = E [R(θ, δ)]π θ π
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Reliability Diagram (visual inspection)

Expected Calibration Error (summary statistic)

"Gap" in the plot

Calibration: the problem
A network should provide a calibrated confidence in addition to prediction

Calibrated means the probability associated with the predicted label should reflect its ground truth correctness likelihood

Calibration and accuracy are orthogonal!!! Plus, calibration is intrinsically a frequentist concept

Miscalibration is further exacerbated by distribution shift (test data deviates from the training distribution due to environmental or acquisition changes)

Networks in early 2000s were reasonably calibrated for binary classification (Niculescu-Mizil and Caruana, 2005)

―
Plots from Guo et al. (2017)

ECE = ​ ​ ​acc(B ​) −∑m=1
M

n

∣B ​∣m
m conf(B ​) ​m
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Calibration: the solution
Histogram binning: calculate calibrated prediction in each bin (on a holdout set), then assign it to predictions falling into that
bin

Isotonic regression: learn piecewise constant  (generalization of hist., where also

boundaries are optimised jointly)

Temperature scaling: logistic regression on the logits is trained to output calibrated probabilities. Changes confidence but not
accuracy

Other methods in reference below. All scale linearly with  validation samples

―
Plots from Guo et al. (2017)

f = argmin ​ ​(f( ​ ​ −f ∑i=1
n

p̂i y ​)i 2

n
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Uncertainty quantification
Deep ensembles: average diverse models to approximate epistemic uncertainty and improve calibration

SWAG: fit a Gaussian to the SGD trajectory to cheaply sample weights

Laplace approximations: (often last-layer) provide a lightweight Bayesian head




Choose by cost–fidelity trade-off and validate with decision metrics.
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Ensemble of models to take decision (mixture model of posterior distributions)

Randomization (same as in random forests) and bagging particularly efficient because of full
parallelization

Can also do boosting, but less efficient (sequential fit)

Randomization can be tricky with Neural Networks (multiple local optima)

Breiman (2001) proposes bagging and random feature selection

Adversarial training to smooth predictive distributions

Beats Monte Carlo Dropout ("use dropout for test sample")

Quite robust and rather well calibrated

Deep Ensembles Lakshminarayanan et al., 2017
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Use information from the SGD
trajectory to approximate
posterior distribution of the NN
weights

Good approximation of the posterior
using a Gaussian distribution fitted to
the first two moments of SGD iterates

Improves calibration when
compared to SGD and simple SWA
(Stochastic Weight Averaging)

SWAG (SWA-Gaussian) Maddox et al., 2019
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Factorization of the Hessian w.r.t.
parameters

Can be calculated without
retraining!!!
Last-layer Laplace
provides a light Bayesian head for
frozen feature extractors.

Approximates well posterior from
50000 HMC samples

Almost no prediction with absolute
certainty

Inflates uncertainty for larger attacks

Laplace Approximation Ritter et al., 2018

Kronecker Factored (KFAC) Laplace approximation to the posterior of the trained network weights
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Conformal prediction: the idea behind it
Conformal prediction (Vovk, Gammerman, Shafer (2005)) wraps any point predictor with finite-sample coverage guarantees

Converts calibration set scores into intervals or sets for new predictions.

Essential assumption is exchangeability of calibration and test examples

Model-agnostic, therefore easy to retrofit onto existing systems.

Transductive: make a prediction, retrain using this new prediction: do next prediction using calibration set of  data points

―
Figures from Angeloupoulos and Bates, 2021

n+ 1
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Interpretation of fixed probability content











A note on confidence intervals

Probability content: solve  for  and 

A method yielding interval with the desired , has coverage

―
Plots from James, 2nd ed.

β = P (a ≤ X ≤ b) = ​ f(X∣θ)dX∫
a

b
a b

β

P((θ ​ −MLE θ ​) ≤true
2 σ)) = β

P (−σ ≤ θ ​ −MLE θ ​ ≤true σ) = β

P (θ ​ −MLE σ ≤ θ ​ ≤true θ ​ +MLE σ) = β
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A note on coverage
Operative definition of coverage probability

Fraction of times, over a set of (usually hypothetical) measurements, that the resulting interval covers the true value of the parameter

Obtain the sampling distribution of the confidence intervals using toy data

Nominal coverage: the one you have built your method around

Actual coverage: the one you calculate from the sampling distribution

Toy experiment: sample  times for a known value of 

Compute interval for each experiment

Count fractions of intervals containing 

Nominal and actual coverage should agre if all assumptions of method are valid

Undercoverage: intervals smaller than proper ones

Overcoverage: intervals larger than proper ones

N θ ​true

θ ​true
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Coverage: the discrete Case
Probability content 

Binomial: find  such that 

Gaussian approximation: 

Clopper Pearson: invert two single-tailed binomial tests

P (a ≤ X ≤ b) = ​ f(X∣θ)dX ≤∑a
b

β

(r ​, r ​)low high ​ ​ p (1 −∑r=r ​low

r=r ​high (
N
r ) r p) ≤N−r 1 − α

p ± Z ​ ​1−α/2 ​

N

p(1−p)
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(The Neyman construction)
Unique solutions to finding confidence intervals are infinite

Let's suppose we have chosen a way

Build horizontally: for each (hypothetical) value of , determine ,  such that 

Read vertically: from the observed value , determine  by intersection

Intrinsically frequentist procedure

―
Figures from James, 2nd ed.

θ t ​(θ)1 t ​(θ)2 ​ P (t∣θ)dt =∫
t ​1

t ​2
β

t ​0 [θ ​, θ ]L
U
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Mixed choices (after looking at data) are problematic

Unphysical values and empty intervals: choose 90%
central interval, measure 

Interval empty, yet with the desired coverage

(Flip-flopping)
Gaussian measurement ( variance 1) of  (physical bound)

Individual prescriptions are self-consistent

90% central limit (solid lines)

90% upper limit (single dashed line)

―
Figures from James, 2nd ed.

μ > 0

x ​ =obs −2.0
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Minimizes Type II error (likelihood ratio for simple test is
the most powerful test)

Solves the problem of empty intervals

Avoids flip-flopping in choosing an ordering prescription

(The Feldman-Cousins Ordering Principle)
Unified approach for determining interval for 

Include in order by largest 

 value of  which maximizes  within the physical region

 remains equal to zero for , yielding deviation w.r.t. central intervals

μ = μ ​0

ℓ(x) = ​

P (x∣ ​)μ̂

P (x∣μ ​)0

​μ̂ μ P (x∣μ)

​μ̂ μ < 1.65
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Split conformal workflow
Fit a predictor  to training data

Create a prediction set (a set of possible labels) using a small calibration set, such that:

Now the probability that the prediction set contains the true label is almost exactly  (marginal coverage, averaged over

calibration and test points)

 is built by 1) Compute "nonconformity scores" on the calibration set using the trained model; 2) Take a quantile of those scores to determine how
much to inflate predictions. 3) Output intervals for new points using that quantile as slack.

―
Figures from Angeloupoulos and Bates, 2021

​f̂

1 − α ≤ P(Y ∈test C(X ​)) ≤test 1 − α + ​

n + 1
1

1 − α

C
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Conformal pipeline
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Nonconformity scores for regression
For symmetric intervals, a natural score is the absolute residual.

Alternative scores exist for asymmetric losses or heavy-tailed noise.

Score choice affects efficiency but not validity under exchangeability.

We will visualize the effect of different scores in the tutorial.
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Conformal prediction have approximate coverage
Marginal coverage at level  over new examples

No requirement of any parametric assumptions about the data

Still, coverage not guaranteed!

Sometimes it undercovers!

―
Figures from Angeloupoulos and Bates, 2021

1 − α
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Conformalized quantile regression (CQR) Romano et al., 2019

Trains a model to predict lower and upper conditional quantiles and then calibrate slack (difference from target coverage)

CQR retains marginal coverage while improving efficiency where quantiles are learnable

―
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Upweight conformal scores from calibration points that
would be more likely under the new distribution, 

Weighted CP replaces the empirical quantile with a weighted
quantile using density ratios.

Weights can be learned via a domain classifier and converted to
ratios.

Conformal prediction and covariate shift

―
Figures from Angeloupoulos and Bates, 2021

w(x) = ​dP/(x)
dP ​(x)test
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Jackknife+ for robustness
Train models on fold complements and predicts both held-out points and the new input.

Aggregating bounds across folds reduces variance from a single split.

Decide by coverage, training cost, evaluation cost

―
Tables from Barber et al. (2019) Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 39 / 57
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Pitfalls with conformal prediction
Calibrating on leaked or preprocessed data invalidates coverage.

Coverage is only marginal

Results are in terms of covering sets: for binary classification, it doesn't work!

Re-using the same calibration set for model selection biases intervals

Ignoring covariate shift leads to optimistic coverage estimates






Never believe individuals on the internet who are too enthusiastic about conformal prediction

Particularly if they happen to make a living by selling courses on it
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A model can be calibrated yet yield inefficient intervals if
residuals are heavy-tailed.

Conversely, conformal prediction coverage can hold while
probabilities are miscalibrated.

Conformal prediction vs Calibration
Conformal prediction gives coverage for sets

Probability calibration targets probabilities.
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Why regularization matters for uncertainty
Regularization shapes the hypothesis space and the variance of predictions

The amount a model overfits or underfits directly affects how confident it should be

Overly flexible models can become overconfident.

Regularization helps the model reduce its confidence when data don't support a strong decision

Too much regularization increases bias and shrinks too much the variance

Nevertheless, post-hoc calibration is still recommended after training.
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Explicit regularisers
Weight decay penalizes large parameters and often improves calibration.

Dropout averages sub-networks and can reduce variance but may harm calibration if misused.

Label smoothing (see figure) prevents extreme probabilities and can improve robustness to shift.

Loss function penalties: add a penalty term to the cross section (e.g. penalizing models that do not satisfy the required
properties. Example to read: Karpatne, 2017

In all cases, there is a hyperparameter that we can tune using validation objectives

―
Srivastava et al., 2014, figure from Müller et al., 2019 Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 43 / 57

https://doi.org/10.1109/TKDE.2017.2720168
https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1906.02629


Implicit regularisers
Data augmentation: replicate each data point by e.g. generating its transformed version under the symmetry in exam. Example
to read: Chen, 2020

Encodes invariances and typically helps accuracy and calibration

Architectural design: tweak the architecture of the model to make it satisfy some symmetries. For instance, CNNs for
rotations and traslations. Works with approximate and exact symmetries.

Embed inductive biases such as equivariance or attention locality

Optimization schedulers and early stopping act as implicit regularizers

In overparameterized models, often these provide stronger regularization than explicit penalty terms

In regulated domains, penalty terms often used to introduce the effect of regularization

Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 44 / 57

https://www.jmlr.org/papers/v21/20-163.html


Bias: when it's inductive, it's a blessing

―
Image by Dean Norris himself Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 45 / 57
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Most general equivariant function under CP:


Parameterize  using a neural network, train  to

minimize a loss function

After training score is CP-odd (even) for CP-odd (even) processes

Any SM-like mismodelling/background will be symmetric by
construction!

Constructive/destructive interference pattern for
positive/negative values

Injected information results in 40-300% less iterations
needed to achieve the same loss value!!!

Equivariance respected at all stages of training

The observable is robust even before training convergence

Inductive bias for CP S. Sanchez, M. Kolosova, C. Ramón, P.V. Phys. Rev. D 110, 096023

―
From , Phys. Rev. D 110, 096023 (2024)

f(event) = g(event) − g(CP (event))

g f
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As capacity grows, models can interpolate and still generalize via implicit bias.

Sometimes, more data  worse test loss

Measured test error may descend again beyond the interpolation threshold.

Calibration and coverage can degrade if capacity lacks guiding priors.

We evaluate uncertainty metrics across the capacity sweep.

Double descent, bias, and coverage degradation

―
Figures from Nakkiran et al., 2020 and Adlam, Pennington, 2020

→
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OOD Detection
Inputs far from training support undermine assumptions
and invalidate guarantees

OOD gates protect the predictor by abstaining or
escalating on unfamiliar inputs

They trigger data collection loops that shrink epistemic
uncertainty over time.

They must be tuned on proxy validation sets representative of
deployment.

―
Diagrams from Yang et al., 2021 Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 48 / 57
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ODIN: detect OOD on pretrained network Liang et al., 2018

Apply temperature scaling to logits and apply tiny input perturbations

This amplifies separation between in- and out-of-distribution scores.

It requires no retraining and works with any trained classifier.
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Energy-based OOD detection Liu et al., 2020

The energy score equals negative log-sum-exp of logits and correlates with confidence

Energy-based thresholds often outperform max-softmax probabilities for OOD

Thresholds must be validated on a proxy set and rechecked after recalibration.
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https://arxiv.org/abs/2010.03759


OOD and conformal prediction
Conformal prediction assumes exchangeability and does not guarantee coverage on extreme OOD inputs.

An OOD gate helps keeping conformal prediction in its regime of validity

Filtering improbable inputs.

Conformal prediciton intervals widen near distribution edges, signaling caution to users.

Clear advantages in coupling OOD gates and conformal prediction
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Good OOD practices
Use realistic corruptions or near-OOD samples for validation, not just far-OOD datasets.

Re-evaluate thresholds after every model update and recalibration.

Log the distribution of scores to catch drift early.

Document fallback behaviors to prevent silent failures
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Record datasets, splits, thresholds, and calibration
procedures used in the release notes

Back to the model cards we saw at the beginning

Track drift detection and incident response.

Design dashboards that expose uncertainty and OOD
statistics to operators.

Auditing and governance

―
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https://arxiv.org/abs/1810.03993


An integrated pipeline
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Further references
Dedicated workshop (COST Action "COMETA"): https://indico.cern.ch/event/1487660/

Structured prediction: https://papers.nips.cc/paper_files/paper/2015/hash/52d2752b150f9c35ccb6869cbf074e48-
Abstract.html

Bayesian Learning: Radford Neal, Bayesian Learning for Neural Networks

Video seminar by Gael Varouquaux

Dr. Gaël Varoquaux | Keynote: Judging uncertainty Dr. Gaël Varoquaux | Keynote: Judging uncertainty ……
ShareShare
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https://indico.cern.ch/event/1487660/
https://papers.nips.cc/paper_files/paper/2015/hash/52d2752b150f9c35ccb6869cbf074e48-Abstract.html
http://link.springer.com/book/10.1007/978-1-4612-0745-0
https://www.youtube.com/watch?v=SI6bde9CKkc
https://www.youtube.com/channel/UCGc4QqRcj5ApgXYhVkhaRpw?embeds_referring_euri=http%3A%2F%2F127.0.0.1%3A8001%2F


Feedback Welcome

or click here: https://share.google/kJlNe22oTtXzNnv0K
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That's all!
Hands on: https://github.com/vischia/ecai2025/

Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 57 / 57

https://github.com/vischia/ecai2025/

