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If you are reading this as a web page: have fun! If you are reading this as a PDF: please visit
https://www.hep.uniovi.es/vischia/persistent/2025-10-26_Tutorial ECAI2025.html

to get the version with working animations
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Disclaimer (who am )

e Particle physicist (PhD 2016, IST Lisboa) now at Universidad de Oviedo and ICTEA
e Most of my career at the CMS Experiment at CERN

o Specialized in statistics and machine learning applied to proton-proton collision data
o We like frequentist properties
¢ Inthe past five years, | specialized in Al for experiment design

o Check out the MODE Collaboration, https://mode-collaboration.github.io/
o Lately focussing on neuromorphic computing (spiking neural networks) for nanophotonics readout of calorimeters
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Existing CERN accelerator complex with Large Hadron Collider (LHC), Super Proton Synchrotron (SPS), Proton
Synchrotron (PS), Antiproton Decelerator (AD), Low Energy lon Ring (LEIR), Linear Accelerators (LINAC), CLIC
Test Facility (CTF3), CERN to Gran Sasso (CNGS), Isotopes Separation on Line (ISOLDE), and neutrons Time

of Flight (n-ToF).
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Image from 10.1103/PhysRevSTAB.16.054801 and from the CMS Collaboration


https://mode-collaboration.github.io/
https://mode-collaboration.github.io/
https://doi.org/10.1103/PhysRevSTAB.16.054801

PHINDER Pathfinder Open (shameful advertisement
part 1)

e Pathfinder Open 2025: Consortium just funded with 3.2 million euros

o Will be hiring a PhD student on spiking neural networks and neuromorphic computing very soon: if you are interested, drop me a line!
e Picosecond-scale event processing with energy-efficient architectures

o Particle physics detectors

o Proton therapy detectors

o Chemical process control

A) Goal: picosecond-scale | B)Hierarchical neuromorphic||C) Integrated prototype D) Hardware: l1l-V NWs &
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COST CA24146 (shameful advertisement part 2)

e WG1 coleader: Applications in Particle Physics
e Budget for travelling and organising events
¢ Anyone can join (just some reasonable loose acceptance criterion)

o T cosT
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CA24146 - Machine Learning and Quant
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What do
we do

lllustration reedited from original by Gregor Kasieczka
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https://indico.nikhef.nl/event/4875/contributions/21153/attachments/8264/11798/DeepLearning_EUCAIFCon_Amsterdam_2024_v2.pdf
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lllustration reelaborated with some additions from original by Gregor Kasieczka
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What is uncertainty?

¢ Aleatoric uncertainty: noise that is irreducible
o "Statistical uncertainty", e.g. because of the stochasticity of a physical process
e Epistemic uncertainty: in the model itself

o reduced by improving the model architecture or (sometimes) training on more data

o Qut-of-distribution (OOD) uncertainty: response of the model to data that are significantly different from the training data set
o Qutliers

o Sampled from a different distribution (but anomaly detection!)

o Critical for model safety!
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The program for this 1.5h

Quantifying uncertainty

Deployable techniques/algorithms

Highlight the pitfalls and defects of these techniques

Connect the various techniques (conformal prediction, calibration, regularization, and OOD) into a single pipeline
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Why quantify uncertainty?

e Avoid catastrophic errors due to overconfidence in high-accuracy models

o Keeps the human in the loop: when uncertainty is large, abstain, request new data, or in general flag the outcome for human
review

e Estimating uncertainty means estimating risk and therefore costs. In safety-critical settings, decisions are driven by costs, not
accuracy only

Uncertainty estimates must be calibrated, robust, and computationally feasible

Further reading: Amodei et al, 2016: Concrete problems in Al Safety Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 9/ 57


https://arxiv.org/abs/1606.06565

What you will learn (hopefully)

How to distinguish aleatoric and epistemic uncertainty and explain why the distinction matters.

How to implement split conformal prediction and conformalized quantile regression with coverage guarantees

o And why sometimes it's dangerous

How regularization and inductive bias shape generalization and uncertainty

How to filter out OOD data by OOD gating so that predictions are trusted only in-distribution
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Communicate clearly about uncertainty

e Endusers should know when to trust the prediction

o E.g.whento alert a nurse for human judgment

e Asuitable pipeline should combine calibrated models,
conformal intervals, and OOD gates to support these

choices

e Afirst example are Model cards: short documents
accompanying trained ML models, providing
benchmarked evaluation in a variety of conditions

o Across relevant groups (e.g. cultural, demographic, phenotipic) to

Figure from Mitchell et al., 2019

the intended application domains

Model Card - Smiling Detection in Images

Model Details

* Developed by researchers at Google and the University of Toronto, 2018, v1.

o Convolutional Neural Net.

* Pretrained for face recognition then fine-tuned with cross-entropy loss for binary
smiling classification.

Intended Use

 Intended to be used for fun applications, such as creating cartoon smiles on real
images; augmentative applications, such as providing details for people who are
blind; or assisting applications such as automatically finding smiling photos.

* Particularly intended for younger audiences.

* Not suitable for emotion detection or determining affect; smiles were annotated
based on physical appearance, and not underlying emotions.

Factors

* Based on known problems with computer vision face technology, potential rel-
evant factors include groups for gender, age, race, and Fitzpatrick skin type;
hardware factors of camera type and lens type; and environmental factors of
lighting and humidity.

* Evaluation factors are gender and age group, as annotated in the publicly available
dataset CelebA [36]. Further possible factors not currently available in a public
smiling dataset. Gender and age determined by third-party annotators based
on visual presentation, following a set of examples of male/female gender and

young/old age. Further details available in [36].

Metrics

e Evaluation metrics include False Positive Rate and False Negative Rate to
measure disproportionate model performance errors across subgroups. False
Discovery Rate and False Omission Rate, which measure the fraction of nega-
tive (not smiling) and positive (smiling) predictions that are incorrectly predicted
to be positive and negative, respectively, are also reported. [48]

o Together, these four metrics provide values for different errors that can be calcu-
lated from the confusion matrix for binary classification systems.

» These also correspond to metrics in recent definitions of “fairness” in machine
learning (cf. [6, 26]), where parity across subgroups for different metrics corre-
spond to different fairness criteria.

* 95% confidence intervals calculated with bootstrap resampling.

o All metrics reported at the .5 decision threshold, where all error types (FPR, FNR,
FDR, FOR) are within the same range (0.04 - 0.14).

Training Data Evaluation Data

o CelebA [36], training data split. e CelebA [36], test data split.

« Chosen as a basic proof-of-concept.
Ethical Considerations

* Faces and annotations based on public figures (celebrities). No new information
is inferred or annotated.

Caveats and Recommendations

Quantitative Analyses
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* Does not capture race or skin type, which has been reported as a source of disproportionate errors [5].
* Given gender classes are binary (male/not male), which we include as male/female. Further work needed to evaluate across a

spectrum of genders.

o Anideal evaluation dataset would additionally include annotations for Fitzpatrick skin type, camera details, and environment

(lighting/humidity) details.

Figure 2: Example Model Card for a smile detector trained and evaluated on the CelebA dataset.
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https://arxiv.org/abs/1810.03993

Outline

Uncertainty foundations and calibration

Conformal prediction and its main variants

Regularization, inductive bias, and their interaction with uncertainty

Out-of-Distribution (OOD) detection and the integration of all components into a pipeline
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Aleatoric vs Epistemic uncertainty

e Aleatoric uncertainty: irreducible noise in the data (e.g. from a sensor)

o Enlarging training dataset does not reduce it

o Minimum achievable error (even with perfect dataset)

¢ Epistemic uncertainty: typically due to limited or nonrepresentative data

o Enlarging training dataset reduces it

o Requesting the model to extrapolate increases it

e Mixing the two leads to misguided interventions!!!
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Do not mix aleatoric and epistemic uncertainties

e Earthquake load on a structure: S (peak ground acceleration) as intensity measure; R capacity to withstand a certain \S.
o R, S modelled as Poisson models

e g(r,s,€) =lIn(r) + e —In(s) + €
o [/ arethe errorsin modelling the structure

o F are the errors due to the stochastic ground motion

e Forasingle earthquake, no distinction: then maybe failure 0.08
prob is Poisson:
0.07 ¢
Psp,, =1 —exp(—u,prt) 0.06 |
: e e 0.05 ¢
e Actually, failure events in time are not statistically
independent 0.04 t
Inr+ ; 0.038 ¢
~ nr+e —
Pi=1- | exp|-v®| —— 25 |t | fx(r)fe, (e1)fo (0)dr de; dO 0.02
rep,0 /Cg_l_o-% .
0.01
o Aleatory uncertainties in .S and E5 are renewed at each 0 . . . . . . . . ,
earthquake, all the others are common o 1.2 3 4 5 6 7 8 9 10

- Fig. 5. Influence of non-ergodic uncertainties on time-variant reliability.
Example and plots from Kiureghian & Ditlevsen, 2009 Pietro Vischia - Tutorial at ECAIl 2025, 2025.10.26 --- 14/ 57
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Probabilistic predictions FTW

e Apredictive distribution summarizes beliefs about future outcomes, not just a point estimate

o |nBayesian terms, you want the full posterior

e Medical diagnosis: false positives (distress, further tests) preferrable to false negatives (patient dies due to being untreated)

Figure 1.25 An example of a loss matrix with ele- cancer mnormal
ments Ly; for the cancer treatment problem. The rows

correspond to the true class, whereas the columns cor- cancer 0 1000
respond to the assignment of class made by our deci- normal 1 0

sion criterion.

Probabilistic predictions minimise risk

o When loss matrix needs to be revisited, having the full posterior allows revising the decision criterion without having to retrain

Probabilistic predictions allow us to determine a rejection criterion

o e.g. minimise expected loss for a given fraction of rejected data points (connected to coverage, see later)

Probabilistic predictions allow us to compensate for class priors

o |ncidence of disease in population dramatically shifts the posterior probability

Probabilistic predictions allow us to combine models

o E.g. breakthe problem in different subdiagnoses, then combine posteriors
Sharpness measures concentration, while calibration measures honesty of probabilities.

i In practice, we prefer predictions that are both sharp and well calibrated.

Figure from C. Bishop, "Pattern Recognition and Machine Learning", 2006 Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 15/ 57


https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

(The Obligatory COVID-19slide)

e Mortal disease e Diagnostic test
o D: the patient is diseased (sick) o —|—: the patient flags positive to the disease
o H: the patient is healthy o —:the patient flags negative to the disease

e Averygood test
. P(+|D) = 0.99
- P(+|H) = 0.01

e You take the test and you flag positive: do you have the disease?

_ PGIDP(D) _ __ PH+ID)P(D)
P(DI+) = =507 = pa10PD)+ PG IHPED

 We need the incidence of the disease in the population, P(D)!
o P(D) = 0.001 (very rare disease): then P(D|+) = 0.0902, which is fairly small
o P(D) = 0.01 (only a factor 10 more likely): then P(D|+) = 0.50, which is pretty high
o P(D) = 0.1:then P(D|+) = 0.92, almost certainty!

Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 16 / 57



(Loss function comes from inference)

e Decision-theoretic approach (C.P. Robert, "The Bayesian Choice")
o X:observation space
o O: parameter space

o D:decision (action) space

e Statistical inference take a decision d € D related to parameter @ € O based on observation z € X, under f(z|6)

o Typically, d consists in estimating h(@) accurately

U(6’,d) - ‘Eg7d U(’P)
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(Loss function comes from inference)

e Loss function: L(6,d) = —U (6, d)
o Represents intuitively the loss or error in which you incur when you make a bad decision (a bad estimation of the target function)

o Lower bound at O: avoids "infinite utility" paradoxes (St. Petersburg paradox, martingale-based stragegies)

e Generally impossible to uniformly minimize in d the loss for 8 unknown

o Need for a practical prescription to use the loss function as a comparison criterion in practice

Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 18 / 57



(Frequentist loss, Bayesian loss)

e Frequentist loss (risk) is integrated (averaged) on X: R(6,§) = [Eq [L(H, 5(3:))}

o () is an\textbf{estimator} of 6 (e.g. MLE)
o Compare estimators, find the best estimator based on long-run performance for all values of unknown 6

o [ssues: based on long run performance (not optimal for x ., ); repeatability of the experiment; no total ordering on the set of estimators
* Bayesian loss: is integrated on ©: p(7, d|z) = E” [L(@, d) ]w]

o qristhe prior distribution
o Posterior expected loss averages the error over the posterior distribution of 6 conditional on x4

o Can use the conditionality because s is known!

o Canalsointegrate the frequentist risk; integrated risk r(r, 5) — [0 [R(H, 5)] averaged over 6 according to 7 (total ordering)
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Calibration: the problem

e A network should provide a calibrated confidence in addition to prediction

Calibrated means the probability associated with the predicted label should reflect its ground truth correctness likelihood
o Calibration and accuracy are orthogonal!!! Plus, calibration is intrinsically a frequentist concept

o Miscalibration is further exacerbated by distribution shift (test data deviates from the training distribution due to environmental or acquisition changes)

Networks in early 2000s were reasonably calibrated for binary classification (Niculescu-Mizil and Caruana, 2005)

e Reliability Diagram (visual inspection) LeNet (1998) ResNet (2016)
. . = CIFAR-100 CIFAR-100
e Expected Calibration Error (summary statistic) AT o
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https://www.cs.cornell.edu/~alexn/papers/calibration.icml05.crc.rev3.pdf
https://arxiv.org/abs/1706.04599

Calibration: the solution

e Histogram binning: calculate calibrated prediction in each bin (on a holdout set), then assign it to predictions falling into that
bin

e Isotonic regression: learn piecewise constant f = argmin; Y . (f(D; — y;)? (generalization of hist., where also
boundaries are optimised jointly)

e Temperature scaling: logistic regression on the logits is trained to output calibrated probabilities. Changes confidence but not
accuracy

e Other methods in reference below. All scale linearly with n validation samples

Uncal. - CIFAR-100 Temp. Scale - CIFAR-100 Hist. Bin. - CIFAR-100 Iso. Reg. - CIFAR-100
L0 ResNet-110 (SD) ResNet-110 (SD) ResNet-110 (SD) ResNet-110 (SD)
| I Outputs ’ Bl Outputs | Bl Outputs | H Outputs '
0.8 |1 Gap / Gap 1 Gap 1 Gap

Accuracy
o o
=~ (@)

e
B

0.0 &
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0

Plots from Guo et al. (2017)


https://arxiv.org/abs/1706.04599

Uncertainty quantification

Deep ensembles: average diverse models to approximate epistemic uncertainty and improve calibration

SWAG: fit a Gaussian to the SGD trajectory to cheaply sample weights

Laplace approximations: (often last-layer) provide a lightweight Bayesian head

Choose by cost-fidelity trade-off and validate with decision metrics.
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Deep Ensembles Lakshminarayanan et al., 2017

[
©
o

Ensemble of models to take decision (mixture model of posterior distributions)

o Randomization (same as in random forests) and bagging particularly efficient because of full
parallelization

—e—— Ensemble

——e—— Ensemble + R

—e—— Ensemble + AT
MC dropout

o
o

~
o

o Can also do boosting, but less efficient (sequential fit)

Randomization can be tricky with Neural Networks (multiple local optima)

o Breiman (2001) proposes bagging and random feature selection

w
o

I
o

Adversarial training to smooth predictive distributions

°
Accuracy on examples p(y|z) > T
()]

o

[
w
o

Beats Monte Carlo Dropout ("use dropout for test sample") 90 01 02 03 04 05 06 07 08 09

Confidence Threshold 7

Quite robust and rather well calibrated

200; Empirical 200/Train using 200 Adversarial 300! Deep ensemble
i i ini of 5 NNs

L00| Variance of § ™ N_LL using a 100! training 200
NNs single NN 100
0 0 0 0
~100 —100} ~100 —100
—200
—200 —200} —200 —300

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
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https://arxiv.org/abs/1612.01474

SWAG (SWA-Gaussian) Maddox et al., 2019

e Use information from the SGD

; A Train loss Train loss Train loss
trajectory to approximate . PreResNet-164 CIFAR-100 . _ PreResNet-164 CIFAR-100 . PreResNet-164 CIFAR-100
posterior distribution of the NN 5 w 5
weights - v 19
; 5 ) EN 065 075
o Good approximation of the posterior 5. s o 05
using a Gaussian distribution fitted to . ots 010
the first two moments of SGD iterates 02 ] o2 o
00 ; R i 0091 —40 012
—-80 —-60 —40 -20 X 0 20 40 60 80 0.084
Distance 80 —60 —40 —20 0 20 40 60 80 ’ 40 -0 o0 0 40 ot
Vi %] Vs v v3
Vio —— vy * SWA Trajectory (proj) % SWA  —— Trajectory (proj)
--®-- SWAG 30 region - — SWAG 30 region — — SWAG 30 region

¢ Improves calibration when
Compa red to SG D a nd Si mple SWA WideResNet28x10 CIFAR-100 WideResNet28x10 CIFAR-10 — STL-10 DenseNet-161 ImageNet ResNet-152 ImageNet

(Stochastic Weight Averaging) o5 - o
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0200 0.759 0.927 0.978 0.9930.998 0200 0.759 0.927 0.978 0.9930.998 0200 0.759 0.927 0.978 0.9930.998 0200 0.759 0.927 0.978 0.9930.998
Confidence (max prob) Confidence (max prob) Confidence (max prob) Confidence (max prob)
=o= SGD  =e— SGLD SWA-Drop === SWA-Temp === SWAG ==o= SWAG-Diag
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https://arxiv.org/abs/1902.02476

Laplace Approximation ritteretal, 2018

e Kronecker Factored (KFAC) Laplace approximation to the posterior of the trained network weights

o Factorization of the Hessian w.r.t.
parameters 150 150 150 150
o Can be calculated without ; B ; )
retraining!!! Last-layer Laplace
provides a light Bayesian head for o o o o
frozen featu re eXtraCtorS' —200g -4 -2 0 2 4 6 200 -4 -2 0 2 4 6 200G -4 2 0 2 4 6 2005 -4 2 0 2 4 6
o Approximates well posterior from (a) KF Laplace (b) Diagonal Laplace (c) Full Laplace (d) HMC
50000 HMC samples
Figure 1: Toy regression uncertainty. Black dots are data points, the black line shows the noiseless
function. The red line shows the deterministic prediction of the network, the blue line the mean
output. Each shade of blue visualises one additional standard deviation. Best viewed on screen.
¢ Almost no prediction with absolute ¢ |nflates uncertainty for larger attacks
certainty
10 —— KF Laplace WideResNet28x10 CIFAR-100 WideResNet28x10 CIFAR-10 — STL-10 DenseNet-161 ImageNet . ResNet-152 ImageNet
0.8 B:ziz:?l e > 1 a0.35 > > 0.10 1 Al
—— FFG o ©0.30 e C 0.08 {
« 0.6 Deterministic Eﬁ Eﬁo_zs g E) 005 |/
Hoa E E os 5 fon|
“g “g 0.10 “‘g “g -0.02 |
02 © 05 e © 005 |
00 P Contdonce (max prob) P Confidonce (max prob) P Contdence (o prob) P Contdonce (max prob)
0.0 05 10 15 20 25 —e— SGD - SGLD SWA-Drop —o— SWA-Temp —eo— SWAG = SWAG-Diag

Predictive Entropy

. . Pietro Vischia - Tutorial at ECAl 2025, 2025.10.26 - 25/ 57
Figure 2: Predictive entropy on notMNIST ob-

bnvtemnd Counmeian Aot varrtla A AN Cacwtla A Facerrnend camnmn


https://openreview.net/forum?id=Skdvd2xAZ

Conformal prediction: the idea behind it

e Conformal prediction (Vovk, Gammerman, Shafer (2005)) wraps any point predictor with finite-sample coverage guarantees
o Converts calibration set scores into intervals or sets for new predictions.

o Essential assumption is exchangeability of calibration and test examples

e Model-agnostic, therefore easy to retrofit onto existing systems.

e Transductive: make a prediction, retrain using this new prediction: do next prediction using calibration set of n + 1 data points

| - | - \ 3 K 3 -8 ska) j “o 8 - Mon
f OxX fox ay b cket rain marrnot Lox 1, mink, weasel, beaver, polecat
. u squirre ’
Squg_;_’;rel sqlélagrel fo;g beér;;el T ed 0.22 0.18 0.16 0.03  0.01

Figure 1: Prediction set examples on Imagenet. We show three progressively more difficult examples
of the class fox squirrel and the prediction sets (i.e., C(Xiest)) generated by conformal prediction.
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A note on confidence intervals

. Probabilitycontent:soIveIB — P(a S X S b) — f; f(X‘H)dX for @ and D

o A method yielding interval with the desired 3, has coverage

* |Interpretation of fixed probability content taa
P((HMLE - etrue)2 = 0')) = 6
Kgoa —
P(_O- S HMLE — Htrue S O-) = /8 B : : po2 :
P(OMLE_O'SHtrueSQMLE‘I'U):B Bo2vV 1 —p E
i /’ Kppoa
: .

Kﬁ.pcﬁ Kﬁdl

Kﬁ01\/1 - p2

r I | |
il C=Za 0

Plots from James, 2nd ed.
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A note on coverage

Operative definition of coverage probability

o Fraction of times, over a set of (usually hypothetical) measurements, that the resulting interval covers the true value of the parameter

o Obtain the sampling distribution of the confidence intervals using toy data

Nominal coverage: the one you have built your method around

Actual coverage: the one you calculate from the sampling distribution
o Toy experiment: sample N times for a known value of 0;,.,.
o Compute interval for each experiment

o Count fractions of intervals containing @¢yve

Nominal and actual coverage should agre if all assumptions of method are valid
o Undercoverage: intervals smaller than proper ones

o Overcoverage: intervals larger than proper ones
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Coverage: the discrete Case

e Probability content P(a < X < b) = ZZ AR = 5
e Binomial: find (770w, Thigh ) Such that Na (T)pr(l —p)¥ T <1 -«

=Tlow N
o Gaussian approximation: p + Zl,a/g 1%

o Clopper Pearson: invert two single-tailed binomial tests

o ]
[=2)
2
2 &
3 3
[+] ©
Q Q
[ [<}
o Q © _|
[ g o
8 o
[9] o
3 3
[&] (6]
N~ N~
<3 S
—— Binomial —— Binomial
—— Clopper—Pearson —— Clopper—Pearson
= = Nominal - = Nominal
© ©
< 2
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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(The Neyman construction)

Unique solutions to finding confidence intervals are infinite

o Let's suppose we have chosen a way

Build horizontally: for each (hypothetical) value of 6, determine 1 (), t2 (€) such that jZQ P(t|0)dt = B

Read vertically: from the observed value £, determine [HL, HU] by intersection

Intrinsically frequentist procedure

4 }
S )
= g
% B V(L) ----mmmmmm e
2 o
£ &
o
<
=¥
BL to ------------------------- g
62 (t0) |
[}
|
0, H
O
QY
6o |
]
N observed data t g
data t to
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(Flip-flopping)

Gaussian measurement ( variance 1) of i > 0 (physical bound)

Individual prescriptions are self-consistent
o 90% central limit (solid lines)

o 90% upper limit (single dashed line)

Mixed choices (after looking at data) are problematic 4

Unphysical values and empty intervals: choose 90%
central interval, measure ;s = —2.0

o |nterval empty, yet with the desired coverage

[ [ I
1 2 3 4 ) 6

measured mean
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(The Feldman-Cousins Ordering Principle)

Unified approach for determining interval for . =
P(x|uo)

o Includeinorderbylargestﬁ(m) = e

o [ivalue of ;x which maximizes P (z|u) within the physical region

o firemains equal to zerofor . < 1.65, yielding deviation w.r.t. central intervals

Minimizes Type Il error (likelihood ratio for simple test is 4

the most powerful test)

e Solves the problem of empty intervals L 4
¢ Avoids flip-flopping in choosing an ordering prescription g

E 3 —

2 —

F-C -

F-C
l [ [ [ | | T *
-2 -1 0 1 2 3 4

measured mean
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Split conformal workflow

e Fitapredictor f totraining data

o Create a prediction set (a set of possible labels) using a small calibration set, such that:

1

b = ROE CeX sl —
a < P(Yiest € C(Xtest)) < Ol

e Now the probability that the prediction set contains the true label is almost exactly 1 — « (marginal coverage, averaged over
calibration and test points)

o (Cisbuilt by 1) Compute "nonconformity scores" on the calibration set using the trained model; 2) Take a quantile of those scores to determine how
much to inflate predictions. 3) Output intervals for new points using that quantile as slack.

(1) compute scores (2) get quantile (3) construct # 1: get conformal scores. m = calib_Y.shape[0]
on holdout data | Prediction set cal_smx = model(calib_X) .softmax(dim=1) .numpy()
cal_scores = l-cal_smx[np.arange(n),cal_labels]
# 2: get adjusted quantile
g_level = np.ceil((n+1)*(1-alpha))/n
ghat = np.quantile(cal_scores, g_level, method='higher')
val_smx = model(val_X).softmax(dim=1) .numpy()
class scores, {5} class prediction_sets = val_smx >= (l1-ghat) # 3: form prediction sets

softmax output

softmax outpu

Figure 2: Illustration of conformal prediction with matching Python code. J@
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Conformal pipeline

Split:
train/calib/test

Train base Calib scores Quantile
—r f(x)-=y S | 4(1-0)
Predict Interval Coverage
y(x*) [§+4d] 1-a

Model-agnostic; finite-sample under exchangeability.
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Nonconformity scores for regression

e For symmetric intervals, a natural score is the absolute residual.
¢ Alternative scores exist for asymmetric losses or heavy-tailed noise.

e Score choice affects efficiency but not validity under exchangeability.

We will visualize the effect of different scores in the tutorial.

Conformalized Quantile Regression (synthetic)

obs
latent f
CQR interval

1.5}

0.5

-0.5
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Conformal prediction have approximate coverage

e Marginal coverage atlevel 1 — a over new examples

¢ No requirement of any parametric assumptions about the data

¢ Still, coverage not guaranteed!

o Sometimes it undercovers!

Distribution of coverage (infinite validation set)

n=100

n=1000

n=10000
-——= l-a

0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

Figure 11: The distribution of coverage with an infinite validation set is plotted for different values of
= n with a = 0.1. The distribution converges to 1 — o with rate O (n_l/ 2).
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Conformalized quantile regression (CQR) romanoetal, 2019

e Trains a model to predict lower and upper conditional quantiles and then calibrate slack (difference from target coverage)

e CQRretains marginal coverage while improving efficiency where quantiles are learnable

Figure 6: A visualization of the conformalized quantile regrssion algorithm in Eq. (4). We adjust
the quantiles by the constant §, picked during the calibration step.
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Conformal prediction and covariate shift

¢ Upweight conformal scores from calibration points that e
would be more likely under the new distribution,

dPtest z
w(z) = A_ldP/(x)

o Weighted CP replaces the empirical quantile with a weighted
quantile using density ratios.

o Weights can be learned via a domain classifier and converted to
ratios.

r4
7) Ptesg 4

-
- -

Xtest

Imagine our calibration features {X;}! ; are drawn independently from P but our test feature X is
drawn from Piest. Then, there has been a covariate shift, and the data are no longer i.i.d. This problem is
common in the real world. For example,
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Jackknife+ for robustness

e Train models on fold complements and predicts both held-out points and the new input.

o Aggregating bounds across folds reduces variance from a single split.

e Decide by coverage, training cost, evaluation cost

Method Assumption-free theory Typical empirical coverage
Naive No guarantee <l-a

Split conf. (holdout) (3) > 1 — a coverage ~1l-a

Jackknife (7) No guarantee ~1—q,or <1—«if i unstable
Jackknife+ @ > 1 — 2a coverage ~rl-a
Jackknife-minmax > 1 — a coverage >1—-«

Full conformal > 1 — a coverage ~1—aq,or >1—«aif g overfits
K-fold CV+ > 1 — 2o coverage Zl—a

K-fold cross-conf. > 1 — 2a coverage >1l—a

Tables from Barber et al. (2019)

Method Model training cost | Model evaluation cost
Naive 1 7+ Niest

Split conf. (holdout) (3) 1 "

Jackknife (7) n "
Jackknife+ @ n Test * T
Jackknife-minmax n "

K-fold CV+ K N+ Niest - K
K-fold cross-conf. K "

Full conformal Thtest * Mrid Thtest * Tgrid * T
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Pitfalls with conformal prediction

e Calibrating on leaked or preprocessed data invalidates coverage.

e Coverage is only marginal

e Results are in terms of covering sets: for binary classification, it doesn't work!
e Re-using the same calibration set for model selection biases intervals

e Ignoring covariate shift leads to optimistic coverage estimates

¢ Never believe individuals on the internet who are too enthusiastic about conformal prediction

o Particularly if they happen to make a living by selling courses on it
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Conformal prediction vs Calibration

e Conformal prediction gives coverage for sets

e Probability calibration targets probabilities.

e A model can be calibrated yet yield inefficient intervals if e Conversely, conformal prediction coverage can hold while
residuals are heavy-tailed. probabilities are miscalibrated.

B) Miscalibrated Probabilities,

A) Calibrated Mean, Localized Heavy Tails = Global CP is Inefficient CP Sets Still Cover
Split CP 90% (global) 1.0f
Oracle local 90%
— True mean f(x)
4001 Test data_ _ 0.8
Heavy-tail region -
(&)
c
B
200} o 0.6
[
> fr
8
? £ 04r
= - m
0.2
=200}
CP coverage = 0.885
Avg width: CP=2.15, Oracle=13.28 " 0.0 cPcoverage = 0.900, Avg |S| = 1.76
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X Predicted Probability

Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 41/ 57



Why regularization matters for uncertainty

Regularization shapes the hypothesis space and the variance of predictions

o The amount a model overfits or underfits directly affects how confident it should be

Overly flexible models can become overconfident.

Regularization helps the model reduce its confidence when data don't support a strong decision

Too much regularization increases bias and shrinks too much the variance

Nevertheless, post-hoc calibration is still recommended after training.

1.751

Bias-Variance-Regularization (conceptual)

/"\\ Test error
’ \ i
,, \ Bias
\ _——— i

7 \ Variance

! \

7 \

/ \

/ \

/ \
/ \
/ \
/ \
’ \
’ \
/ \
/ \
7/ \
7 AY
7 AY
4 AN
4 \
' Y
4 x
/’ \\
f, \\\
\"\
- h"“'-..,_
1 1 1 1 1 1 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Model complexity / 1-(reg strength)

Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 42/ 57



Explicit regularisers

e Weight decay penalizes large parameters and often improves calibration.

Dropout averages sub-networks and can reduce variance but may harm calibration if misused.

Label smoothing (see figure) prevents extreme probabilities and can improve robustness to shift.

Loss function penalties: add a penalty term to the cross section (e.g. penalizing models that do not satisfy the required

properties. Example to read: Karpatne, 2017

In all cases, there is a hyperparameter that we can tune using validation objectives

1.0

T

T T

a=0.0.T=1.0

a=0.05T=1.0

+—+ a=0.0,T=1.9

Accuracy
=
o)

1

o
i-Y
T

1

0.4 0.6
Confidence

0.8

1.0
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1.0

T T

0.8 |-
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a=0.1.T=1.0
+— a=0.0.T=1.4

O
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T

o
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T
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0.2 0.4
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1.0

Figure 2: Reliability diagram of ResNet-56/CIFAR-100 (left) and Inception-v4/ImageNet (right).

Srivastava et al., 2014, figure from Midiller et al., 2019
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Implicit regularisers

Data augmentation: replicate each data point by e.g. generating its transformed version under the symmetry in exam. Example
to read: Chen, 2020

o Encodes invariances and typically helps accuracy and calibration

e Architectural design: tweak the architecture of the model to make it satisfy some symmetries. For instance, CNNs for
rotations and traslations. Works with approximate and exact symmetries.

o Embed inductive biases such as equivariance or attention locality
e Optimization schedulers and early stopping act as implicit regularizers
¢ Inoverparameterized models, often these provide stronger regularization than explicit penalty terms

¢ Inregulated domains, penalty terms often used to introduce the effect of regularization
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Bias: when it's inductive, it's a blessing



https://twitter.com/deanjnorris/status/488726797400281088

Inductive bias forCPs. Sanchez, M. Kolosova, C. Ramén, PV. Phys. Rev. D 110, 096023

e Most general equivariant function under CP:  Equivariance respected at all stages of training
f(efvent) = g(event) — g(OP(e'Uent)) o The observable is robust even before training convergence
e Parameterize g using a neural network, train f to " S —
minimize a loss function E 50- — BSM-SM interference x 10, 500 epoch |
> - a
o After training score is CP-odd (even) for CP-odd (even) processes ,,q_’ - SM, 500 ?pOChS o
© [ —- BSM-SM interference x 10. No training
o Any SM-like mismodelling/background will be symmetric by & 4ol SM. No training ]
construction! -g . ]
o Constructive/destructive interference pattern for 2 I
positive/negative values 30 _
e Injected information results in 40-300% less iterations I
needed to achieve the same loss value!!! o0l B
x1072 100 trainings B
S 56[ i T L -
= i — Non equivariant -
55.4; — Equivariant 7 10__ _
5 | [
- 5.2j 1 B
5.0/ § Oj ]
: i | 1 1 I | 1 ! I I I 1 1 | I 1 I |
48 ] -0.10 -0.05 0.00 0.05 0.10
Wl ) Algorithm score
4.4i —
i 4.2:— .
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Double descent, bias, and coverage degradation

¢ As capacity grows, models can interpolate and still generalize via implicit bias.

o Sometimes, more data — worse test loss
e Measured test error may descend again beyond the interpolation threshold.

e Calibration and coverage can degrade if capacity lacks guiding priors.

We evaluate uncertainty metrics across the capacity sweep.

Figures from Nakkiran et al., 2020 and Adlam, Pennington, 2020

Cross-Entropy Test Loss
Y
5 5§ & & 8 N

.
o

8

4k Samples
—e— 18k Samples

For models in this range
4.5 more samples harm test loss

T

© B

Figure 1: (a-e) The different bias-variance decompositions described in Sec.|4| (f-j) Corresponding
theoretical predictions of Thm. for v =0,¢ =1/16 and o = tanh with SNR = 100 as the model
capacity varies across the interpolation threshold (dashed red). (a,f) The semi-classical decomposition
of [21, 23] has a nonmonotonic and divergent bias term, conflicting with standard definitions of the
bias. (b,g) The decomposition of [25] utilizing the law of total variance interprets the diverging term
V5 as “variance due to optimization”. (c,h) An alternative application of the law of total variance
suggests the opposite, i.e. the diverging term V5 comes from “variance due to sampling”. (d,i)
A bivariate symmetric decomposition of the variance resolves this ambiguity and shows that the
diverging term is actually Vpp, i.e. “the variance explained by the parameters and data together
beyond what they explain individually.” (e,j) A trivariate symmetric decomposition reveals that the
divergence comes from two terms, Vpx and Vpx. (outlined in dashed red), and shows that label
noise exacerbates but does not cause double descent. Since V; = Vp, = 0, they are not shown in (j).

50 75 100 125 150 175 200
Transformer Embedding Dimension (dmoder)
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OOD Detection

Covariate Shift Detection Semantic Shift Detection
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https://arxiv.org/abs/2110.11334

ODIN: detect OOD on pretrained network vianget i, 2018

e Apply temperature scaling to logits and apply tiny input perturbations
¢ This amplifies separation between in- and out-of-distribution scores.

¢ |trequires no retraining and works with any trained classifier.

ODIN: score distributions (synthetic)
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0o0oD

140

120

100

80

60

40

20

0.0 0.2 0.4 0.6 0.8
ODIN score (1 — MSP)
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Energy-based OOD detection viuetal, 2020

e The energy score equals negative log-sum-exp of logits and correlates with confidence
e Energy-based thresholds often outperform max-softmax probabilities for OOD

e Thresholds must be validated on a proxy set and rechecked after recalibration.

Energy-based OOD scores (synthetic)
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OOD and conformal prediction

Conformal prediction assumes exchangeability and does not guarantee coverage on extreme OOD inputs.

An OOD gate helps keeping conformal prediction in its regime of validity

o Filtering improbable inputs.

Conformal prediciton intervals widen near distribution edges, signaling caution to users.

Clear advantages in coupling OOD gates and conformal prediction
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Good OOD practices

Use realistic corruptions or near-OOD samples for validation, not just far-OOD datasets.

Re-evaluate thresholds after every model update and recalibration.

Log the distribution of scores to catch drift early.

Document fallback behaviors to prevent silent failures
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Auditing and governance

¢ Record datasets, splits, thresholds, and calibration
procedures used in the release notes

o Back to the model cards we saw at the beginning
e Track drift detection and incident response.

¢ Design dashboards that expose uncertainty and OOD

statistics to operators.

Figure from Mitchell et al., 2019

Model Card - Smiling Detection in Images

Model Details

* Developed by researchers at Google and the University of Toronto, 2018, v1.

o Convolutional Neural Net.

* Pretrained for face recognition then fine-tuned with cross-entropy loss for binary
smiling classification.

Intended Use

 Intended to be used for fun applications, such as creating cartoon smiles on real
images; augmentative applications, such as providing details for people who are
blind; or assisting applications such as automatically finding smiling photos.

* Particularly intended for younger audiences.

* Not suitable for emotion detection or determining affect; smiles were annotated
based on physical appearance, and not underlying emotions.

Factors

* Based on known problems with computer vision face technology, potential rel-
evant factors include groups for gender, age, race, and Fitzpatrick skin type;
hardware factors of camera type and lens type; and environmental factors of
lighting and humidity.

* Evaluation factors are gender and age group, as annotated in the publicly available
dataset CelebA [36]. Further possible factors not currently available in a public
smiling dataset. Gender and age determined by third-party annotators based
on visual presentation, following a set of examples of male/female gender and

young/old age. Further details available in [36].

Metrics

e Evaluation metrics include False Positive Rate and False Negative Rate to
measure disproportionate model performance errors across subgroups. False
Discovery Rate and False Omission Rate, which measure the fraction of nega-
tive (not smiling) and positive (smiling) predictions that are incorrectly predicted
to be positive and negative, respectively, are also reported. [48]

o Together, these four metrics provide values for different errors that can be calcu-
lated from the confusion matrix for binary classification systems.

» These also correspond to metrics in recent definitions of “fairness” in machine
learning (cf. [6, 26]), where parity across subgroups for different metrics corre-
spond to different fairness criteria.

* 95% confidence intervals calculated with bootstrap resampling.

o All metrics reported at the .5 decision threshold, where all error types (FPR, FNR,
FDR, FOR) are within the same range (0.04 - 0.14).

Training Data Evaluation Data

o CelebA [36], training data split. e CelebA [36], test data split.

« Chosen as a basic proof-of-concept.
Ethical Considerations

* Faces and annotations based on public figures (celebrities). No new information
is inferred or annotated.

Caveats and Recommendations

Quantitative Analyses
False Positive Rate @ 0.5
old-male ——
old-female —o—
young-female gl
young-male —e—
old —e—
young 22
male e
female o
all hed

0.000.020.040.06 0.080.100.12 0.14

False Negative Rate @ 0.5
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old-female o
young-female o
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old o
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male o
female o
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False Discovery Rate @ 0.5
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False Omission Rate @ 0.5
old-male o
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old °
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male o

female o

all o

0.000.020.040.06 0.080.100.120.14

* Does not capture race or skin type, which has been reported as a source of disproportionate errors [5].
* Given gender classes are binary (male/not male), which we include as male/female. Further work needed to evaluate across a

spectrum of genders.

o Anideal evaluation dataset would additionally include annotations for Fitzpatrick skin type, camera details, and environment

(lighting/humidity) details.

Figure 2: Example Model Card for a smile detector trained and evaluated on the CelebA dataset.
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Further references

Dedicated workshop (COST Action "COMETA"): https://indico.cern.ch/event/1487660/

Structured prediction: https://papers.nips.cc/paper_files/paper/2015/hash/52d2752b150f9c35ccb6869cbf074e48-
Abstract.html

Bayesian Learning: Radford Neal, Bayesian Learning for Neural Networks

Video seminar by Gael Varouquaux

Model-evaluation wisdom
Good probabilities
enables separation of concern

between predictor & user

Gimme good F(y)
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https://indico.cern.ch/event/1487660/
https://papers.nips.cc/paper_files/paper/2015/hash/52d2752b150f9c35ccb6869cbf074e48-Abstract.html
http://link.springer.com/book/10.1007/978-1-4612-0745-0
https://www.youtube.com/watch?v=SI6bde9CKkc
https://www.youtube.com/channel/UCGc4QqRcj5ApgXYhVkhaRpw?embeds_referring_euri=http%3A%2F%2F127.0.0.1%3A8001%2F

Feedback Welcome

SCAN ME

or click here: https://share.google/kJINe220TtXzNnvOK


https://share.google/kJlNe22oTtXzNnv0K

That's all!

Hands on: https://github.com/vischia/ecai2025/

Pietro Vischia - Tutorial at ECAI 2025, 2025.10.26 --- 57 / 57


https://github.com/vischia/ecai2025/

